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The aim of this paper is to develop a layer potential theory in L2-based weighted
Sobolev spaces on Lipschitz bounded and exterior domains of Rn, n≥ 3, for the
anisotropic Stokes system with L∞ viscosity tensor coefficient satisfying an ellip-
ticity condition for symmetric matrices with zero matrix trace. To do this, we
explore equivalent mixed variational formulations and prove the well-posedness
of some transmission problems for the anisotropic Stokes system in Lipschitz
domains of Rn, with the given data in L2-based weighted Sobolev spaces. These
results are used to define the volume (Newtonian) and layer potentials and to
obtain their properties. Then, we analyze the well-posedness of the exterior
Dirichlet and Neumann problems for the anisotropic Stokes system with L∞

symmetrically elliptic tensor coefficient by representing their solutions in terms
of the obtained volume and layer potentials.
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1 INTRODUCTION

The layer potential methods play a fundamental role in the analysis of elliptic boundary value problems (see, e.g., previous
studies1-6). Fabes et al.7 obtained mapping properties of layer potential operators for the constant coefficient Stokes system
in Lp spaces by using a technique of harmonic analysis. Further extensions of these results to Lp, Sobolev, Bessel potential,
and Besov spaces have been obtained by Mitrea and Wright5 using layer potential methods to obtain well-posedness results
for the main boundary value problems for the standard Stokes system with constant coefficients in arbitrary Lipschitz
domains in R3. Kohr et al.8 obtained mapping properties of the constant-coefficient Stokes and Brinkman layer potential
operators in standard and weighted Sobolev spaces in R3. Kohr et al.9 combined a layer potential approach with a fixed
point theorem to show an existence result for a nonlinear Neumann-transmission problem for the constant-coefficient
Stokes and Brinkman systems in Lp, Sobolev, and Besov spaces (see also Kohr et al.10).
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Choi and Lee11 have studied the Dirichlet problem for the stationary Stokes system with irregular coefficients. They have
proved the unique solvability of the problem in Sobolev spaces on a Lipschitz domain in Rn, n≥ 3, with a small Lipschitz
constant, by assuming that the coefficients have vanishing mean oscillations (VMO) with respect to all variables. Existence
and pointwise bounds of the fundamental solution for the stationary Stokes system with measurable coefficients in Rn

(n≥ 3) have been obtained by Choi and Yang12 under the assumption of local Hölder continuity of weak solutions of the
Stokes system. They also discussed the existence and pointwise bounds of the Green function for the Stokes system with
measurable coefficients on unbounded domains where the divergence equation is solvable, particularly on the half-space.
The solvability in Sobolev spaces of the conormal derivative problem for the stationary Stokes system with nonsmooth
coefficients on bounded Reifenberg flat domains have been proved by Choi et al.13 (see also Choi et al.14).

The methods of layer potential theory play also a significant role in the study of elliptic boundary value problems with
variable coefficients. Mitrea and Taylor15 have obtained well-posedness results for the Dirichlet problem for the smooth
coefficient Stokes system in Lp spaces on arbitrary Lipschitz domains in a compact Riemannian manifold and extended
the well-posedness results by Fabes et al.7 from the Euclidean setting to the compact Riemannian setting. Dindos and
Mitrea3 have used the mapping properties of Stokes layer potentials in Sobolev and Besov spaces to show well-posedness
results for Poisson problems for the smooth coefficient Stokes and Navier–Stokes systems with Dirichlet boundary condi-
tion on C1 and Lipschitz domains in compact Riemannian manifolds. Well-posedness results for transmission problems
for the smooth coefficient Navier–Stokes and Darcy–Forchheimer–Brinkman systems in Lipschitz domains on compact
Riemannian manifolds have been obtained by Kohr et al.16

An alternative approach was employed by Chkadua et al.,17-22 where various boundary value problems for
variable-coefficient elliptic partial differential equations were reduced to explicit parametrix-based boundary-domain inte-
gral equations (BDIEs). Equivalence of BDIEs to the boundary value problems and invertibility of BDIE operators in L2
and Lp-based Sobolev spaces have been analyzed in these papers. Localized BDIEs based on a harmonic parametrix for
divergence-form elliptic PDEs with variable matrix coefficients have been also developed; see Chkadua et al.23 and the
references therein.

Amrouche et al.24 used a variational approach in the analysis of the exterior Dirichlet and Neumann problems for
the n-dimensional Laplace operator in weighted Sobolev spaces. Mazzucato and Nistor25 obtained well-posedness and
regularity results for the elasticity equations with mixed conditions on polyhedral domains. Hofmann et al.26 consid-
ered layer potentials in Lp spaces for elliptic operators of the form L = −div(A∇u) that act in the upper half-space
R

n+1
+ ∶= {(x, t) ∶ x ∈ Rn, t ∈ R+}, n≥ 2, or in more general Lipschitz graph domains, where A is an (n+ 1)× (n+ 1)

type matrix of L∞ complex, t-independent coefficients satisfying a uniform ellipticity condition, and solutions of the
equation Lu = 0 satisfying De Giorgi–Nash–Moser-type interior estimates. They developed a Calderón–Zygmund-type
theory associated with the layer potentials and obtained well-posedness results for related boundary problems in Lp and
endpoint spaces. Brewster et al.27 have used a variational approach to obtain well-posedness results for Dirichlet, Neu-
mann, and mixed boundary problems for higher order divergence-form elliptic equations with L∞ coefficients in locally
(𝜖, 𝛿)-domains and in Besov and Bessel potential spaces (see also Haller-Dintelmann et al.28). Barton29 has used the
Lax–Milgram lemma to construct layer potentials for strongly elliptic differential operators in Banach spaces and gener-
alized many properties of layer potentials for the harmonic equation. Barton and Mayboroda30 developed layer potentials
for second-order divergence elliptic operators with bounded measurable coefficients that are independent of the (n+ 1)st
coordinate and well-posedness results for related boundary problems with data in Besov spaces.

Girault and Sequeira31 obtained well-posedness of the exterior Dirichlet problem for the constant coefficient Stokes
system in weighted Sobolev spaces on exterior Lipschitz domains in Rn for n∈ {2, 3}, by applying a mixed variational for-
mulation. Angot32 analyzed some Stokes/Brinkman transmission problems with a scalar viscosity coefficient on bounded
domains. Sayas and Selgas33 developed a variational approach for the constant-coefficient Stokes layer potentials on Lip-
schitz boundaries, by using the technique of Nédélec.34 The book by Sayas et al.35 gives a comprehensive presentation of
the basic variational theory for elliptic PDEs in Lipschitz domains. Băcuţă et al.36 developed a variational approach for
the constant-coefficient Brinkman single-layer potential and used it to analyze the corresponding time dependent exte-
rior Dirichlet problem in Rn, n = 2, 3. Alliot and Amrouche37 have used a variational approach to obtain weak solutions
for the exterior Stokes problem in weighted Sobolev spaces (see also Amrouche and Nguyen38).

Kohr et al.39 obtained the well-posedness results for the isotropic Stokes system with a nonsmooth scalar viscosity coef-
ficient 𝜇 ∈ L∞(R3) (see also previous studies40-42 for the Stokes and Navier–Stokes systems with nonsmooth coefficients
in compact Riemannian manifolds). Kohr et al.43 also analyzed transmission problems in weighted Sobolev spaces for
anisotropic Stokes and Navier–Stokes systems with an L∞ strongly elliptic coefficient tensor, in the pseudostress setting.
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In this paper, we proceed with the study of transmission and exterior boundary value problems for the anisotropic Stokes
system. However, unlike paper,43 we consider the L∞ viscosity coefficient tensor satisfying an ellipticity condition only
with respect to all symmetric matrices with zero matrix trace (see 1.4). Our purpose is to develop a generalized layer and
volume potential theory in L2-based weighted Sobolev spaces for such Stokes systems, which does not involve fundamen-
tal solutions and hence can be used when the fundamental solutions are not available. To do this, we explore equivalent
mixed variational formulations and prove the well-posedness of some transmission problems for the anisotropic Stokes
system in Lipschitz domains of Rn, with the given data in L2-based weighted Sobolev spaces. These results are used to
define the volume and layer potentials in terms of solutions of the transmission problems and to obtain the potential
properties, without introducing classical explicit integral potential operators. However, when the explicit integral rep-
resentations of the potentials are available, they will coincide with the variational potentials developed here due to the
uniqueness of solutions to the corresponding transmission problems.

Then, we analyze well-posedness of the exterior Dirichlet and Neumann problems for the anisotropic Stokes system
with L∞ tensor coefficient satisfying ellipticity condition (1.4) and represent their solutions in terms of the anisotropic
Stokes Newtonian and layer potentials. Although these boundary value problems can be analyzed by variational methods
directly, without employing the potential formalism, they are provided here as examples on how, using this formalism,
one can easily generalize the classical potential approaches, available for constant-coefficient isotropic problems, to the
discontinuous-coefficient anisotropic ones. The potential theory developed in this paper can be also useful when new fun-
damental solutions and potentials based on them become available. In this case, the potential properties can be obtained
from the results developed here.

This paper deals with the potentials in Rn, n≥ 3. Its results can be extended to R2 as well, but then, the analysis should
be done in slightly different weighted Sobolev spaces.

Note that the boundary value problems for the anisotropic Stokes system with L∞ coefficients considered in this paper
can describe physical, engineering, or industrial processes related to the flow of immiscible fluids, or the flow of nonho-
mogeneous fluids with density dependent viscosity (cf., e.g., Choi et al.13). They appear also in modeling incompressible
elastic anisotropic nonhomogeneous/composite materials.

1.1 The anisotropic Stokes system with L∞ symmetrically elliptic tensor coefficient
All along the paper, we use the Einstein summation convention for repeated indices from 1 to n, and the standard notation
𝜕𝛼 for the first-order partial derivatives 𝜕

𝜕x𝛼
, 𝛼 = 1, … ,n.

Let L be a second-order differential operator in the divergence form in an open set Ω ⊆ Rn, n≥ 3,

Lu = div (AE(u)) ⇐⇒ (Lu)i ∶= 𝜕𝛼

(
a𝛼𝛽

i𝑗 E𝑗𝛽(u)
)
, i = 1, … ,n, (1.1)

where u = (u1, … ,un)⊤ and E(u) =
(

E𝑗𝛽(u)
)

1≤𝑗,𝛽≤n is the symmetric part of the gradient ∇u. Therefore, the components
of the tensor field E(u) are defined by E𝑗𝛽(u) ∶= 1

2
(𝜕𝑗u𝛽 + 𝜕𝛽u𝑗).

The viscosity tensor coefficient A in the operator L consists of n×n matrix-valued functions A𝛼𝛽 = A𝛼𝛽(x) with
essentially bounded, real-valued entries, that is,

A =
(

A𝛼𝛽
)

1≤𝛼,𝛽≤n =
(

a𝛼𝛽

i𝑗

)
1≤𝛼,𝛽,i,𝑗≤n

; a𝛼𝛽

i𝑗 ∈ L∞(Ω), 1 ≤ 𝛼, 𝛽, i, 𝑗 ≤ n, (1.2)

satisfying the symmetry conditions

a𝛼𝛽

i𝑗 (x) = ai𝛽
𝛼𝑗
(x) = a𝛼𝑗

i𝛽 (x), x ∈ Ω, (1.3)

(cf. Oleinik et al.,44, eq. (2.2) and Duffy,45, eqs. (6) and (7)). Note that the symmetry conditions (1.3) do not imply the
symmetry a𝛼𝛽

i𝑗 (x) = a𝛽𝛼

𝑗i (x), which will be generally not assumed in the paper.
We assume that the coefficients satisfy the following relaxed ellipticity condition, which asserts that there exists a

constant cA > 0 such that for almost all x∈Ω,

a𝛼𝛽

i𝑗 (x)𝜉i𝛼𝜉𝑗𝛽 ≥ c−1
A

|𝜉|2 ∀𝜉 = (𝜉i𝛼)i,𝛼=1,… ,n ∈ R
n×n with 𝜉 = 𝜉⊤and

n∑
i=1

𝜉ii = 0, (1.4)
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where |𝜉|2 = 𝜉i𝛼𝜉i𝛼 . Therefore, the ellipticity condition (1.4) is assumed only for all symmetric matrices 𝜉 = (𝜉i𝛼)i,𝛼=1,… ,n ∈
Rn×n (cf. Oleinik et al.44, eqs. (3.1) and (3.2)), having zero matrix trace,

∑n
i=1 𝜉ii = 0.

In view of (1.2), A is endowed with the norm

||A||L∞(Ω) ∶= max
i,𝑗,𝛼,𝛽∈{1,… ,n}

{||a𝛼𝛽

i𝑗 ||L∞(Ω)

}
. (1.5)

The symmetry conditions (1.3) allow us to express the operator L in the equivalent forms

(Lu)i = 𝜕𝛼

(
a𝛼𝛽

i𝑗 E𝑗𝛽(u)
)
= 𝜕𝛼

(
a𝛼𝛽

i𝑗 𝜕𝛽u𝑗

)
, i = 1, … ,n, (1.6)

Lu = 𝜕𝛼
(

A𝛼𝛽𝜕𝛽u
)
. (1.7)

Note that the first equality in (1.6) has not been encountered in our publication,43 where the coefficients of the
fourth-order tensor A have been assumed to satisfy the strong ellipticity condition similar to the second condition in (1.4)
but for all (not only symmetric and zero-trace) matrices 𝝃 (see Kohr et al.43, eq. 2 and 3). The more restrictive ellipticity
condition in paper43 allowed to explore there the associated nonsymmetric pseudostress setting. In this paper, we require
the symmetry conditions (1.3) and the ellipticity condition (1.4) only for symmetric zero-trace matrices 𝝃 and develop
our results in the symmetric stress setting. This approach allows us to obtain properties of layer potentials for the Stokes
system with L∞ variable coefficients generalizing well-known results for constant coefficients.

Let u be an unknown vector field, 𝜋 be an unknown scalar field, and f and g be, respectively, vector and scalar fields
defined in Ω ⊆ Rn. Then, the equations

(u, 𝜋) ∶= Lu − ∇𝜋 = f , div u = g in Ω (1.8)

determine the Stokes system which describes viscous compressible fluid flows with variable anisotropic viscosity tensor
coefficient A depending on the physical properties of the fluid, such as, for example, the given fluid temperature.45,46 If
g = 0, then the fluid is incompressible.

According to (1.6) and (1.7), the Stokes operator  can be written in any of the equivalent forms

(u, 𝜋) = 𝜕𝛼
(

A𝛼𝛽𝜕𝛽u
)
− ∇𝜋, ((u, 𝜋))i = 𝜕𝛼

(
a𝛼𝛽

i𝑗 E𝑗𝛽(u)
)
− 𝜕i𝜋, i = 1, … ,n . (1.9)

Under condition (1.4), the anisotropic Stokes system (1.8) is Agmon–Douglis–Nirenberg elliptic (see Lemma 15).

1.2 Isotropic case
For the isotropic case, the viscosity tensor A in (1.2) has the form (cf., e.g., appendix III, part I, section 1 in Temam47)

a𝛼𝛽

i𝑗 (x) = 𝜆(x)𝛿i𝛼𝛿𝑗𝛽 + 𝜇(x)
(
𝛿𝛼𝑗𝛿𝛽i + 𝛿𝛼𝛽𝛿i𝑗

)
, 1 ≤ i, 𝑗, 𝛼, 𝛽 ≤ n, (1.10)

where 𝜆,𝜇∈L∞(Ω) and
c−1
𝜇 ≤ 𝜇(x) ≤ c𝜇 for a.e.x ∈ Ω, (1.11)

with a constant c𝜇 > 0. Then,

a𝛼𝛽

i𝑗 (x)𝜉i𝛼𝜉𝑗𝛽 = 𝜆(x)(𝜉ii)2 + 2𝜇(x)𝜉i𝛼𝜉i𝛼 = 2𝜇(x)𝜉i𝛼𝜉i𝛼 = 2𝜇(x)|𝜉|2 ≥ 2c−1
𝜇 |𝜉|2 for a.e. x ∈ Ω,

for any symmetric matrix 𝜉 = (𝜉i𝛼)1≤i,𝛼≤n ∈ Rn×n such that 𝜉ii =
∑n

i=1 𝜉ii = 0. Therefore, the symmetric ellipticity condi-
tion (1.4) is satisfied as well, and hence, our results are also applicable to the Stokes system in the isotropic case. If 𝜇 > 0 is a
constant and g = 0, then (1.8) reduces to the well-known isotropic incompressible Stokes system with constant viscosity
𝜇.
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2 FUNCTIONAL SETTING AND PRELIMINARY RESULTS

Let Ω+ be a bounded Lipschitz domain in Rn, that is, an open connected set whose boundary 𝜕Ω is locally the graph of a
Lipschitz function and is connected. We further assume that n≥ 3 unless explicitly stated otherwise. Sometimes, we will
write just Ω instead of Ω+. Let Ω− ∶= Rn∖Ω+ be the corresponding exterior Lipschitz domain. Let E̊± denote the operator
of extension of functions by zero outside Ω±.

2.1 L2-based Sobolev spaces
Given a Banach space  , its topological dual is denoted by  ′, and the notation ⟨· , ·⟩X means the duality pairing of two
dual spaces defined on a set X ⊆ Rn.

Let Ω′ be a nonempty open set in Rn or just Rn. Let L2(Ω′) denote the Lebesgue space of (equivalence classes of) mea-
surable, square-integrable functions on Ω′, and L∞(Ω′) denote the space of (equivalence classes of) essentially bounded
measurable functions on Ω′. Let us define the L2-based Sobolev space H1(Ω′) = W 1

2 (Ω
′) ∶=

{
𝑓 ∈ L2(Ω′) ∶ ∇𝑓 ∈ L2(Ω′)n}

endowed with the norm ||𝑓 ||H1(Ω′) =
√||𝑓 ||2

L2(Ω′) + ||∇𝑓 ||2
L2(Ω′)n . (2.1)

Here, L2(Ω′)n denotes the space of vector-valued functions whose components belong to the scalar space L2(Ω′). Similar
notations are assumed also for other vector-valued and matrix-valued spaces.

Let (Ω′) ∶= C∞
0 (Ω′) denote the space of infinitely differentiable functions with compact support in Ω′, equipped with

the inductive limit topology. Let ′(Ω′) denote the corresponding space of distributions on Ω′, that is, the dual of the
space (Ω′).

Let Ω′′ be either a bounded Lipschitz domain or the exterior of a bounded Lipschitz domain in Rn. The space H̃1(Ω′′)
is the closure of (Ω′′) in H1(Rn). It can be also characterized as

H̃1Ω′′) ∶=
{
𝑓 ∈ H1(Rn) ∶ supp𝑓 ⊆ Ω′′)

}
, (2.2)

where supp𝑓 ∶= {x ∈ Rn ∶ 𝑓 (x) ≠ 0} (see, e.g., Theorem 3.33 in McLean48).
The dual of H1(Rn) is denoted as H−1(Rn), while the dual of H1(Ω′′) as H̃−1(Ω′′) and the dual of H̃1(Ω′′) as H−1(Ω′′).
The boundary Sobolev space Hs(𝜕Ω), 0< s< 1, can be defined by

Hs(𝜕Ω) =
⎧⎪⎨⎪⎩𝑓 ∈ L2(𝜕Ω) ∶ ∫

𝜕Ω
∫
𝜕Ω

|𝑓 (x) − 𝑓 (y)|2|x − y|n−1+2s d𝜎xd𝜎y < ∞
⎫⎪⎬⎪⎭ ,

where 𝜎y is the surface measure on 𝜕Ω (see, e.g., Proposition 2.5.1 in Mitrea and Wright5). The dual of Hs(𝜕Ω) is the
space H−s(𝜕Ω), and we set H0(𝜕Ω) = L2(𝜕Ω). Let Hs(𝜕Ω)n denote the space of vector-valued functions whose components
belong to Hs(𝜕Ω). The dual of Hs(𝜕Ω)n is the space H−s(𝜕Ω)n.

All L2-based Sobolev spaces mentioned above are Hilbert spaces. The following well-known trace theorem holds true
(cf. Costabel1 and McLean48).

Theorem 1. Let Ω ∶= Ω+ be a bounded Lipschitz domain of Rn with connected boundary 𝜕Ω, and let Ω− ∶= Rn∖Ω be
the corresponding exterior domain. Then, there exist linear bounded trace operators 𝛾± ∶ H1(Ω±) → H

1
2 (𝜕Ω) such that

𝛾±f= f|𝜕Ω for any 𝑓 ∈ C∞(Ω±). The operators 𝛾± are surjective and have (nonunique) linear and bounded right inverse
operators 𝛾−1

± ∶ H
1
2 (𝜕Ω) → H1(Ω±). The trace operator 𝛾 ∶ H1(Rn) → H

1
2 (𝜕Ω) is linear and bounded as well.*

Note that any function u ∈ H1
loc(R

n) has the jump

[𝛾(u)] ∶= 𝛾+(u) − 𝛾−(u) (2.3)

equal to zero across 𝜕Ω.
Further properties of Sobolev spaces can be found in the literature.5,48-50

* The trace operators defined on Sobolev spaces of vector fields on Ω± or Rn are also denoted by 𝛾± and 𝛾 , respectively.
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2.2 Weighted Sobolev spaces

Let |x| = (x2
1 + … + x2

n)
1
2 denote the Euclidean distance of a point x = (x1, … , xn) ∈ Rn to the origin of Rn. Let 𝜌 be the

weight function
𝜌(x) = (1 + |x|2)

1
2 . (2.4)

2.2.1 Weighted Sobolev spaces on R
n

The weighted Lebesgue space L2(𝜌−1;Rn) is defined by

L2(𝜌−1;Rn) ∶=
{
𝑓 ∈ ′(Rn) ∶ 𝜌−1𝑓 ∈ L2(Rn)

}
(2.5)

and has a Hilbert space structure with respect to the inner product and the associated norm

( 𝑓, g)L2(𝜌−1;Rn) ∶= ∫
Rn

𝑓g𝜌−2dx, ||𝑓 ||2
L2(𝜌−1;Rn) ∶= ( 𝑓, 𝑓 )L2(𝜌−1;Rn). (2.6)

We also consider the weighted Sobolev space

1(Rn) ∶=
{
𝑓 ∈ ′(Rn) ∶ 𝜌−1𝑓 ∈ L2(Rn), ∇𝑓 ∈ L2(Rn)n} , n ≥ 3 (2.7)

(cf. Definition 1.1 in Alliot and Amrouche37 and Theorem I.1 in Hanouzet51), which is also a Hilbert space with the norm
defined by ||𝑓 ||1(Rn) ∶=

√‖𝜌−1𝑓‖2
L2(Rn) + ||∇𝑓 ||2

L2(Rn)n . (2.8)

The space(Rn) is dense in1(Rn) (cf., e.g., Alliot and Amrouche52, p. 727; Theorem I.1 in Hanouzet51 and Proposition
2.1 in Sayas and Selgas,33 in the case n = 3), and thus, the dual −1(Rn) of 1(Rn) is a space of distributions. Let us
consider the seminorm |𝑓 |1(Rn) ∶= ||∇𝑓 ||L2(Rn)n . (2.9)

This seminorm is a norm on the space 1(Rn) and is equivalent to the norm || · ||1(Rn), given by (2.8) (cf., e.g., Theorem
1.1 in Alliot and Amrouche52).

In view of Lemma 2.5 of Kozono and Sohr,53 the divergence operator div ∶ 1(Rn)n → L2(Rn) is surjective and has a
bounded right inverse. Moreover, Remark 3.8(i) of Alliot and Amrouche52 and Proposition 2.4(i) of Kozono and Sohr53

imply that for n≥ 3, the weighted Sobolev space 1(Rn) can be also characterized as

1(Rn) =
{

u ∈ L 2n
n−2

(Rn) ∶ ∇u ∈ L2(Rn)n
}
, (2.10)

with equivalent norms.

2.2.2 Weighted Sobolev spaces on exterior Lipschitz domains
The weighted Sobolev space 1(Ω−) can be defined as in (2.7) with Ω− in place of Rn. Therefore,

1(Ω−) ∶=
{

v ∈ ′(Ω−) ∶ 𝜌−1v ∈ L2(Ω−), ∇v ∈ L2(Ω−)n} , n ≥ 3 (2.11)

is a Hilbert space with a norm given by (2.8) with Ω− in place of Rn (see, e.g., Definition 1.1 in Alliot and Amrouche37).
The space ̃−1(Ω−) is the dual of the space 1(Ω−).

Next, we mention some useful properties of these spaces. First, note that the space (Ω−) is dense in 1(Ω−). Moreover,
the functions of 1(Ω−) belong to H1(D) for any bounded domain D contained in Ω− (see also Alliot and Amrouche37).
Since H1(Ω−) ⊂ 1(Ω−), the statement of Theorem 1 extends also to the weighted Sobolev space 1(Ω−). Therefore, there
exists a bounded linear and surjective exterior trace operator

𝛾− ∶ 1(Ω−) → H
1
2 (𝜕Ω), (2.12)
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which has a (nonunique) bounded linear right inverse 𝛾−1
− ∶ H

1
2 (𝜕Ω) → 1(Ω−) (see Lemma 2.2 in Kohr et al.,8 Theorem

2.3 and Lemma 2.6 in Mikhailov,54 and p.69 in Sayas and Selgas33). The trace operator 𝛾 ∶ 1(Rn) → H
1
2 (𝜕Ω) defined

by 𝛾(u) = 𝛾+(u+) = 𝛾−(u−) for any u ∈ 1(Rn), where u± ∶= u|Ω± , is bounded linear and surjective as well (cf., e.g.,
Theorem 2.3 and Lemma 2.6 in Mikhailov54 and formula (2.2) in Băcuţă et al.36).

Let us now consider the space ̊1(Ω−) as the closure of the space (Ω−) with respect to the norm || · ||1(Ω−) defined as
in (2.8), with Ω− in place of Rn (cf., e.g., Amrouche et al.,24 Definition 1.1 in Alliot and Amrouche,37 and Theorem 2.1 in
Ch. 1 in Giroire55). This is a Hilbert space that can be also characterized as

̊1(Ω−) =
{

v ∈ 1(Ω−) ∶ 𝛾−v = 0 on 𝜕Ω
}

(2.13)

(see Amrouche et al.24, eq. (1.2) and Theorem 4.2 in Brewster et al.27). The space (Ω−) is dense in ̊1(Ω−). Hence, the
dual of ̊1(Ω−) denoted by −1(Ω−) is a subspace of ′(Ω−). In addition, the seminorm

|𝑓 |1(Ω−) ∶= ||∇𝑓 ||L2(Ω−)n (2.14)

is a norm on ̊1(Ω−) that is equivalent to the full norm || · ||1(Ω−) given by (2.8) with Ω− in place of Rn (cf., e.g., Theorem
1.2 in Amrouche et al.24 and Theorem 1.2 (ii) in Alliot and Amrouche37).

We need also the space ̃1(Ω−) ⊂ 1(Rn), defined as the closure of (Ω−) in 1(Rn). This space can be also
characterized as (see, e.g., formula (2.9) in Brewster et al.27)

̃1(Ω−) =
{

u ∈ 1(Rn) ∶ suppu ⊆ Ω−

}
(2.15)

and can be identified isomorphically with ̊1(Ω−) via the operator E̊− of extension by zero outside Ω−.
By ±1(Rn)n and ±1(Ω−)n, we denote the spaces of vector-valued functions or distributions whose components

belong to the spaces 1(Rn) and 1(Ω−), respectively.

Remark 1. The weighted Sobolev space 1(Ω+) can be defined as in formula (2.7) with Ω+ in place of Rn. The dual of
the space 1(Ω+) is denoted by ̃−1(Ω+). Let also ̊1(Ω+) be the weighted space defined as the closure of the space
(Ω+) in1(Ω+), and let−1(Ω+) be its dual. SinceΩ+ is a bounded Lipschitz domain, we have that1(Ω+) = H1(Ω+)
and −1(Ω+) = H−1(Ω+) (with equivalent norms).

2.2.3 Weighted Sobolev spaces on R
n∖𝜕Ω

We also consider the weighted space

1(Rn∖𝜕Ω) ∶=
{
𝑓 ∈ L2(𝜌−1;Rn) ∶ ∇𝑓 ∈ L2(Ω±)n} , n ≥ 3. (2.16)

This is a Hilbert space with the norm defined by

||𝑓 ||2
1(Rn∖𝜕Ω) = ||𝜌−1𝑓 ||2

L2(Rn) + ||∇𝑓 ||2
L2(Ω−)n + ||∇𝑓 ||2

L2(Ω+)n , (2.17)

which is equivalent to the norm (||𝑓 ||2
H1(Ω+)

+ ||𝑓 ||21(Ω−)
)1∕2 on 1(Rn∖𝜕Ω).

Note that 𝑓 |Ω+ ∈ H1(Ω+) and 𝑓 |Ω− ∈ 1(Ω−), whenever 𝑓 ∈ 1(Rn∖𝜕Ω), and f could have a jump across 𝜕Ω denoted
by [𝛾( 𝑓 )] ∶= 𝛾+( 𝑓 ) − 𝛾−(𝑓 ) = 𝛾+(𝑓+) − 𝛾−(𝑓−), where 𝑓± ∶= 𝑓 |Ω± . However, if f ∈ 1(Rn∖𝜕Ω) and [𝛾( 𝑓 )] = 0, then
f ∈ 1(Rn), and conversely, if f ∈ 1(Rn), then [𝛾𝑓 )] = 0 (see Lemma B1 and Theorem 5.13 in Brewster et al.27).

2.2.4 Rigid motion fields
Let  be the linear space of rigid body motion fields in Rn,

 ∶=
{

b + Bx ∶ b ∈ R
n and B ∈ R

n×n such that B = −B⊤
}
. (2.18)

It is easy to see that dim  = n(n + 1)∕2; compare book Oleinik et al.44
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It is well known that if v∈H1(Ω′)n and E(v) = 0 in a bounded domain Ω′, then v ∈ |Ω′ (see, e.g., the proof of Theorem
2.5, chapter I in Oleinik et al.44). This immediately implies that if Ω′′ is Rn or an exterior domain in Rn and E(v) = 0 for
v ∈ 1(Ω′′)n ⊂ H1

loc(Ω
′′)n, then v ∈ |Ω′′ as well. Moreover, since v belongs to the space 1(Ω′′)n, which is embedded in

L 2n
n−2

(Ω′′)n (see (2.10)), it follows that v = 0 in Ω′′.

2.3 The conormal derivative for the Stokes system with L∞ viscosity tensor coefficient
As above, L is the divergence form of a second-order elliptic differential operator given by (1.7), and the coefficients A𝛼𝛽

of the anisotropic tensor A =
(

A𝛼𝛽
)

1≤𝛼,𝛽≤n are n×n matrix-valued functions in L∞(Rn)n×n, with bounded measurable,
real-valued entries a𝛼𝛽

i𝑗 , satisfying the symmetry and ellipticity conditions (1.3) and (1.4). Moreover, is the Stokes operator
given by (1.9). Let 𝜈 = (𝜈1, … , 𝜈n)⊤ denote the outward unit normal to Ω+, which is defined a.e. on 𝜕Ω.

In the special case when (u, 𝜋) ∈ C1(Ω±)n × C0(Ω±) and the coefficients a𝛼𝛽

i𝑗 are also continuous up to the boundary,
the classical interior and exterior conormal derivatives (i.e., the boundary traction fields) for the Stokes system

(u, 𝜋) = Lu − ∇𝜋 = f, divu = g in Ω±, (2.19)

where f∈L2(Ω±)n, g∈L2(Ω±) are defined by the formula

tc±(u, 𝜋) ∶= −𝛾±𝜋𝜈 + Tc±u, (2.20)

where Tc±u are the conormal derivatives of u on 𝜕Ω associated with the operator L and defined by

Tc±u ∶= 𝛾±(A𝛼𝛽𝜕𝛽u)𝜈𝛼 (2.21)

(cf., e.g., Choi et al.14). In view of (1.3), we obtain that†(
Tc±u

)
i
= 𝛾±

(
a𝛼𝛽

i𝑗 𝜕𝛽u𝑗

)
𝜈𝛼 = 𝛾±

(
a𝛼𝛽

i𝑗 E𝑗𝛽(u)
)
𝜈𝛼, (2.22)

where E𝑗𝛽(u) ∶= 1
2

(
𝜕𝑗u𝛽 + 𝜕𝛽u𝑗

)
. ‡

Note that for the isotropic case (1.10), the classical conormal derivatives tc±(u,𝜋) reduce to the well-known formulas
in the isotropic compressible case (cf., e.g., Appendix III, Part I, Section 1 in Temam47),(

tc±(u, 𝜋)
)

i
= −𝛾±𝜋𝜈i + 𝛾± (𝜆(divu)) 𝜈i + 2𝛾± (𝜇Ei𝛼(u)) 𝜈𝛼, i = 1, … ,n. (2.23)

For the classical conormal derivatives defined by (2.20)–(2.22), the first Green formula

±
⟨

tc±(u, 𝜋), 𝜑
⟩

𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u),Ei𝛼(𝜑)
⟩

Ω± − ⟨𝜋, div𝜑⟩Ω± + ⟨(u, 𝜋), 𝜑⟩ Ω± ∀𝜑 ∈ (Rn)n (2.24)

holds and suggests the following definition of the generalized conormal derivative for the Stokes system with L∞ viscosity
tensor coefficient in the setting of weighted Sobolev spaces (cf., e.g., Lemma 4.3 in McLean,48 Lemma 2.9 in Kohr et al.,8
Definition 3.1 and Theorem 3.2 in Mikhailov,54 and Theorem 10.4.1 in Mitrea and Wright5; see also Definition 2.4 in Kohr
et al.43).

Definition 1. Let conditions (1.2) and (1.3) hold. Then, for any (u±, 𝜋±, f̃±) ∈ 1(Ω±)n × L2(Ω±) × ̃−1(Ω±)n, the
formal conormal derivatives t±(u±, 𝜋±; f̃±) ∈ H− 1

2 (𝜕Ω)n are defined in the weak form by

±
⟨

t±(u±, 𝜋±; f̃±),𝚽
⟩

𝜕Ω ∶=
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u±),Ei𝛼(𝛾−1
± 𝚽)

⟩
Ω± −

⟨
𝜋±, div(𝛾−1

± 𝚽)
⟩

Ω± +
⟨̃

f±, 𝛾−1
± 𝚽

⟩
Ω± , (2.25)

†Here and in the sequel, the notation ± applies to the conormal derivatives from Ω±, respectively.
‡Note that another type of conormal derivative, where Ej𝛽 (u) is replaced by its deviator, D𝑗𝛽 (u) = E𝑗𝛽 (u)− 1

n
𝛿𝑗𝛽Emm(u) in the formulas like (2.22) and fur-

ther on, has been considered in Fresdeda-Portillo and Mikhailov56 for the isotropic case. Both types of conormal derivatives coincide for incompressible
fluids.
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for any 𝚽 ∈ H
1
2 (𝜕Ω)n, where 𝛾−1

± ∶ H
1
2 (𝜕Ω)n → 1(Ω±)n are bounded right inverses to the trace operators 𝛾± ∶

1(Ω±)n → H
1
2 (𝜕Ω)n.

Moreover, if (u±, 𝜋±, f̃±) ∈ 1(Ω±,), where

1(Ω±,) ∶=
{
(v±, q±, 𝜙±) ∈ 1(Ω±)n × L2(Ω±) × ̃−1(Ω±)n ∶ (v±, q±) = 𝜙±|Ω± in Ω±

}
, (2.26)

then relations (2.25) define the generalized conormal derivatives t±(u±, 𝜋±; f̃±) ∈ H− 1
2 (𝜕Ω)n.

Some properties of the conormal derivatives are presented in the following assertion (cf. Lemma 4.3 in McLean,48

Theorem 3.9 in Mikhailov,54 Theorem 5.3 in Mikhailov,57 Lemma 2.9 in Kohr et al.,8 and Theorem 10.4.1 in Mitrea and
Wright5).

Lemma 1. Let conditions (1.2) and (1.3) hold.

(i) The formal conormal derivative operators t± ∶ 1(Ω±)n×L2(Ω±)×̃−1(Ω±)n → H− 1
2 (𝜕Ω)n are linear and bounded.

(ii) The generalized conormal derivative operators t± ∶ 1(Ω±,) → H− 1
2 (𝜕Ω)n with  given by (1.8) are linear and

bounded and do not depend on the choice of the right inverse operators 𝛾−1
± in (2.25). In addition, for all w± ∈

1(Ω±)n and (u±, 𝜋±, f̃±) ∈ 1(Ω±,), the following Green formula holds:

±
⟨

t±(u±, 𝜋±; f̃±), 𝛾±w±
⟩

𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u±),Ei𝛼(w±)
⟩

Ω± − ⟨𝜋±, div w±⟩Ω± + ⟨̃f±,w±⟩Ω± . (2.27)

Proof. We use similar arguments to those for Lemma 2.2 in Kohr et al.10 (see also Definition 3.1 and Theorem 3.2 in
Mikhailov54,57 and Theorem 10.4.1 in Mitrea and Wright5). First, we note that for (u±, 𝜋±; f̃±) ∈ 1(Ω±)n×L2(Ω±)×
̃−1(Ω±)n, the right-hand side in (2.25) defines a bounded linear functional acting on 𝚽 ∈ H

1
2 (𝜕Ω)n, and hence,

the left-hand side determines the formal conormal derivatives t±(u±, 𝜋±; f̃±) in H− 1
2 (𝜕Ω)n and the formal conormal

derivative operators t± ∶ 1(Ω±)n × L2(Ω±) × ̃−1(Ω±)n → H− 1
2 (𝜕Ω)n given by (2.25) are bounded. Therefore, the

generalized conormal derivative operators t± ∶ 1(Ω±,) → H− 1
2 (𝜕Ω)n are bounded as well.

Further, the property that the generalized conormal derivative operators t± ∶ 1(Ω±,) → H− 1
2 (𝜕Ω)n defined

by (2.25) are invariant with respect to the choice of a right inverse of the trace operator 𝛾± ∶ 1(Ω±)n → H
1
2 (𝜕Ω)n

can be obtained with an argument similar to that for Theorem 3.2 in Mikhailov.54

Now, let (u±, 𝜋±, f̃±) ∈ 1(Ω±,). According to formula (2.25), we deduce the following equality:

±
⟨

t±(u±, 𝜋±; f̃±), 𝛾±w±
⟩

𝜕Ω =
⟨

A𝛼𝛽𝜕𝛽(u±), 𝜕𝛼
(
𝛾−1
± (𝛾±w±)

)⟩
Ω±

−
⟨
𝜋±, div

(
𝛾−1
± (𝛾±w±)

)⟩
Ω± +

⟨̃
f±, 𝛾−1

± (𝛾±w±)
⟩

Ω±

=
⟨

A𝛼𝛽𝜕𝛽(u±), 𝜕𝛼(w±)
⟩

Ω± − ⟨𝜋±, divw±⟩ Ω± +
⟨̃

f±,w±
⟩

Ω±

+
⟨

A𝛼𝛽𝜕𝛽(u±), 𝜕𝛼
(
𝛾−1
± (𝛾±w±) − w±

)⟩
Ω±

−
⟨
𝜋±, div

(
𝛾−1
± (𝛾±w±) − w±

)⟩
Ω± +

⟨̃
f±, 𝛾−1

±
(
𝛾±w±

)
− w±

⟩
Ω± ,

(2.28)

for all w ∈ 1(Ω±)n. According to the property (2.13) and the equality 𝛾±
(
𝛾−1
± (𝛾±w±) − w±

)
= 0 on 𝜕Ω, as well as

the following equivalent description of the space ̊1(Ω±)n:

̊1(Ω±)n =
{

v± ∈ 1(Ω±)n ∶ 𝛾±v± = 0 on 𝜕Ω
}

(2.29)

(cf., e.g., Alliot and Amrouche58, 1.2), we obtain the inclusion

𝛾−1
±

(
𝛾±w±

)
− w± ∈ ̊1(Ω±)n . (2.30)
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Therefore, the Green formula (2.27) will follow from formula (2.28) if we show that

⟨
A𝛼𝛽𝜕𝛽(u±), 𝜕𝛼(v±)

⟩
𝜕Ω − ⟨𝜋±, divv±⟩ Ω± +

⟨̃
f±, v±

⟩
Ω± = 0 ∀v± ∈ ̊1(Ω±)n. (2.31)

Since the space (Ω±)n is dense in ̊1(Ω±)n, we need to show identity (2.31) only for the test functions v± in
(Ω±)n. Indeed, the membership of (u±, 𝜋±, f̃±) in 1(Ω±,) implies the equality (u±, 𝜋±) = f̃±|Ω± in the sense
of distributions, and accordingly, identity (2.31) holds for any v± ∈ (Ω±)n.

In the sequel, we use the simplified notation t±(u±, 𝜋±) for t±(u±, 𝜋±; 0).
Let E̊± denote the operator of extension by zero outside Ω±. Thus, for a function v± from Ω± to Rn,

E̊±(v±)(x) ∶=
{

v±(x) if x ∈ Ω±,
0 if x ∈ Rn∖Ω±. (2.32)

Let 𝛾 be the trace operator from 1(Rn)n to H
1
2 (𝜕Ω)n. For any (u±, 𝜋±, f̃±) ∈ 1(Ω±)n × L2(Ω±) × ̃−1(Ω±)n, let

u ∶= E̊+u+ + E̊−u−, 𝜋 ∶= E̊+𝜋+ + E̊−𝜋−, f̃ ∶= f̃+ + f̃−, (2.33)

and the jump of the corresponding formal or generalized conormal derivatives is denoted by

[t(u, 𝜋; f̃)] ∶= t+(u+, 𝜋+; f̃+) − t−(u−, 𝜋−; f̃−). (2.34)

Note that the inclusions f̃± ∈ ̃−1(Ω±)n ⊂ −1(Rn)n imply that f̃ = f̃+ + f̃− belongs to the space −1(Rn)n. In the
special case f̃ = 0, we use the notation

[t(u, 𝜋)] ∶= [t(u, 𝜋; 0)] = t+(u+, 𝜋+) − t−(u−, 𝜋−). (2.35)

Then, Lemma 1 implies the following assertion.

Lemma 2. Let conditions (1.2) and (1.3) hold. For (u±, 𝜋±, f̃±) ∈ 1(Ω±,) given, let (u, 𝜋, f̃) be defined as in (2.33).
Then, the following identity holds for any w ∈ 1(Rn)n:⟨

[t(u, 𝜋; f̃)], 𝛾w
⟩

𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u+),Ei𝛼(w)
⟩

Ω+ +
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u−),Ei𝛼(w)
⟩

Ω− − ⟨𝜋, div w⟩Rn + ⟨̃f,w⟩Rn . (2.36)

Proof. Note that 𝛾+w = 𝛾−w = 𝛾w for any function w ∈ 1(Rn)n. Then, formula (2.27) implies the desired result.

The following assertion is immediately implied by Lemma 2 and the symmetry conditions (1.3).

Lemma 3. Let conditions (1.2) and (1.3) hold. Let the pair (u,𝜋) in 1(Rn∖𝜕Ω)n × L2(Rn) be such that (u, 𝜋) ∈
L2(Rn∖𝜕Ω)n and div u = 0 in Rn∖𝜕Ω. Let u± ∶= rΩ±u, 𝜋± ∶= rΩ±𝜋, f̃± ∶= E̊±rΩ±(u, 𝜋), and [t(u, 𝜋; f)] ∶=
t+(u+, 𝜋+; f̃+) − t−(u−, 𝜋−; f̃−). Then, for all w ∈ 1(Rn)n, the following formula holds:

⟨[t(u, 𝜋; f)], 𝛾w⟩ 𝜕Ω =
⟨

A𝛼𝛽𝜕𝛽u+, 𝜕𝛼w
⟩

Ω+ +
⟨

A𝛼𝛽𝜕𝛽u−, 𝜕𝛼w
⟩

Ω− − ⟨𝜋, div w⟩Rn + ⟨(u, 𝜋),w⟩Rn∖𝜕Ω (2.37)

=
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u+),Ei𝛼(w)
⟩

Ω+ +
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u−),Ei𝛼(w)
⟩

Ω− − ⟨𝜋, div w⟩Rn + ⟨(u, 𝜋),w⟩Rn∖𝜕Ω. (2.38)

2.4 Conormal derivative related to the adjoint Stokes operator
Let L be the divergence-type elliptic operator given by (1.7). Then, the formally adjoint L∗ of the operator L is defined by

L
∗u = 𝜕𝛼

(
A∗𝛼𝛽𝜕𝛽u

)
∶= 𝜕𝛼

((
A𝛽𝛼

)⊤
𝜕𝛽u

)
, (2.39)
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where A∗𝛼𝛽 =
(

A𝛽𝛼
)⊤ is the transpose of the matrix A𝛽𝛼 for all 𝛼, 𝛽 = 1, … ,n, that is,

A∗𝛼𝛽 =
(

A𝛽𝛼
)⊤ =

(
a∗𝛼𝛽

i𝑗

)
1≤i,𝑗≤n

=
(

a𝛽𝛼

𝑗i

)
1≤i,𝑗≤n

. (2.40)

Note that the coefficients of the operator L∗ belong to L∞(Ω)n×n (cf. (1.2)) and satisfy the ellipticity condition (1.4) with
the same constant cA. Moreover, the operator (

L∗ −∇
div 0

)
(2.41)

is the adjoint of the Stokes operator (
L −∇

div 0

)
. (2.42)

If a pair (v, q) ∈ C1(Ω±)n × C0(Ω±) satisfies the following equation, related to the adjoint Stokes operator (2.41),

L
∗v − ∇q = f∗ in Ω±, (2.43)

where f∗ ∈L2(Ω±)n, then the corresponding classical conormal derivative is defined by

tc∗±(v, q) ∶= −𝛾±q𝜈 + Tc∗±v, Tc∗±v ∶= 𝛾±
((

A𝛽𝛼
)⊤
𝜕𝛽v

)
𝜈𝛼. (2.44)

If (v±, q±, f̃∗±) ∈ 1(Ω±)n × L2(Ω±) × ̃−1(Ω±)n satisfies the following system (in distributional sense):

∗(v±, q±) ∶= L
∗v± − ∇q± = f̃∗±|Ω± in Ω±, (2.45)

then we define the corresponding generalized conormal derivative t∗±(v±, q±; f̃∗±) ∈ H− 1
2 (𝜕Ω)n by setting

±
⟨

t∗±(v±, q±; f̃∗±),𝚽
⟩

𝜕Ω ∶=
⟨
(A𝛽𝛼)⊤𝜕𝛼v±, 𝜕𝛽(𝛾−1

± 𝚽)
⟩

Ω± −
⟨

q±, div(𝛾−1
± 𝚽)

⟩
Ω± +

⟨̃
f∗±, 𝛾−1

± 𝚽
⟩

Ω±

=
⟨

A𝛼𝛽𝜕𝛽(𝛾−1
± 𝚽), 𝜕𝛼v±

⟩
Ω± −

⟨
q±, div(𝛾−1

± 𝚽)
⟩

Ω± +
⟨̃

f∗±, 𝛾−1
± 𝚽

⟩
Ω± ,

(2.46)

for any 𝚽 ∈ H
1
2 (𝜕Ω)n. In addition, an argument similar to that for (2.27) along with relations (2.40) imply the Green

formula

±
⟨

t∗±(v±, q±; f̃∗±), 𝛾±w±
⟩

𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(w±),Ei𝛼(v±)
⟩

Ω± − ⟨q±, divw±⟩Ω± + ⟨̃f∗±,w±⟩Ω± , (2.47)

and the following variant of Lemma 3.

Lemma 4. Let conditions (1.2) and (1.3) hold. Let the pair (v, q) in 1(Rn∖𝜕Ω)n × L2(Rn) be such that ∗(v, q) ∈
L2(Rn∖𝜕Ω)n in Rn∖𝜕Ω. Let v± ∶= rΩ±v, q± ∶= rΩ±q, f̃∗± ∶= E̊±rΩ±∗(v, q), and [t∗(v, q; f∗)] ∶= t∗+(v+, q+; f̃∗+) −
t∗−(v−, q−; f̃∗−). Then, for any w ∈ 1(Rn)n,

⟨[t∗(v, q; f∗)], 𝛾w⟩ 𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(w),Ei𝛼(v+)
⟩

Ω+ +
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(w),Ei𝛼(v−)
⟩

Ω− − ⟨q, div w⟩Rn + ⟨∗(v, q),w⟩Rn∖𝜕Ω. (2.48)

3 VARIATIONAL VOLUME AND LAYER POTENTIALS FOR THE
ANISOTROPIC STOKES SYSTEM WITH L∞ TENSOR COEFFICIENT

As in the previous sections, Ω+ ⊂ Rn, n≥ 3, is a bounded Lipschitz domain with connected boundary 𝜕Ω, and Ω− ∶=
Rn∖Ω+. Recall that  is the Stokes operator defined in (1.9). In this section, we define the Newtonian and layer potentials
for the Stokes system (1.8) by means of a variational approach.
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3.1 Bilinear forms and weak solutions for the anisotropic Stokes system with L∞ tensor
coefficient in R

n

Let A satisfy conditions (1.2)–(1.4) and aA;Rn ∶ 1(Rn)n × 1(Rn)n → R, bRn ∶ 1(Rn)n × L2(Rn) → R be the bilinear
forms given by

aA;Rn(u, v) ∶=
⟨

A𝛼𝛽𝜕𝛽u, 𝜕𝛼v
⟩
Rn =

⟨
a𝛼𝛽

i𝑗 E𝑗𝛽(u),Ei𝛼(v)
⟩
Rn , ∀u ∈ 1(Rn)n, ∀v ∈ 1(Rn)n, (3.1)

bRn(v, q) ∶= −⟨divv, q⟩Rn , ∀v ∈ 1(Rn)n, ∀q ∈ L2(Rn). (3.2)

Let us denote
1

div(R
n)n ∶=

{
w ∈ 1(Rn)n ∶ divw = 0 in R

n} .

The subspace 1
div(R

n)n of 1(Rn)n has also the characterization

1
div(R

n)n =
{

w ∈ 1(Rn)n ∶ bRn(w, q) = 0 ∀q ∈ L2(Rn)
}
. (3.3)

An important role in the forthcoming analysis is played by the following well-posedness result (see also Lemma 4.1 in
Kohr et al.39 and Lemma 3.1 in Kohr et al.43)

Lemma 5. Let conditions (1.2)–(1.4) hold on Rn. Let aA;Rn and bRn be the bilinear forms defined in (3.1) and (3.2),
respectively. Then, for all given data F ∈ −1(Rn)n and 𝜂 ∈ L2(Rn), the mixed variational formulation{

aA;Rn(u, v) + bRn(v, 𝜋) = ⟨F, v⟩Rn ∀v ∈ 1(Rn)n,
bRn(u, q) = ⟨𝜂, q⟩Rn ∀q ∈ L2(Rn) (3.4)

is well-posed. Therefore, (3.4) has a unique solution (u, 𝜋) ∈ 1(Rn)n×L2(Rn), and there exists a constant C = C(cA,n) >
0 such that ||u||1(Rn)n + ||𝜋||L2(Rn) ≤ C

{||F||−1(Rn)n + ||𝜂||L2(Rn)
}
. (3.5)

Proof. We intend to use Theorem 10, which requires the coercivity of the bilinear form aA;Rn(·, ·) from 1
div(R

n)n ×
1

div(R
n)n to R. Indeed, the following Korn-type inequality for functions in 1(Rn)n holds:

||∇w||2
L2(Rn)n×n ≤ 2||E(w)||2

L2(Rn)n×n . (3.6)

This inequality is available, e.g., in Sayas and Selgas33, eq. (2.2) for n = 3. For arbitrary n≥ 1, the Korn inequality is
proved in Theorem 10.1 of McLean48 for any function w ∈ (Rn)n. Hence, by the density of (Rn)n in 1(Rn)n, this
implies that inequality (3.6) is valid also in 1(Rn)n.

Note that if w ∈ 1
div(R

n)n, then
∑n

i=1 Eii(w) = 0. Then, the ellipticity condition (1.4), inequality (3.6), and equiva-
lence of the seminorm ||∇(·)||L2(Rn)n×n to the norm || · ||1(Rn)n in 1(Rn)n (see Section 2.2.1) imply that there exists a
constant c1 = c1(n)> 0 such that

aA;Rn(w,w) ≥ c−1
A

||E(w)||2
L2(Rn)n×n ≥ 1

2
c−1
A

||∇w||2
L2(Rn)n×n ≥ 1

2
c−1
A

c1||w||2
1(Rn)n ∀w ∈ 1

div(R
n)n. (3.7)

Inequality (3.7) shows that the bilinear form aA;Rn(·, ·) ∶ 1
div(R

n)n ×1
div(R

n)n → R is coercive.
The continuity of the operator ∇ ∶ 1(Rn)n → L2(Rn)n×n and the Hölder inequality imply that

|aA;Rn(u, v)| ≤ ||u||1(Rn)n ||v||1(Rn)n ∀u, v ∈ 1(Rn)n, (3.8)

where  = n4||A||L∞(Rn). Thus, the bilinear form aA;Rn(·, ·) ∶ 1(Rn)n × 1(Rn)n → R is bounded. Moreover, the
boundedness of the divergence operator div ∶ 1(Rn)n → L2(Rn) implies that the bilinear form b ∶ 1(Rn)n ×
L2(Rn) → R is bounded as well.
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The isomorphism property of the divergence operator

−div ∶ 1(Rn)n∕1
div(R

n)n → L2(Rn) (3.9)

(cf. Proposition 2.1 in Alliot and Amrouche52 and Lemma 2.5 in Kozono and Shor53) implies that there exists a constant
c0 > 0 such that for any q ∈ L2(Rn) there exists v ∈ 1(Rn)n satisfying the equation −div v= q and the inequality||v||1(Rn)n ≤ c0||q||L2(Rn). Therefore, the following inequality holds for such v:

bRn(v, q) = − ⟨divv, q⟩Rn = ⟨q, q⟩Rn = ||q||2
L2(Rn) ≥ c−1

0 ||v||1(Rn)n ||q||L2(Rn).

This implies that the bounded bilinear form bRn ∶ 1(Rn)n × L2(Rn) → R satisfies the inf-sup condition

inf
q∈L2(Rn)∖{0}

sup
w∈1(Rn)n∖0

bRn(w, q)||w||1(Rn)n ||q||L2(Rn)
≥ c−1

0 (3.10)

(see also Lemma 14(ii) and Proposition 2.4 in Sayas and Selgas33 for n = 2, 3). Then, Theorem 10 with X = 1(Rn)n,
 = L2(Rn), and V = 1

div(R
n)n implies that problem (3.4) is well-posed, as asserted.

3.2 Volume potential operators for the anisotropic Stokes system with L∞ tensor
coefficient
Recall that  is the anisotropic Stokes operator defined in (1.9).

Theorem 2. Let conditions (1.2)–(1.4) hold in Rn. Then, for each f ∈ −1(Rn)n and g ∈ L2(Rn), the anisotropic Stokes
system

(u, 𝜋) = f, div u = g inRn (3.11)
is well-posed, which means that (3.11) has a unique solution (u, 𝜋) ∈ 1(Rn)n × L2(Rn), and there exists a constant
C = C(cA,n) > 0 such that ||u||1(Rn)n + ||𝜋||L2(Rn) ≤ C

(|| f||−1(Rn)n + ||g||L2(Rn)
)
. (3.12)

Proof. The dense embedding of the space (Rn)n in 1(Rn)n shows that system (3.11) has the equivalent mixed
variational formulation (3.4), with F = −f and 𝜂 = −g. Then, the well-posedness of the Stokes system (3.11) follows
from Lemma 5.

Theorem 2 allows us to define the volume potential operators for the Stokes system with L∞ coefficients and obtain
their continuity as follows.

Definition 2. Let conditions (1.2)–(1.4) hold.

(i) The Newtonian velocity and pressure potential operators,

Rn ∶ −1(Rn)n → 1(Rn)n, Rn ∶ −1(Rn)n → L2(Rn), (3.13)

are defined as
Rn f ∶= uf, Rn f ∶= 𝜋f ∀f ∈ −1(Rn)n, (3.14)

where (uf, 𝜋f) ∈ 1(Rn)n × L2(Rn) is the unique solution of problem (3.11) with f ∈ −1(Rn)n and g = 0.
(ii) The velocity and pressure compressibility potential operators,

Rn ∶ L2(Rn) → 1(Rn)n, 0
Rn ∶ L2(Rn) → L2(Rn), (3.15)

are defined as
Rn g ∶= ug, 0

Rn g ∶= 𝜋g ∀g ∈ L2(Rn), (3.16)
where (ug, 𝜋g) ∈ 1(Rn)n × L2(Rn) is the unique solution of problem (3.11) with g ∈ L2(Rn) and f = 0.
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Lemma 6. Operators (3.13) and (3.15) are linear and continuous and for any f ∈ −1(Rn)n and g ∈ L2(Rn)n,

(Rn f,Rn f) = f, divRn f = 0 in R
n,

(Rn g,0
Rn g) = 0, divRn g = g in R

n.

3.3 The single-layer potential operator for the anisotropic Stokes system with L∞ tensor
coefficient
Recall that Ω+ ⊂ Rn (n ≥ 3) is a bounded Lipschitz domain with connected boundary 𝜕Ω, Ω− ∶= Rn∖Ω+, the notation [·]
is used for jumps (see formulas (2.3) and (2.34–2.35)), and  is the anisotropic Stokes operator defined in (1.9).

The next well-posedness result for the transmission problem (3.17) plays a major role in the definition of the single-layer
potentials for the L∞ coefficient Stokes system in the Sobolev space H− 1

2 (𝜕Ω)n (see also Theorem 3.5, Definition 3.7, and
Lemma 3.8 in Kohr et al.43 for the Stokes system with strongly elliptic tensor coefficient; Theorem 4.5 in Kohr et al.,10

section 5 in Sayas and Selgas,33 Section 2 in Băcuţă et al.,36 and Theorem 10.5.3 in Mitrea and Wright5 for the isotropic
case (1.10) with 𝜇 = 1 and 𝜆 = 0).

Theorem 3. Let conditions (1.2)–(1.4) hold in Rn. Then, for any 𝜓 ∈ H− 1
2 (𝜕Ω)n, the transmission problem,

⎧⎪⎨⎪⎩
(u𝜓 , 𝜋𝜓 ) = 0, div u𝜓 = 0 in Rn∖𝜕Ω,[
𝛾u𝜓

]
= 0 on 𝜕Ω,[

t(u𝜓 , 𝜋𝜓 )
]
= 𝜓 on 𝜕Ω,

(3.17)

has a unique solution (u𝜓 , 𝜋𝜓 ) ∈ 1(Rn∖𝜕Ω)n × L2(Rn), and there exists a constant C = C(𝜕Ω, cA,n) > 0 such that

||u𝜓 ||1(Rn)n + ||𝜋𝜓 ||L2(Rn) ≤ C||𝜓||
H− 1

2 (𝜕Ω)n . (3.18)

Proof. Transmission problem (3.17) has the following equivalent mixed variational formulation.
Find (u𝜓 , 𝜋𝜓 ) ∈ 1(Rn)n × L2(Rn) such that{ ⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u),Ei𝛼(v)
⟩
Rn − ⟨𝜋𝜓, divv⟩Rn = ⟨𝜓, 𝛾v⟩𝜕Ω ∀v ∈ 1(Rn)n,⟨divu𝜓 , q⟩Rn = 0 ∀q ∈ L2(Rn).

(3.19)

To show this equivalence, let us first assume that (u𝜓 , 𝜋𝜓 ) ∈ 1(Rn∖𝜕Ω)n × L2(Rn) satisfy transmission
problem (3.17). Then, the first transmission condition in (3.17) implies the membership of u𝝍 in 1(Rn)n; compare
Lemma 16(ii). Moreover, formula (2.37) shows that the the pair (u𝝍 ,𝜋𝝍 ) satisfies also the first equation in (3.19). The
second equation in (3.19) follows from the second equation in the first line of (3.17).

Let us show the converse property. To this end, we assume that the pair (u𝜓 , 𝜋𝜓 ) ∈ 1(Rn)n × L2(Rn) is a solution
of the variational problem (3.19). By using the density of the space (Rn)n in 1(Rn)n, and by considering in the first
equation of (3.19) any v ∈ C∞(Rn)n with compact support in Ω±, we obtain the following variational equation:⟨

𝜕𝛼

(
a𝛼𝛽

i𝑗 E𝑗𝛽(u𝜓 )
)
− 𝜕i𝜋𝜓,wi

⟩
Ω± = 0 ∀w ∈ C∞

0 (Ω±)n,

which leads to the first equation of the transmission problem (3.17). The second equation in (3.17) is an immediate
consequence of the second equation in (3.19). On the other hand, the membership of u𝝍 in 1(Rn)n yields the first
transmission condition in (3.17). In addition, formula (2.37) and the first equation in (3.19) show that⟨

[t(u𝜓 , 𝜋𝜓 )], 𝛾v
⟩

𝜕Ω = ⟨𝜓, 𝛾v⟩𝜕Ω∀v ∈ 1(Rn)n. (3.20)

Since the trace operator 𝛾 ∶ 1(Rn)n → H
1
2 (𝜕Ω)n is surjective (see Theorem 1), Equation (3.20) can be written in the

form
⟨
[t(u𝜓 , 𝜋𝜓 )] − 𝜓,𝚽

⟩
𝜕Ω = 0 for any 𝚽 ∈ H

1
2 (𝜕Ω)n, which implies the second transmission condition in (3.17).
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Thus, the transmission problem (3.17) has the equivalent mixed variational formulation (3.19), which can be written
as {

aA;Rn(u𝜓 , v) + bRn(v, 𝜋𝜓 ) = ⟨F, v⟩Rn ∀v ∈ 1(Rn)n,
bRn(u𝜓 , q) = 0 ∀q ∈ L2(Rn), (3.21)

where aA;Rn and bRn are the bounded bilinear forms given by (3.1) and (3.2), and F ∈ −1(Rn)n is defined as

⟨F, v⟩Rn ∶= ⟨𝜓, 𝛾v⟩𝜕Ω = ⟨𝛾∗𝜓, v⟩Rn ∀v ∈ 1(Rn)n, (3.22)

where 𝛾∗ ∶ H− 1
2 (𝜕Ω)n → −1(Rn)n is the adjoint of the trace operator 𝛾 ∶ 1(Rn)n → H

1
2 (𝜕Ω)n. Then, by Lemma 5, the

variational problem (3.19) is well-posed. Therefore, problem (3.17) has a unique solution (u𝜓 , 𝜋𝜓 ) ∈ 1(Rn)n×L2(Rn),
which depends continuously on 𝝍 .

Theorem 3 allows to define the single-layer potentials for L∞ coefficient Stokes system and to obtain their continuity.

Definition 3. Let conditions (1.2)–(1.4) hold. The single-layer velocity and pressure potentials,

V𝜕Ω ∶ H− 1
2 (𝜕Ω)n → 1(Rn)n, s

𝜕Ω ∶ H− 1
2 (𝜕Ω)n → L2(Rn), (3.23)

are defined as
V𝜕Ω𝜓 ∶= u𝜓 , s

𝜕Ω𝜓 ∶= 𝜋𝜓 ∀𝜓 ∈ H− 1
2 (𝜕Ω)n, (3.24)

and the boundary operators,

𝜕Ω ∶ H− 1
2 (𝜕Ω)n → H

1
2 (𝜕Ω)n, 𝜕Ω ∶ H− 1

2 (𝜕Ω)n → H− 1
2 (𝜕Ω)n, (3.25)

are defined as
𝜕Ω𝜓 ∶= 𝛾u𝜓 , 𝜕Ω𝜓 ∶= 1

2
(
t+(u𝜓 , 𝜋𝜓 ) + t−(u𝜓 , 𝜋𝜓 )

)
∀𝜓 ∈ H− 1

2 (𝜕Ω)n, (3.26)

where (u𝝍 ,𝜋𝝍 ) is the unique solution of the transmission problem (3.17) in 1(Rn)n × L2(Rn).

Lemma 7. Operators (3.23) and (3.25) are linear and continuous and for any 𝜓 ∈ H− 1
2 (𝜕Ω)n,

(V𝜕Ω𝜓,s
𝜕Ω𝜓) = 0, div V𝜕Ω𝜓 = 0 in Ω±.

In addition, the following jump relations, that are similar to the case of the Stokes system with constant coefficients
(see also Lemma 3.8 in Kohr et al.,43 Mitrea and Wright,5 Propositions 5.2 and 5.3 in Sayas and Selgas33), are implied by
relations (3.26) and the transmission conditions in (3.17).

Lemma 8. Let conditions (1.2)–(1.4) hold. If 𝜓 ∈ H− 1
2 (𝜕Ω)n, then the following formulas hold on 𝜕Ω:

[𝛾V𝜕Ω𝜓] = 0, (3.27)

[
t
(

V𝜕Ω𝜓,s
𝜕Ω𝜓

)]
= 𝜓, t±

A

(
V𝜕Ω𝜓,s

𝜕Ω𝜓
)
= ±1

2
𝜓 +𝜕Ω𝜓. (3.28)

3.3.1 The single-layer potential for the adjoint Stokes system
Recall that L∗ is the operator defined in (2.39), and t∗ is the conormal derivative operator for the adjoint Stokes system
(see formula (2.47)). The next well-posedness result follows with an argument similar to that for Theorem 3 and is based
on the Green formula (2.47).

Theorem 4. Let conditions (1.2)–(1.4) hold in Rn. Then, for any 𝜓∗ ∈ H− 1
2 (𝜕Ω)n, the transmission problem for the

adjoint Stokes system, ⎧⎪⎨⎪⎩
L∗v𝜓∗ − ∇q𝜓∗ = 0 , div v𝜓∗ = 0 in Rn∖𝜕Ω,[
𝛾(v𝜓∗ )

]
= 0 on 𝜕Ω,[

t∗(v𝜓∗ , q𝜓∗ )
]
= 𝜓∗ on 𝜕Ω,

(3.29)
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has a unique solution (v𝜓∗ , q𝜓∗ ) ∈ 1(Rn)n × L2(Rn), and there exists C∗ = C∗(𝜕Ω, cA,n) > 0 such that

||v𝜓∗ ||1(Rn)n + ||q𝜓∗ ||L2(Rn) ≤ C∗||𝜓∗||H− 1
2 (𝜕Ω)n . (3.30)

Definition 4. Let conditions (1.2)–(1.4) hold. The single-layer velocity and pressure potential operators for the adjoint
Stokes system (2.43),

V∗𝜕Ω ∶ H− 1
2 (𝜕Ω)n → 1(Rn)n, s

∗𝜕Ω ∶ H− 1
2 (𝜕Ω)n → L2(Rn), (3.31)

are defined as
V∗𝜕Ω𝜓∗ ∶= v𝜓∗ , s

∗𝜕Ω𝜓∗ ∶= q𝜓∗ ∀𝜓∗ ∈ H− 1
2 (𝜕Ω)n, (3.32)

and the boundary operators,

∗𝜕Ω ∶ H− 1
2 (𝜕Ω)n → H

1
2 (𝜕Ω)n, ∗𝜕Ω ∶ H− 1

2 (𝜕Ω)n → H− 1
2 (𝜕Ω)n, (3.33)

are defined as

∗𝜕Ω𝜓∗ ∶= 𝛾v𝜓∗ , ∗𝜕Ω𝜓∗ ∶=
1
2

(
t∗+(v𝜓∗ , q𝜓∗ ) + t∗−(v𝜓∗ , q𝜓∗ )

)
∀𝜓∗ ∈ H− 1

2 (𝜕Ω)n, (3.34)

where (v𝜓∗ , q𝜓∗ ) is the unique solution of the transmission problem (3.29) in 1(Rn∖𝜕Ω)n × L2(Rn).

Lemma 9. Let conditions (1.2)–(1.4) hold. Then, the following formulas hold on 𝜕𝛺:

[𝛾V∗𝜕Ω𝜓∗] = 0, t∗±
(

V∗𝜕Ω𝜓∗,s
∗𝜕Ω𝜓∗

)
= ±1

2
𝜓∗ +∗𝜕Ω𝜓∗ ∀𝜓∗ ∈ H− 1

2 (𝜕Ω)n, (3.35)

⟨𝜓,∗𝜕Ω𝜓∗⟩ 𝜕Ω = ⟨𝜓∗,𝜕Ω𝜓⟩ 𝜕Ω ∀𝜓, 𝜓∗ ∈ H− 1
2 (𝜕Ω)n. (3.36)

Proof. First, formulas (3.35) are implied by relations (3.34) and the transmission conditions in (3.29).
Now, let

(
V𝜕Ω𝜓,s

𝜕Ω𝜓
)

be the unique solution in 1(Rn)n × L2(Rn) of transmission problem (3.17) with the given
datum 𝜓 ∈ H− 1

2 (𝜕Ω)n. Also let
(
V∗𝜕Ω𝜓∗,s

∗𝜕Ω𝜓∗
)

denote the unique solution in 1(Rn)n × L2(Rn) of transmission
problem (3.29) with the given datum 𝜓∗ ∈ H− 1

2 (𝜕Ω)n. Then, the Green formulas (2.37) and (2.48) imply that

⟨[
t
(
V𝜕Ω𝜓,s

𝜕Ω𝜓
)]

,∗𝜕Ω𝜓∗
⟩

𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽 (V𝜕Ω𝜓) ,Ei𝛼 (V∗𝜕Ω𝜓∗)
⟩
Rn , (3.37)

⟨[
t∗

(
V∗𝜕Ω𝜓∗,s

∗𝜕Ω𝜓∗
)]

,𝜕Ω𝜓
⟩

𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽 (V𝜕Ω𝜓) ,Ei𝛼 (V∗𝜕Ω𝜓∗)
⟩
Rn . (3.38)

Moreover, by the second formulas in (3.28) and (3.35),[
t
(
V𝜕Ω𝜓,s

𝜕Ω𝜓
)]

= 𝜓,
[
t∗

(
V∗𝜕Ω𝜓∗,s

∗𝜕Ω𝜓∗
)]

= 𝜓∗. (3.39)

Then, equality (3.36) follows from (3.37)–(3.39) (cf. Proposition 5.4 in Sayas and Selgas33 in the case (1.10) with
𝜇 = 1 and 𝜆 = 0).

Remark 2.

(i) Formula (3.36) shows that the adjoint of the single-layer operator 𝜕Ω ∶ H− 1
2 (𝜕Ω)n → H

1
2 (𝜕Ω)n corresponding to

the Stokes system from (3.17) is the operator ∗𝜕Ω ∶ H− 1
2 (𝜕Ω)n → H

1
2 (𝜕Ω)n given by formula (3.34) (see Definition

4) and corresponding to the adjoint Stokes system from (3.29).
(ii) In the isotropic case (1.10), Definition 4 reduces to Definition 3, and the single-layer operator 𝜕Ω ∶ H− 1

2 (𝜕Ω)n →

H
1
2 (𝜕Ω)n is self adjoint. Thus, formula (3.36) becomes

⟨𝜓,𝜕Ω𝜓∗⟩ 𝜕Ω = ⟨𝜓∗,𝜕Ω𝜓⟩ 𝜕Ω ∀𝜓, 𝜓∗ ∈ H− 1
2 (𝜕Ω)n. (3.40)
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For a given operator T : X→Y, the set Ker {T ∶ X → Y} ∶= {x ∈ X ∶ T(x) = 0} is the null space of T. Let 𝝂 be the
outward unit normal to Ω, which exists a.e. on 𝜕Ω, and let span{𝜈} ∶= {c𝜈 ∶ c ∈ R}. Let also

𝜒Ω+ ∶=
{

1 in Ω+
0 in Ω−,

H
1
2
𝜈 (𝜕Ω)n ∶=

{
𝚽 ∈ H

1
2 (𝜕Ω)n ∶ ⟨𝚽, 𝜈⟩𝜕Ω = 0

}
.

(3.41)

Next, we mention the main properties of the single-layer operator, similar to the ones provided in Lemma 3.12 in Kohr
et al.43 in the case of a strongly elliptic viscosity tensor coefficient (see also Lemma 4.9 in Kohr et al.,39 Theorem 10.5.3 in
Mitrea and Wright,5 Proposition 3.3(c) in Băcuţă et al.,36 and Proposition 5.4 in Sayas and Selgas33 in the case (1.10) with
𝜇 = 1 and 𝜆 = 0).

Lemma 10. Let conditions (1.2)–(1.4) hold. Then,

V𝜕Ω𝜈 = 0 in R
n, s

𝜕Ω𝜈 = −𝜒Ω+ , (3.42)

𝜕Ω𝜈 = 0 on 𝜕Ω, (3.43)

𝜕Ω𝜓 ∈ H
1
2
𝜈 (𝜕Ω)n ∀𝜓 ∈ H− 1

2 (𝜕Ω)n. (3.44)

Proof. First, we note that the transmission problem (3.17) with the given datum 𝜓 = 𝜈 ∈ H− 1
2 (𝜕Ω)n is well-posed.

Let us show that the pair
(u𝜈 , 𝜋𝜈) =

(
0,−𝜒Ω+

)
∈ 1(Rn)n × L2(Rn) (3.45)

is the unique solution of this transmission problem. Indeed, (u𝜈, 𝜋𝜈) satisfies the equations and the first transmission
condition in (3.17), and by formulas (2.25), (2.35), and (3.45), and by the divergence theorem, we obtain that

⟨[t(u𝜈 , 𝜋𝜈)],𝚽⟩𝜕Ω = −
⟨
𝜋𝜈, div(𝛾−1

+ 𝚽)
⟩

Ω+ = ⟨𝜈,𝚽⟩𝜕Ω ∀𝚽 ∈ H
1
2 (𝜕Ω)n, (3.46)

and hence, [t(u𝜈, 𝜋𝜈)] = 𝜈. Consequently, the pair (u𝜈, 𝜋𝜈) given by (3.45) is the unique solution of the transmission
problem (3.17) with the given datum 𝜓 = 𝜈 ∈ H− 1

2 (𝜕Ω)n. Then, relations (3.42) and (3.43) follow from Definition 3.
Thus, span{𝜈} ⊆ Ker

{𝜕Ω ∶ H− 1
2 (𝜕Ω)n → H

1
2 (𝜕Ω)n

}
. Similarly, we obtain

V∗𝜕Ω𝜈 = 0 in R
n, ∗𝜕Ω𝜈 = 0 on 𝜕Ω. (3.47)

Next, we apply formula (3.36) for the densities 𝜓 ∈ H− 1
2 (𝜕Ω)n and 𝜈 ∈ H− 1

2 (𝜕Ω)n and use the second relation
in (3.47). Then, we obtain that ⟨𝜕Ω𝜓, 𝜈⟩ 𝜕Ω = ⟨𝜓,∗𝜕Ω𝜈⟩ 𝜕Ω = 0, and hence, (3.44) follows.

3.3.2 Isomorphism property of the single-layer operator
Next, we show the following invertibility property of the single-layer potential operator (cf. Lemma 3.13 in Kohr et al.,43

Theorem 10.5.3 in Mitrea and Wright,5 Proposition 3.3 (d) in Băcuţă et al.,36 and Proposition 5.5 in Sayas and Selgas33 in
the case 1.10 with 𝜇 = 1 and 𝜆 = 0).

Lemma 11. Let conditions (1.2)–(1.4) hold in Rn. Then,

Ker
{𝜕Ω ∶ H− 1

2 (𝜕Ω)n → H
1
2 (𝜕Ω)n

}
= span{𝜈}, (3.48)

and the following operator is an isomorphism:

𝜕Ω ∶ H− 1
2 (𝜕Ω)n∕span{𝜈} → H

1
2
𝜈 (𝜕Ω)n. (3.49)



18 KOHR ET AL.

Proof.

(i) Let 𝜓0 ∈ Ker
{𝜕Ω ∶ H− 1

2 (𝜕Ω)n → H
1
2 (𝜕Ω)n

}
and let (u𝜓0 , 𝜋𝜓0) =

(
V𝜕Ω𝜓0,s

𝜕Ω𝜓0
)

be the unique solution in
1(Rn)n ×L2(Rn) of the transmission problem (3.17) with the given datum 𝝍0. In view of formula (2.37) and since
𝛾u𝜓0 = 0 on 𝜕Ω, we obtain that

aA;Rn
(
u𝜓0 ,u𝜓0

)
=

⟨
[t(u𝜓0 , 𝜋𝜓0)], 𝛾u𝜓0

⟩
𝜕Ω = 0. (3.50)

In addition, since divu𝜓0 = 0, we have Eii(u𝜓0 ) = 0, and due to assumption (1.4),

aA;Rn
(
u𝜓0 ,u𝜓0

) ≥ c−1
A

||E(u𝜓0 )||2
L2(Rn)n , (3.51)

which implies that E(u𝜓0 ) = 0 and hence u𝜓0 = 0 in Rn; compare Section 2.2.4.
Moreover, u𝜓0 and 𝜋𝜓0 satisfy the Stokes equation in Rn∖𝜕Ω and 𝜋𝜓0 belongs to L2(Rn). Thus, there exists c0 ∈ R

such that 𝜋𝜓0 = c0𝜒Ω+ in Rn. Then, formulas (2.25) and (2.35) and the divergence theorem yield that

⟨[t(u𝜓0 , 𝜋𝜓0)],𝚽⟩𝜕Ω = −
⟨
𝜋𝜓0 , div(𝛾−1

+ 𝚽)
⟩

Ω+ = −c0⟨𝜈,𝚽⟩𝜕Ω ∀𝚽 ∈ H
1
2 (𝜕Ω)n,

and accordingly that 𝜓0 = [t(u𝜓0 , 𝜋𝜓0)] = −c0𝜈. Taking into account (3.43), formula (3.48) follows.
(ii) Next, we use the notation [[ · ]] for the classes of the space H− 1

2 (𝜕Ω)n∕span{𝜈}. Thus, ⟦𝜓⟧ = 𝜓 + span{𝜈}, with
𝜓 ∈ H− 1

2 (𝜕Ω)n. We show that there exists a constant c = c(𝜕Ω, cA,n) > 0 such that the single-layer potential
operator satisfies the coercivity inequality

⟨⟦𝜓⟧,𝜕Ω⟦𝜓⟧⟩ 𝜕Ω ≥ c ‖⟦𝜓⟧‖2
H− 1

2 (𝜕Ω)n∕span{𝜈}
∀⟦𝜓⟧ ∈ H− 1

2 (𝜕Ω)n∕span{𝜈} (3.52)

(cf. Lemma 4.10 in Kohr et al.39 and Proposition 5.5 in Sayas and Selgas33).
Let [ [𝜓] ] ∈ H− 1

2 (𝜕Ω)n∕span{𝜈}. In view of formula (2.37), Definition 3, relations (3.44) and (3.48), and the Korn
inequality, we obtain (cf. 3.7),

⟨⟦𝜓⟧,𝜕Ω⟦𝜓⟧⟩ 𝜕Ω = ⟨𝜓,𝜕Ω𝜓⟩ 𝜕Ω = ⟨[t(u𝜓 , 𝜋𝜓 )], 𝛾u𝜓⟩𝜕Ω
= aA;Rn(u𝜓 ,u𝜓 ) ≥ c−1

A
||E(u𝜓 )||2

L2(Rn)n×n ≥ 2−1c−1
A

c1||u𝜓 ||2
1(Rn)n ,

(3.53)

where u𝜓 = V𝜕Ω𝜓 and 𝜋𝜓 = s
𝜕Ω𝜓 . Moreover, the trace operator 𝛾 ∶ 1

div(R
n)n → H

1
2
𝜈 (𝜕Ω)n is surjective having a

bounded right inverse 𝛾−1 ∶ H
1
2
𝜈 (𝜕Ω)n → 1

div(R
n)n (cf., e.g., Proposition 4.4 in Sayas and Selgas33 in the case n = 3.

Arguments similar to those for Proposition 4.4 of Sayas and Selgas33 imply that the result remains valid also in the
case n≥ 3). Moreover, there exists c′ = c′(𝜕Ω, n)> 0 such that

|⟨⟦𝜓⟧,𝚽⟩𝜕Ω| = |⟨𝜓,𝚽⟩𝜕Ω| = |⟨[t(u𝜓 , 𝜋𝜓 )],𝚽⟩𝜕Ω| = |aA;Rn(u𝜓 , 𝛾
−1𝚽)|

≤ ||A||L∞(Rn)c′||u𝜓 ||1(Rn)n ||𝚽||
H

1
2 (𝜕Ω)n ∀𝚽 ∈ H

1
2
𝜈 (𝜕Ω)n.

(3.54)

Inequality (3.54) and the duality of the spaces H
1
2
𝜈 (𝜕Ω)n and H− 1

2 (𝜕Ω)n∕span{𝜈} show that

||⟦𝜓⟧||
H− 1

2 (𝜕Ω)n∕span{𝜈}
≤ ||A||L∞(Rn)c′||u𝜓 ||1(Rn)n . (3.55)

Then, the coercivity inequality (3.52) follows from inequalities (3.53) and (3.55), and the Lax–Milgram lemma yields
that the single-layer potential operator (3.49) is an isomorphism, as asserted.
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3.4 The double-layer potential operator for the anisotropic Stokes system with L∞
viscosity tensor coefficient
Note that if u ∈ L2,loc(Rn)n is such that u|Ω+ ∈ H1(Ω+)n, u|Ω− ∈ 1(Ω−)n, then, due to Definition (2.16), u ∈ 1(Rn∖𝜕Ω)n

and can be endowed with the norm ||u||2
1(Rn∖𝜕Ω)n ∶= ||u||2

H1(Ω+)n + ||u||21(Ω−)n that is equivalent to the norm (2.17).
By following a similar approach to that used to define the Stokes single-layer potentials, we now show the

well-posedness of a transmission problem that allows us to define the L∞-coefficient Stokes double-layer potentials with
the densities in the space H

1
2 (𝜕Ω)n, n≥ 3 (cf. Theorem 3.14 in Kohr et al.43 for the Stokes system with strongly elliptic

tensor coefficient and Propositions 6.1 and 7.1 in Sayas and Selgas33 for the isotropic case 1.10 with 𝜇 = 1, 𝜆 = 0, and
n = 2, 3).

Theorem 5. Let conditions (1.2)–(1.4) hold on Rn. Then, for any 𝜑 ∈ H
1
2 (𝜕Ω)n, the transmission problem,

⎧⎪⎨⎪⎩
(u𝜑, 𝜋𝜑) = 0, div u𝜑 = 0 in Rn∖𝜕Ω,[
𝛾u𝜑

]
= −𝜑 on 𝜕Ω ,[

t(u𝜑, 𝜋𝜑)
]
= 0 on 𝜕Ω ,

(3.56)

has a unique solution (u𝜑, 𝜋𝜑) ∈ 1(Rn∖𝜕Ω)n × L2(Rn), and there exists C = C(𝜕Ω, cA,n) > 0 such that

||u𝜑||1(Rn∖𝜕Ω)n + ||𝜋𝜑||L2(Rn) ≤ C||𝜑||
H

1
2 (𝜕Ω)n . (3.57)

Proof. First, we show the uniqueness. Let (u0, 𝜋0) ∈ 1(Rn∖𝜕Ω)n × L2(Rn) be a solution of the homogeneous ver-
sion of problem (3.56). Therefore, the couple (u0,𝜋0) is a solution of the homogeneous version of the transmission
problem (3.17), which, in view of Theorem 3, has only the trivial solution.

Next, we show that the transmission problem (3.56) has the following equivalent variational formulation.
Find (u𝜑, 𝜋𝜑) ∈ 1(Rn∖𝜕Ω)n × L2(Rn) such that

⎧⎪⎨⎪⎩
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u𝜑),Ei𝛼(v)
⟩
Ω+

+
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u𝜑),Ei𝛼(v)
⟩
Ω−

− ⟨𝜋𝜑, divv⟩Rn = 0 ∀v ∈ 1(Rn)n,⟨
divu𝜑, q

⟩
Rn∖𝜕Ω = 0 ∀q ∈ L2(Rn),[

𝛾u𝜑

]
= −𝜑on𝜕Ω.

(3.58)

Indeed, if (u𝜑, 𝜋𝜑) ∈ 1(Rn∖𝜕Ω)n × L2(Rn) satisfies transmission problem (3.56), then the Green formula (2.37)
yields the first equation of problem (3.58). The second equation of (3.58) is the distributional form of the second
equation of (3.56). Conversely, assume that (u𝜑, 𝜋𝜑) ∈ 1(Rn∖𝜕Ω)n × L2(Rn) satisfies the variational problem (3.58).
Then, from the first equation of (3.58), we deduce that⟨(

𝜕𝛼

(
a𝛼𝛽

i𝑗 E𝑗𝛽(u𝜑)
)
− 𝜕i𝜋𝜑

) |||Ω± , vi

⟩
Ω± = 0 ∀v = (v1, … , vn) ∈ (Ω±)n, (3.59)

which is the distributional form of the first equation in (3.56). The second equation of (3.56) follows from the second
equation of (3.58). In addition, the first equation of (3.58) and the Green formula (2.37) applied to the pair (u𝝋,𝜋𝝋)
yield that ⟨

[t(u𝜑, 𝜋𝜑)], 𝛾v
⟩

𝜕Ω = 0 ∀v ∈ 1(Rn)n. (3.60)

Moreover, the surjectivity property of the trace operator 𝛾 ∶ 1(Rn)n → H
1
2 (𝜕Ω)n shows that Equation (3.60) can

be written in the equivalent form ⟨
[t(u𝜑, 𝜋𝜑)],𝜳

⟩
𝜕Ω = 0 ∀𝜳 ∈ H

1
2 (𝜕Ω)n, (3.61)

which yields the second transmission condition of (3.56). The first transmission condition in (3.56) follows from the
transmission condition in (3.58). Therefore, problems (3.56) and (3.58) are equivalent.

By using again the existence of a right inverse 𝛾−1
± ∶ H

1
2 (𝜕Ω) → 1(Ω±) of the trace operator 𝛾± ∶ 1(Ω±) →

H
1
2 (𝜕Ω) (see Theorem 1), we deduce that for 𝜑 ∈ H

1
2 (𝜕Ω)n given, there exists w𝜑 ∈ 1(Rn∖𝜕Ω)n continuously

depending on 𝝋 such that
[
𝛾w𝜑

]
= −𝜑on𝜕Ω. For example, we can take w𝜑 = 0 in Ω− and w𝜑 = −𝛾−1

+ 𝜑 in Ω+.
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Therefore, v𝜑 ∶= u𝜑 − w𝜑 satisfies the condition [𝛾v𝜑] = 0, and hence, by Lemma 16 can be extended to v𝜑 ∈
1(Rn)n. In addition, (3.58) reduces to the following variational problem:{

aA;Rn(v𝜑, v) + bRn(v, 𝜋𝜑) = 𝜉𝜑(v) ∀v ∈ 1(Rn)n,
bRn(v𝜑, q) = 𝜁𝜑(q) ∀q ∈ L2(Rn), (3.62)

with the unknown (v𝜑, 𝜋𝜑) ∈ 1(Rn)n × L2(Rn), where aA;Rn(·, ·) ∶ 1(Rn)n × 1(Rn)n → R and bRn ∶ 1(Rn)n ×
L2(Rn) → R are the bounded bilinear forms given by (3.1) and (3.2), respectively. Conditions (1.2) and the Hölder
inequality show the boundedness of the linear forms

𝜉𝜑 ∶ 1(Rn)n → R, 𝜉𝜑(v) ∶= −
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(w𝜑),Ei𝛼(v)
⟩
Ω+

−
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(w𝜑),Ei𝛼(v)
⟩
Ω−

, (3.63)

𝜁𝜑 ∶ L2(Rn)n → R, 𝜁𝜑(q) ∶= −
(⟨divw𝜑, q⟩Ω+ + ⟨divw𝜑, q⟩Ω−

)
∀q ∈ L2(Rn). (3.64)

Then, Lemma 5 implies that the variational problem (3.62) has a unique solution (v𝜑, 𝜋𝜑) ∈ 1(Rn)n × L2(Rn).
Hence, the pair (u𝜑, 𝜋𝜑) = (w𝜑+v𝜑, 𝜋𝜑) is a solution of the variational problem (3.58) in the space1(Rn∖𝜕Ω)n×L2(Rn)
and depends continuously on𝝋. The equivalence between problems (3.56) and (3.58) show that (u𝝋,𝜋𝝋) is the unique
solution of the transmission problem (3.56).

Theorem 5 suggests the following definition of the double-layer potential operator for the anisotropic Stokes system (1.8)
in the case n≥ 3 (cf. Sayas and Selgas33, p.77 for the constant-coefficient Stokes system in R3, formula (4.5) and Lemma
4.6 in Barton29 for general strongly elliptic differential operators, and Definition 3.15 in Kohr et al.43 for the Stokes system
with L∞ strongly elliptic viscosity coefficient).

Definition 5. Let conditions (1.2)–(1.4) hold. Then, the double-layer velocity and pressure potential operators,

W𝜕Ω ∶ H
1
2 (𝜕Ω)n → 1(Rn∖𝜕Ω)n, d

𝜕Ω ∶ H
1
2 (𝜕Ω)n → L2(Rn), (3.65)

are defined as
W𝜕Ω𝜑 ∶= u𝜑, d

𝜕Ω𝜑 ∶= 𝜋𝜑 ∀𝜑 ∈ H
1
2 (𝜕Ω)n, (3.66)

and the boundary operators,

K𝜕Ω ∶ H
1
2 (𝜕Ω)n → H

1
2 (𝜕Ω)n, D𝜕Ω ∶ H

1
2 (𝜕Ω)n → H− 1

2 (𝜕Ω)n, (3.67)

are defined as
K𝜕Ω𝜑 ∶= 1

2
(
𝛾+u𝜑 + 𝛾−u𝜑

)
∀𝜑 ∈ H

1
2 (𝜕Ω)n, (3.68)

D𝜕Ω𝜑 ∶= t+
(
W𝜕Ω𝜑,d

𝜕Ω𝜑
)
= t−

(
W𝜕Ω𝜑,d

𝜕Ω𝜑
)
∀𝜑 ∈ H

1
2 (𝜕Ω)n, (3.69)

where (u𝝋,𝜋𝝋) is the unique solution of the transmission problem (3.56) in 1(Rn∖𝜕Ω)n × L2(Rn).

Moreover, the well-posedness of the transmission problem (3.56) and Definition 5 lead to the next result (see also formu-
las (10.81) and (10.82) in Mitrea and Wright5 and Propositions 6.2 and 6.3 in Sayas and Selgas33 for the constant-coefficient
Stokes system in R3, and Lemma 5.8 in Barton29 for strongly elliptic operators).

Lemma 12. Let conditions (1.2)–(1.4) are satisfied. Then, the following assertions hold.

(i) Operators (3.65) and (3.67) are linear and continuous and for any 𝜑 ∈ H− 1
2 (𝜕Ω)n,

(W𝜕Ω𝜑,d
𝜕Ω𝜑) = 0, div W𝜕Ω𝜑 = 0 in Ω±.

(ii) For any 𝜑 ∈ H
1
2 (𝜕Ω)n, the following jump formulas hold on 𝜕Ω

𝛾± (W𝜕Ω𝜑) = ∓1
2
𝜑 + K𝜕Ω𝜑, t±

(
W𝜕Ω𝜑,d

𝜕Ω𝜑
)
= D𝜕Ω𝜑. (3.70)
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(iii) The operator ∗𝜕Ω ∶ H− 1
2 (𝜕Ω)n → H− 1

2 (𝜕Ω)n defined in (3.34) is the transpose of the double-layer operator K𝜕Ω ∶
H

1
2 (𝜕Ω)n → H

1
2 (𝜕Ω)n defined in (3.68), that is,

⟨𝜓∗,K𝜕Ω𝜑⟩ 𝜕Ω = ⟨∗𝜕Ω𝜓∗, 𝜑⟩ 𝜕Ω ∀𝜑 ∈ H
1
2 (𝜕Ω)n, 𝜓∗ ∈ H− 1

2 (𝜕Ω)n. (3.71)

Proof. The continuity of operators (3.65) and (3.67) follows from the well-posedness of transmission problem (3.56)
and Definition 5. By invoking again Definition 5 and the transmission conditions in (3.56), we obtain jump formu-
las (3.70).

Next, we show equality (3.71), by using an argument similar to that in the proof of Proposition 6.7 in Sayas and
Selgas33 for the constant-coefficient Stokes system. Let 𝜑 ∈ H

1
2 (𝜕Ω)n be given, and let (u𝜑, 𝜋𝜑) =

(
W𝜕Ω𝜑,d

𝜕Ω𝜑
)
∈

1(Rn∖𝜕Ω)n × L2(Rn) be the unique solution of the problem (3.56) with datum 𝝋. Let also 𝜓∗ ∈ H− 1
2 (𝜕Ω)n and

(v𝜓∗ , q𝜓∗ ) = (V∗𝜕Ω𝜓∗,s
∗𝜕Ω𝜓∗) ∈ 1(Rn)n × L2(Rn) be the solution of the problem (3.29) with datum 𝝍∗, that is, the

single-layer velocity and pressure potentials with density𝝍∗ for the adjoint Stokes system (see Definition 4). Then, by
formulas (2.37) and (3.69),

0 = ⟨[t(W𝜕Ω𝜑,d
𝜕Ω𝜑)], 𝛾V∗𝜕Ω𝜓∗⟩𝜕Ω =

⟨
a𝛼𝛽

i𝑗 E𝑗𝛽 (W𝜕Ω𝜑) ,Ei𝛼 (V∗𝜕Ω𝜓∗)
⟩
Rn∖𝜕Ω

. (3.72)

Moreover, the Green formula (2.47) for the adjoint Stokes system and equality (3.72) yield that

⟨
t∗+

(
V∗𝜕Ω𝜓∗,s

∗𝜕Ω𝜓∗
)
, 𝛾+(W𝜕Ω𝜑)

⟩
𝜕Ω =

⟨
a𝛼𝛽

i𝑗 Ei𝛼 (V∗𝜕Ω𝜓∗) ,E𝑗𝛽 (W𝜕Ω𝜑)
⟩
Ω+

= −
⟨

a𝛼𝛽

i𝑗 Ei𝛼
(
V∗

𝜕Ω𝜓∗
)
,E𝑗𝛽 (W𝜕Ω𝜑)

⟩
Ω−

=
⟨

t∗−
(
V∗𝜕Ω𝜓,s

∗𝜕Ω𝜓∗
)
, 𝛾− (W𝜕Ω𝜑)

⟩
𝜕Ω.

(3.73)

Therefore, we obtain the equality⟨
t∗+

(
V∗𝜕Ω𝜓∗,s

∗𝜕Ω𝜓∗
)
, 𝛾+(W𝜕Ω𝜑)

⟩
𝜕Ω =

⟨
t∗−

(
V∗𝜕Ω𝜓,s

∗𝜕Ω𝜓∗
)
, 𝛾− (W𝜕Ω𝜑)

⟩
𝜕Ω. (3.74)

Then, the second formula (3.35), the first formula (3.70), and formula (3.74) lead to the equality⟨1
2
𝜓∗ +∗𝜕Ω𝜓∗,−

1
2
𝜑 + K𝜕Ω𝜑

⟩
𝜕Ω =

⟨
−1

2
𝜓∗ +∗𝜕Ω𝜓∗,

1
2
𝜑 + K𝜕Ω𝜑

⟩
𝜕Ω, (3.75)

and hence to equality (3.71), as asserted.

Remark 3. If the operator L is self-adjoint, that is, A∗𝛼𝛽 = A𝛽𝛼 , a𝛽𝛼

𝑗i = a𝛼𝛽

i𝑗 , 𝛼, 𝛽, i, 𝑗 = 1, … ,n, see (2.40), and par-

ticularly in the isotropic case (1.10), then Definition 4 reduces to Definition 3 and the operator ∗𝜕Ω ∶ H− 1
2 (𝜕Ω)n →

H− 1
2 (𝜕Ω)n given by (3.34) coincides with 𝜕Ω ∶ H− 1

2 (𝜕Ω)n → H− 1
2 (𝜕Ω)n given by (3.26).

3.4.1 Invertibility of the operator D𝜕Ω
Let  be the set of rigid body motion fields in Rn, see (2.18), and let

𝜕Ω ∶= 𝛾, ⟂
𝜕Ω ∶=

{
𝜳 ∈ H− 1

2 (𝜕Ω)n ∶ ⟨𝜳 , r⟩𝜕Ω = 0 ∀r ∈ 𝜕Ω

}
. (3.76)

Also let H
1
2(𝜕Ω)n be the closed subspace of H

1
2 (𝜕Ω)n defined by

H
1
2(𝜕Ω)n ∶= {𝜑 ∈ H

1
2 (𝜕Ω)n ∶ ∫

𝜕Ω

𝜑 · rd𝜎 = 0 ∀r ∈ 𝜕Ω}. (3.77)

It is easy to see that
E(r) = 0, divr = 0 ∀r ∈ . (3.78)
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Next, we show the isomorphism property of the operator D𝜕Ω defined in (3.69) (cf. Lemma 3.17 in Kohr et al.43 for
a different structure of the kernel and range of the similar operator when A is an L∞ strongly elliptic viscosity tensor
coefficient and Propositions 6.4 and 6.5 in Sayas and Selgas33 for the Stokes system with constant coefficients).

Lemma 13. Let conditions (1.2)–(1.4) hold. Then,

Ker
{

D𝜕Ω ∶ H
1
2 (𝜕Ω)n → H− 1

2 (𝜕Ω)n
}
= 𝜕Ω, (3.79)

D𝜕Ω𝜑 ∈ ⟂
𝜕Ω ∀𝜑 ∈ H

1
2 (𝜕Ω)n, (3.80)

and the following operator is an isomorphism,

D𝜕Ω ∶ H
1
2(𝜕Ω)n → ⟂

𝜕Ω. (3.81)

Proof.

(i) First, we show formula (3.79). Let us assume that 𝜑 ∈ H
1
2 (𝜕Ω)n satisfies the equation D𝜕Ω𝜑 = 0 on 𝜕Ω. Let

u𝜑 ∶= W𝜕Ω𝜑 and 𝜋𝜑 ∶= d
𝜕Ω𝜑. Since divu𝜑 = 0 in Ω±, we have Eii(u𝜑) = 0 implying that assumption (1.4) is

applicable for Ei𝛼(u𝝋). According to Lemma 1, the jump relations (3.70) and (3.69), and assumption (1.4), we obtain
that

0 = ⟨−D𝜕Ω𝜑,𝜑⟩𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽

(
u𝜑

)
,Ei𝛼

(
u𝜑

)⟩
Ω+

+
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽

(
u𝜑

)
,Ei𝛼

(
u𝜑

)⟩
Ω−

≥ c−1
A

(||E(u𝜑)||2
L2(Ω+)n×n + ||E(u𝜑)||2

L2(Ω−)n×n

) (3.82)

and accordingly E(u𝜑) = 0 in Ω±. Hence, by the statement in Section 2.2.4, there exist a constant b ∈ Rn and an
antisymmetric matrix B ∈ Rn×n such that u𝜑 = b + Bx in Ω+, while u𝜑 = 0 in Ω−. Then, by using again the jump
relations (3.70), we obtain that 𝜑 = −(b + Bx)|𝜕Ω. This relation shows that

KerD𝜕Ω ⊆ 𝜕Ω. (3.83)

Now, let r ∈  and let ur and 𝜋r be the fields given by

ur ∶=
{

−r in Ω+
0 in Ω−,

and𝜋r = 0 in R
n. (3.84)

By (3.78), E(ur) = 0 and divur = 0 in Rn∖𝜕Ω, and hence, in view of Lemma 1,

±⟨t±(ur, 𝜋r), 𝛾±v±⟩𝜕Ω = 0 ∀v± ∈ 1(Ω±)n, (3.85)

which show that t±(ur, 𝜋r) = 0, and accordingly that [t(ur, 𝜋r)] = 0 on 𝜕Ω. Moreover, we have that [𝛾ur] = −r|𝜕Ω
on 𝜕Ω. Consequently, the pair (ur,𝜋r) belongs to1(Rn∖𝜕Ω)n×L2(Rn) and satisfies the transmission problem (3.56)
with given boundary datum r|𝜕Ω ∈ H

1
2 (𝜕Ω)n. Then, Definition 5 yields that W𝜕Ω(r|𝜕Ω) = ur and d

𝜕Ω(r|𝜕Ω) = 0 in
Rn∖𝜕Ω, and by formula (3.69), we obtain that D𝜕Ω(r|𝜕Ω) = 0 on 𝜕Ω. Therefore,

𝜕Ω ⊆ KerDA;𝜕Ω. (3.86)

Relations (3.83) and (3.86) imply (3.79).
Now, let 𝜑 ∈ H

1
2 (𝜕Ω)n. By applying the Green formula (2.27) to the pair (W𝜕Ω𝜑,d

𝜕Ω𝜑) and by using relation (3.69)
along with (3.78), we obtain the formula

⟨D𝜕Ω𝜑, 𝛾+r⟩𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(W𝜕Ω𝜑),Ei𝛼(r)
⟩

Ω+ −
⟨d

𝜕Ω𝜑, divr
⟩

Ω+ = 0 ∀r ∈ , (3.87)

implying formula (3.80).
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(ii)

To prove that operator (3.81) is an isomorphism, we show that there exists a constant  = (𝜕Ω, cA,n) > 0 such
that ⟨−D𝜕Ω𝜑,𝜑⟩𝜕Ω ≥ ||𝜑||2

H
1
2 (𝜕Ω)n

∀𝜑 ∈ H
1
2(𝜕Ω)n (3.88)

(cf. Sayas and Selgas33 Proposition 6.5 in the constant-coefficient Stokes system). Indeed, by applying Lemma 1 to the

pair (u𝜑, 𝜋𝜑) ∶= (W𝜕Ω𝜑,d
𝜕Ω𝜑) with 𝜑 ∈ H

1
2(𝜕Ω)n, and using the jump relations (3.70) and condition (1.4), we obtain

the inequality ⟨−D𝜕Ω𝜑,𝜑⟩𝜕Ω ≥ c−1
A

(||E(u𝜑)||2
L2(Ω+)n×n + ||E(u𝜑)||2

L2(Ω−)n×n

)
. (3.89)

In addition, the continuity of the trace operators 𝛾± ∶ 1(Ω±)n → H
1
2 (𝜕Ω)n and the jump formulas (3.70) imply

that there exists a constant 1 = 1(𝜕Ω, cA,n) > 0 such that

||𝜑||2
H

1
2 (𝜕Ω)n

= ‖‖[𝛾u𝜑]‖‖2
H

1
2 (𝜕Ω)n

≤ 1

(||u𝜑||21(Ω+)n + ||u𝜑||21(Ω−)n

)
= 1||u𝜑||2

1(Rn∖𝜕Ω)n . (3.90)

Now, let
{

r𝑗 ∶ 𝑗 = 1, … ,n(n + 1)∕2
}

be a basis of the n(n+ 1)/2-dimensional space . Then, the formula

||w||2
1;𝜌;Rn∖𝜕Ω ∶= ||E(w)||2

L2(Rn∖𝜕Ω)n×n +
n(n+1)∕2∑

𝑗=1
|∫
𝜕Ω

[𝛾w] · r𝑗d𝜎|2 ∀w ∈ 1(Rn∖𝜕Ω)n (3.91)

defines a norm on the space 1(Rn∖𝜕Ω)n, which is equivalent to the norm || · ||1(Rn∖𝜕Ω)n (see Lemma 18, cf. also Sayas
and Selgas33, p.78 for n = 3). Therefore, there exists a constant 2 > 0 such that

||w||1(Rn∖𝜕Ω)n ≤ 2||w||1;𝜌;Rn∖𝜕Ω ∀w ∈ 1(Rn∖𝜕Ω)n. (3.92)

Now, by considering w = u𝜑 in (3.91) and by using the jump formulas (3.70), and the assumption that𝜑 ∈ H
1
2(𝜕Ω)n,

as well as inequality (3.92), we obtain that

||E(u𝜑)||2
L2(Ω+)n×n + ||E(u𝜑)||2

L2(Ω−)n×n = ||u𝜑||2
1;𝜌;Rn∖𝜕Ω ≥ −2

2 ||u𝜑||2
1(Rn∖𝜕Ω)n . (3.93)

Finally, by exploiting inequalities (3.89), (3.90), and (3.93), we obtain the coercivity inequality (3.88) with the con-
stant  = c−1

A
−1

1 −2
2 . Then, the Lax–Milgram lemma and the isomorphic identification of the dual of the space

H
1
2(𝜕Ω)n with ⟂

𝜕Ω, imply that operator (3.81) is an isomorphism, as asserted.

3.5 Poisson problems of transmission type for the anisotropic Stokes system in R
n

For given data f̃±, f̃−, g+, g−, 𝜑, 𝜓 , we consider the following Poisson problem of transmission type:

⎧⎪⎨⎪⎩
(u±, 𝜋±) = f̃±|Ω± , divu± = g± in Ω±,
𝛾+u+ − 𝛾−u− = 𝜑 on 𝜕Ω,
t+(u+, 𝜋+; f̃+) − t−(u−, 𝜋−; f̃−) = 𝜓 on 𝜕Ω,

(3.94)

where  denotes the Stokes operator defined in (1.9). The left-hand side in the last transmission condition in (3.94) is
understood in the sense of Definition 1.

Theorem 6. Let conditions (1.2)–(1.4) hold. Then, for all given data (̃f+, f̃−, g+, g−, 𝜑, 𝜓) in the space H̃−1(Ω+)n ×
̃−1(Ω−)n × L2(Ω+) × L2(Ω−) × H

1
2 (𝜕Ω)n × H− 1

2 (𝜕Ω)n, the transmission problem (3.94) has a unique solution
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(u+, 𝜋+,u−, 𝜋−) ∈ H1(Ω+)n×L2(Ω+)×1(Ω−)n×L2(Ω−). Moreover, there exists a constant C = C(𝜕Ω, c,n) > 0 such that

||u+||H1(Ω+)n + ||𝜋+||L2(Ω+) + ||u−||1(Ω−)n + ||𝜋−||L2(Ω−) ≤ C
(||̃f+||H̃−1(Ω+)n + ||̃f−||̃−1(Ω−)n

+||g+||L2(Ω+) + ||g−||L2(Ω−) + ||𝜑||
H

1
2 (𝜕Ω)n + ||𝜓||

H− 1
2 (𝜕Ω)n

)
.

(3.95)

Proof. Theorem 3 yields uniqueness. Now, we show existence, by considering the potentials

u± =
(Rn f̃±

) |Ω± +
(Rn E̊±g±

) |Ω± + V𝜕Ω𝜓
0 − W𝜕Ω𝜑

0 in Ω±, (3.96)

𝜋± =
(Rn f̃±

) |Ω± +
(0

Rn E̊±g±
) |Ω± +s

𝜕Ω𝜓
0 −d

𝜕Ω𝜑
0 in Ω±, (3.97)

where

𝜑0 ∶= 𝜑 − 𝛾+Rn f̃+ + 𝛾−Rn f̃− − 𝛾+Rn E̊+g+ + 𝛾−Rn E̊−g−,

𝜓0 ∶= 𝜓 − t+
(Rn f̃+,Rn f̃+; f̃+

)
+ t−

(Rn f̃−,Rn f̃−; f̃−
)
− t+

(Rn E̊+g+,0
Rn E̊+g+

)
+ t−

(Rn E̊−g−,0
Rn E̊−g−

)
.

Note that 𝜑0 ∈ H
1
2 (𝜕Ω)n and 𝜓0 ∈ H− 1

2 (𝜕Ω)n. From Lemmas 6,7, and 12, we deduce that (u±,𝜋±) given in (3.96)
and (3.97) provide a solution of the transmission problem (3.94) in the space (H1(Ω+)n ×L2(Ω+))×(1(Ω−)n ×L2(Ω−))
satisfying inequality (3.95).

3.6 The third Green identities for the anisotropic Stokes system
Next, we prove the representation formulas (the third Green identities) for solutions of the anisotropic Stokes system with
L∞ tensor coefficient (cf. Proposition 6.8 in Sayas and Selgas33 for the homogeneous Stokes system in case (1.10) with
𝜇 = 1, 𝜆 = 0, and n = 3 and Theorem 6.10 in McLean48 for the strongly elliptic systems with smooth coefficients). They
can be employed, for example, for reduction of the boundary and transmission problems to direct boundary equations,
similar to the classical direct boundary integral equation approach, see, for example, Costabel,1 McLean,48 and Hsiao and
Wendland.4

Theorem 7. Let conditions (1.2)–(1.4) hold and let  denote the Stokes operator defined in (1.9). Let u+ ∈ H1(Ω+)n,
u− ∈ 1(Ω−)n and 𝜋± ∈L2(Ω±) satisfy the Stokes system

(u±, 𝜋±) = f̃±|Ω± , div u± = g± in Ω± (3.98)

for some f̃+ ∈ H̃−1(Ω+)n, f̃− ∈ ̃−1(Ω−)n, g+ ∈L2(Ω+), g− ∈L2(Ω−). Let f̃ ∶= f̃+ + f̃−, g ∶= E̊+g+ + E̊−g−. Then, the
following representations in terms of jumps hold:

u± = −W𝜕Ω[𝛾u] + V𝜕Ω

[
t(u, 𝜋; f̃)

]
+Rn f̃ + Rn g in Ω±, (3.99)

𝜋± = −d
𝜕Ω[𝛾u] +s

𝜕Ω

[
t(u, 𝜋; f̃)

]
+Rn f̃ + 0

Rn g in Ω±. (3.100)

Moreover, the following single-side representations also hold:

u± = ∓W𝜕Ω𝛾±u±±V𝜕Ωt±(u±, 𝜋±; f̃±) +Rn f̃± + Rn E̊±g± in Ω±, (3.101)

𝜋± = ∓d
𝜕Ω𝛾±u±±s

𝜕Ωt±(u±, 𝜋±; f̃±) +Rn f̃± + 0
Rn E̊±g± in Ω±. (3.102)
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Proof. In view of the assumptions on u±, 𝜋±, and f̃±, we have the inclusions 𝜑 ∶= [𝛾u] ∈ H
1
2 (𝜕Ω)n and 𝜓 ∶=[

t(u, 𝜋; f̃)
]
∈ H− 1

2 (𝜕Ω)n. Let

v ∶= −W𝜕Ω𝜑 + V𝜕Ω𝜓 +Rn f̃ + Rn g, q ∶= −d
𝜕Ω𝜑 +s

𝜕Ω𝜓 +Rn f̃ + 0
Rn g in R

n∖𝜕Ω. (3.103)

By definitions of the potentials and according to Lemmas 6, 7, and 12(i), the pair (v, q) belongs to the space
1(Rn∖𝜕Ω)n × L2(Rn) and satisfies the Stokes system

(v±, q±) = f̃, divv± = g in Ω±. (3.104)

Due to Lemma 6, Rn f̃,Rn g ∈ 1(Rn)n implying that [𝛾Rn f̃] = 0, [𝛾Rn g] = 0. Then, by formulas (3.27)
and (3.70),

[𝛾v] = 𝜑 on 𝜕Ω. (3.105)

Let rΩ± be restriction operators to Ω±, that is, rΩ±g ∶= g|Ω± . By Definition 1, the generalized conormal derivative
is linear with respect to the triple of its arguments, implying that

t±(v|Ω± , q|Ω±; f̃±) = −t±(rΩ±W𝜕Ω𝜑, rΩ±d
𝜕Ω𝜑; 0) + t±(rΩ±V𝜕Ω𝜓, rΩ±s

𝜕Ω𝜓 ; 0)

+t±(rΩ±(Rn f̃ + Rn g), rΩ±(Rn f̃ + 0
Rn g); f̃±).

(3.106)

By formulas (3.28) and (3.69), we obtain

[t(V𝜕Ω𝜓,s
𝜕Ω𝜓 ; 0)] = 𝜓, [t(W𝜕Ω𝜑,d

𝜕Ω𝜑; 0)] = 0. (3.107)

On the other hand, from (2.25), we have for any w ∈ H
1
2 (𝜕Ω)n that

⟨
[t(Rn f̃ + Rn g,Rn f̃ + 0

Rn g; f̃)],w
⟩

𝜕Ω

=
⟨

A𝛼𝛽𝜕𝛽rΩ+(Rn f̃ + Rn g), 𝜕𝛼(𝛾−1w)
⟩

Ω+ +
⟨

A𝛼𝛽𝜕𝛽rΩ−(Rn f̃ + Rn g), 𝜕𝛼(𝛾−1w)
⟩

Ω−

−
⟨

rΩ+(Rn f̃ + 0
Rn g), div(𝛾−1w)

⟩
Ω+ −

⟨
rΩ−(Rn f̃ + 0

Rn g), div(𝛾−1w)
⟩

Ω− +
⟨̃

f+, 𝛾−1w
⟩

Ω+ +
⟨̃

f−, 𝛾−1w
⟩

Ω−

=
⟨

A𝛼𝛽𝜕𝛽(Rn f̃ + Rn g), 𝜕𝛼(𝛾−1w)
⟩
Rn −

⟨Rn f̃ + 0
Rn g, div(𝛾−1w)

⟩
Rn +

⟨̃
f, 𝛾−1w

⟩
Rn

=
⟨
−(Rn f̃ + Rn g,Rn f̃ + 0

Rn g) + f̃, 𝛾−1w
⟩
Rn = 0,

(3.108)

where 𝛾−1 ∶ H
1
2 (𝜕Ω)n → 1(Rn)n is a (nonunique) bounded right inverse of the trace operator 𝛾 ∶ 1(Rn)n →

H
1
2 (𝜕Ω)n. The last equality in (3.108) follows since (Rn f̃+Rn g,Rn f̃+0

Rn g) = f̃ inRn. Combining (3.106)–(3.108),
we obtain that the couple (v, q) satisfies the transmission condition

[
t(v, q; f̃)

]
= 𝜓 on 𝜕Ω, (3.109)

and thus, the transmission problem (3.104), (3.105), and (3.109). The pair (u,𝜋) satisfies the same transmission
problem, which, in view of Theorem 6, has at most one solution in 1(Rn∖𝜕Ω)n × L2(Rn). Consequently, u = v and
𝜋 = q, and then, formulas (3.103) yield the representation formulas (3.99)–(3.100).

To obtain formulas (3.101) and (3.102) for (u+,𝜋+), we can employ representations (3.99) and (3.100) with u− = 0,
𝜋− = 0, f̃− = 0, and g− = 0. Formulas (3.101) and (3.102) for (u−,𝜋−) can be obtained in a similar way.
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4 BOUNDARY VALUE PROBLEMS FOR THE ANISOTROPIC STOKES
SYSTEM IN WEIGHTED SOBOLEV SPACES

Girault and Sequeira31 used in Theorem 3.4 a variational approach to show the well-posedness in 1(Ω′)n × L2(Ω′)
for the exterior Dirichlet problem for the constant coefficient Stokes system in an exterior Lipschitz domain Ω′ of Rn,
n = 2, 3. Dindos and Mitrea3 (see Theorems 5.1, 5.6, 7.1, and 7.3) used a boundary integral approach and properties of
Calderón–Zygmund-type singular integral operators to show well-posedness results in Sobolev and Besov spaces for Pois-
son problems of Dirichlet type for the Stokes and Navier–Stokes systems with smooth coefficients in Lipschitz domains
on compact Riemannian manifolds (see also Theorem 7.1 in Mitrea and Taylor15 and Proposition 4.5 in Băcuţă et al.36 for
an evolutionary exterior Stokes problem).

Recall that  is the Stokes operator defined in (1.9), such that the corresponding viscosity tensor coefficient A =(
A𝛼𝛽

)
1≤𝛼,𝛽≤n satisfies conditions (1.2)–(1.4).

4.1 Exterior Dirichlet problem for the anisotropic Stokes system in the compressible case
Let us consider the following Dirichlet problem for the anisotropic Stokes system with L∞ coefficients:{(u, 𝜋) = f, divu = g in Ω−,

𝛾−u = 𝜑 on 𝜕Ω, (4.1)

where  is the Stokes operator defined in (1.9) and the given data (f, g,𝝋) belong to −1(Ω−)n × L2(Ω−) × H
1
2 (𝜕Ω)n. We

show the well-posedness of this problem in the space 1(Ω−)n×L2(Ω−) and express its solution in terms of the Newtonian
and single-layer potentials defined in Section 3 (cf. Theorem 5.2 in Kohr et al.39 in the isotropic case 1.10, Theorem 3.4
in Girault and Sequeira31 for the constant coefficient Stokes system, Theorem 10.1 in Fabes et al.,59 and Theorem 5.1 in
Lang and Méndez60 for the Laplace operator).

As in the previous sections, Ω+ ⊂ Rn (n≥ 3) is a bounded Lipschitz domain with connected boundary 𝜕Ω, and Ω− ∶=
Rn∖Ω+. Recall that  is the Stokes operator defined in (1.9), and that E̊− is the operator of extension by zero outside Ω−.

Theorem 8. Let conditions (1.2)–(1.4) hold in Ω−. Let f ∈ −1(Ω−)n, g∈L2(Ω−) and 𝜑 ∈ H
1
2 (𝜕Ω)n. If 𝜑 ∈ H

1
2
𝜈 (𝜕Ω)n,

then the exterior Dirichlet problem (4.1) has a unique solution (u, 𝜋) ∈ 1(Ω−)n × L2(Ω−), given by

u = Rn f̃ + Rn E̊−g + V𝜕Ω−1
𝜕Ω

(
𝜑 − 𝛾−Rn f̃ − 𝛾−Rn E̊−g

)
in Ω−, (4.2)

𝜋 = Rn f̃ + 0
Rn E̊−g +s

𝜕Ω−1
𝜕Ω

(
𝜑 − 𝛾−Rn f̃ − 𝛾−Rn E̊−g

)
in Ω−, (4.3)

where f̃ is an extension of f to an element of ̃−1(Ωn
−) ⊂ −1(Rn)n. In addition, there exists a constant C = C(𝜕Ω, cA,n) >

0 such that ||u||1(Ω−)n + ||𝜋||L2(Ω−) ≤ C
(||f||−1(Ω−)n + ||g||L2(Ω−) + ||𝜑||

H
1
2 (𝜕Ω)n

)
. (4.4)

Proof. Let f ∈ −1(Ω−)n and g∈L2(Ω−). Then, Theorem 3.2 and Definition 3.3 imply that

Rn f̃ , Rn E̊−g ∈ 1(Rn)n (4.5)

and divRn f̃ = 0, divRn E̊−g = E̊−g in Rn. Hence, both potentials are divergence free vector fields in Ω+ and the
divergence theorem in Ω+ implies that

𝛾+Rn f̃, 𝛾+Rn E̊−g ∈ H
1
2
𝜈 (𝜕Ω)n. (4.6)

From inclusions (4.5), we have

𝛾−Rn f̃ = 𝛾+Rn f̃, 𝛾−Rn E̊−g = 𝛾+Rn E̊−g,
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which, together with (4.6), implies that 𝛾−Rn f̃, 𝛾−Rn E̊−g ∈ H
1
2
𝜈 (𝜕Ω)n . Then, by the assumption 𝜑 ∈ H

1
2
𝜈 (𝜕Ω)n, we

conclude that 𝜑 − 𝛾−Rn f̃ − 𝛾−Rn E̊−g ∈ H
1
2
𝜈 (𝜕Ω)n, and, in view of Lemma 11, −1

𝜕Ω

(
𝜑 − 𝛾−Rn f̃ − 𝛾−Rn E̊−g

)
is a

well-defined element of the space H− 1
2 (𝜕Ω)n∕span{𝜈}.

Moreover, Lemmas 6, 7, 8, and 11 imply that (u,𝜋) represented by formulas (4.2) and (4.3) solve the exterior
Dirichlet problem (4.1) in 1(Ω−)n × L2(Ω−), and the continuity of the operators involved in these formulas yields
inequality (4.4).

Let us now show uniqueness. Assume that problem (4.1) has two weak solutions in1(Ω−)n×L2(Ω−) and let (u0,𝜋0)
be their difference. Therefore, (u0, 𝜋0) ∈ ̊1(Ω−)n × L2(Ω−) and by the Green formula (2.27), we obtain that⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u0),Ei𝛼(u0)
⟩

Ω− = 0. (4.7)

Moreover, the ellipticity condition (1.4) implies that⟨
a𝛼𝛽

i𝑗 E𝑗𝛽(u0),Ei𝛼(u0)
⟩

Ω− ≥ c−1
A

||E(u0)||2
L2(Ω−)n×n . (4.8)

Therefore, E(u0) = 0 in Ω− and hence u0 = 0 in Ω−; compare Section 2.2.4. In addition, since u0 and 𝜋0 satisfy the
Stokes equation in Ω− and 𝜋0 belongs to L2(Ω−), we conclude that 𝜋0 = 0 in Ω−, as asserted.

4.2 Exterior Neumann problem for the anisotropic Stokes system
The Neumann problem for the constant coefficient Stokes system in an exterior Lipschitz domain in Rn, with boundary
datum in Lp spaces, has been studied in Theorem 9.2.6 of Mitrea and Wright5 by a potential approach (see also Theorem
10.6.4 in Mitrea and Wright5 for the Neumann problem for the same system in a bounded Lipschitz domain). Next, we
consider the following exterior Neumann problem for the L∞ coefficient Stokes system:{(u, 𝜋) = 0, divu = 0 in Ω−,

t−(u, 𝜋) = 𝜓 ∈ ⟂
𝜕Ω on 𝜕Ω. (4.9)

Recall that⟂
𝜕Ω is defined in (3.76), D𝜕Ω ∶ H

1
2(𝜕Ω)n → ⟂

𝜕Ω is given by (3.70) and D−1
𝜕Ω ∶ ⟂

𝜕Ω → H
1
2(𝜕Ω)n is a continuous

operator due to Lemma 13.

Theorem 9. Let conditions (1.2)–(1.4) hold in Ω−. If 𝜓 ∈ ⟂
𝜕Ω, then problem (4.9) has a unique solution (u, 𝜋) ∈

1(Ω−)n × L2(Ω−), given by
u = W𝜕Ω

(
D−1

𝜕Ω𝜓
)
, 𝜋 = d

𝜕Ω
(

D−1
𝜕Ω𝜓

)
inΩ−. (4.10)

Moreover, there exists a constant C = C(Ω−, cA,n) > 0 such that

||u||1(Ω−)n + ||𝜋||L2(Ω−) ≤ C||𝜓||⟂
𝜕Ω
. (4.11)

Proof. Lemmas 12 and 13 imply that (u,𝜋) represented by (4.10) solve problem (4.9) and the operators involved
in (4.10) are continuous, which implies inequality (4.11).

To show uniqueness, let us assume that a pair (u0, 𝜋0) ∈ 1
div(Ω−)n × L2(Ω−) satisfies the homogeneous version of

the exterior Neumann problem (4.9). Then, Lemma 1 and assumption (1.4) imply that

0 = −⟨t−(u0, 𝜋0), 𝛾−(u0)⟩𝜕Ω =
⟨

a𝛼𝛽

i𝑗 E𝑗𝛽(u0),Ei𝛼(u0)
⟩

Ω− ≥ c−1
A

||E(u0)||2
L2(Ω−)n×n ,

and hence, E(u0) = 0 in Ω−. Then, compare Section 2.2.4, u0 = 0 in Ω−. Moreover, the Stokes equation in (4.9) shows
that 𝜋0 reduces to a constant c0 ∈ R, but the membership of 𝜋0 in L2(Ω−) yields that c0 = 0, and accordingly that
𝜋0 = 0 in Ω−.
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5 AUXILIARY RESULTS

5.1 Abstract mixed variational formulations
A major role in our analysis of mixed variational formulations is played by the following well-posedness result by
Babuska61 and Theorem 1.1 in Brezzi62 (see also Theorem 2.34 and Remark 2.35(i) in Ern and Guermond63 and Brezzi
and Fortin64).

Theorem 10. Let X and  be two real Hilbert spaces. Let a(·, ·) ∶ X × X → R and b(·, ·) ∶ X ×  → R be bounded
bilinear forms. Let f∈X′ and g ∈ ′. Let V be the subspace of X defined by

V ∶= {v ∈ X ∶ b(v, q) = 0 ∀q ∈ } . (5.1)

Assume that a(·, ·) ∶ V × V → R is coercive, which means that there exists a constant Ca > 0 such that

a(w,w) ≥ C−1
a ||w||2

X ∀w ∈ V , (5.2)

and that b(·, ·) ∶ X × → R satisfies the Babuska–Brezzi condition

inf
q∈∖{0}

sup
v∈X∖{0}

b(v, q)||v||X ||q|| ≥ C−1
b , (5.3)

with some constant Cb > 0. Then, the mixed variational formulation,{
a(u, v) + b(v, p) = 𝑓 (v) ∀v ∈ X ,
b(u, q) = g(q) ∀q ∈ ,

(5.4)

has a unique solution (u, p) ∈ X × and

||u||X ≤ Ca||𝑓 ||X ′ + Cb(1 + ||a||Ca)||g||′ , (5.5)

||p|| ≤ Cb(1 + ||a||Ca)||𝑓 ||X ′ + ||a||C2
b(1 + ||a||Ca)||g||′ , (5.6)

where ||a|| is the norm of the bilinear form a(· , ·).

We need also the following extension of the Babuška–Brezzi result (see Theorem 4.2 in Amrouche and Seloula;65 see
also Lemma A.40 in Ern and Guermond63).

Lemma 14. Let X and  be reflexive Banach spaces. Let b(·, ·) ∶ X × → R be a bounded bilinear form. Let B ∶ X →
′ and B∗ ∶  → X ′ be the linear bounded operator and its transpose operator defined by

⟨Bv, q⟩ = b(v, q), ⟨v,B∗q⟩ = ⟨Bv, q⟩ ∀v ∈ X , ∀q ∈ , (5.7)

where ⟨·, ·⟩ ∶= X ′⟨·, ·⟩X denotes the duality pairing between the dual spaces X′ and X. The duality pairing between the
spaces ′ and  is also denoted by ⟨· , ·⟩. Let V ∶= KerB and V⟂ = X ′ ⟂ V ∶= {g ∈ X ′ ∶ ⟨g, v⟩ = 0∀v ∈ V}. Then, the
following assertions are equivalent:

(i) There exists a constant Cb > 0 such that b(· , ·) satisfies the inf-sup condition (5.3).
(ii) The operator B ∶ X∕V → ′ is an isomorphism and

||Bw||′ ≥ C−1
b ||w||X∕V ∀w ∈ X∕V . (5.8)

(iii) The operator B∗ ∶  → V⟂ is an isomorphism and

||B∗q||X ′ ≥ C−1
b ||q|| ∀q ∈ . (5.9)
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5.2 The Agmon–Douglis–Nirenberg ellipticity of the anisotropic Stokes system
The principal symbol of the anisotropic Stokes system (1.1) and (1.8) is the (n+ 1)× (n+ 1) matrix

𝜎𝓁𝑗(x, 𝜉) =

⎧⎪⎪⎨⎪⎪⎩

𝜉𝛼a𝛼𝛽

𝓁𝑗 (x)𝜉𝛽, 𝓁, 𝑗 = 1, … ,n;
−i𝜉𝓁 , 𝓁 = 1, … ,n, 𝑗 = n + 1;
−i𝜉𝑗 , 𝓁 = n + 1, 𝑗 = 1, … ,n;
0, 𝓁 = 𝑗 = n + 1.

(5.10)

Here, i2 = −1, and 𝜉 = (𝜉1, … , 𝜉n).
The Stokes system is elliptic in the sense of Agmon–Douglis–Nirenberg at x ∈ Rn if 𝜎(x,𝝃) is defined and nonsingular for

any 𝜉 ∈ Rn∖{0} (see, e.g., Definition 6.2.3 in Hsiao and Wendland4). This property is well known for the Stokes system in
the isotropic case (1.10) with 𝜇 = 1 and 𝜆 = 0 (cf., e.g., Hsiao and Wendland4, p.329). Next, we show that this ellipticity
property remains valid also in the more general anisotropic case.

Lemma 15. Let conditions (1.2)–(1.4) hold onRn. Then, the anisotropic Stokes system defined by (1.1) and (1.8) is elliptic
in the sense of Agmon–Douglis–Nirenberg at almost any x ∈ Rn.

Proof. First, we observe that the symbol matrix given by (5.10) is nonsingular if and only if the modified symbol
matrix

𝜎𝓁𝑗(x, 𝜉) =

⎧⎪⎪⎨⎪⎪⎩

𝜉𝛼a𝛼𝛽

𝓁𝑗 (x)𝜉𝛽, 𝓁, 𝑗 = 1, … ,n;
𝜉𝓁 , 𝓁 = 1, … ,n, 𝑗 = n + 1;
𝜉𝑗 , 𝓁 = n + 1, 𝑗 = 1, … ,n;
0, 𝓁 = 𝑗 = n + 1

(5.11)

is nonsingular as well. Let x ∈ Rn be such that the coefficients a𝛼𝛽

𝓁𝑗 (x) are well defined and finite and the ellipticity
condition (1.4) holds. In order to show that 𝜎𝓁𝑗(x, 𝜉) is nonsingular for any 𝜉 ∈ Rn∖{0}, we use Theorem 10. To this
end, for a fixed 𝜉 ∈ Rn∖{0}, we consider the bilinear forms a0 ∶ Rn ×Rn → R and b0 ∶ Rn × R → R,

a0(û, v̂) ∶= û𝓁𝜉𝛼a𝛼𝛽

𝓁𝑗 (x)𝜉𝛽 v̂𝑗 ∀ û, v̂ ∈ R
n, (5.12)

b0(v̂, q̂) ∶= −𝜉𝑗 v̂𝑗 q̂ ∀ v̂ ∈ R
n, q̂ ∈ R, (5.13)

as well as the closed subspace V𝝃 of Rn given by

V𝜉 ∶=
{

v̂ ∈ R
n ∶ b0(v̂, q̂) = 0, ∀ q̂ ∈ R

}
=

{
v̂ ∈ R

n ∶ 𝜉𝑗 v̂𝑗 = 0
}
. (5.14)

It is immediate that these bilinear forms are bounded, as they satisfy the estimates:

|a0(û, v̂)| ≤ ||A||L∞(Rn)|𝜉|2|û| |v̂|, |b0(v̂, q̂)| ≤ |𝜉| |v̂| |q̂| ∀ û, v̂ ∈ R
n, ∀ q̂ ∈ R.

The symmetry conditions (1.3) allow us to write the bilinear form a0 as

a0(û, v̂) = a𝛼𝛽

𝓁𝑗 (x)(û ⊗ 𝜉)s
𝓁𝛼(v̂ ⊗ 𝜉)s

𝛽𝑗
, (5.15)

where (û ⊗ 𝜉)s is the symmetric part of the matrix û ⊗ 𝜉, that is,

(û ⊗ 𝜉)s
𝓁𝛼 ∶= 1

2
(û𝓁𝜉𝛼 + û𝛼𝜉𝓁) , 𝓁, 𝛼 = 1, … ,n. (5.16)

According to (5.15) and the ellipticity condition (1.4), we obtain that a0 satisfies the estimate

a0(v̂, v̂) ≥ c−1
A

|(v̂ ⊗ 𝜉)s|2 = 1
2

c−1
A

|v̂|2|𝜉|2 ∀ v̂ ∈ R
nsuch that v̂ · 𝜉 = 0, (5.17)
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where v̂ · 𝜉 =
∑n

𝓁=1(v̂ ⊗ 𝜉)s
𝓁𝓁 is the trace of the symmetric matrix (v̂ ⊗ 𝜉)s. Therefore, the bounded bilinear form

a0 ∶ V𝜉 × V𝜉 → R is coercive when 𝜉 ≠ 0.
In addition, an elementary computation shows that

inf
q̂∈R∖{0}

sup
v̂∈Rn∖{0}

b0(v̂, q̂)|v̂| |q̂| = |𝜉|, (5.18)

and accordingly that the bilinear form b0 satisfies the inf-sup condition with the inf-sup constant |𝝃|.
By applying Theorem 10, we conclude that the modified symbol matrix 𝜎(x, 𝜉) given by (5.11) is invertible for any

𝝃≠0 and hence that the symbol matrix 𝜎(x,𝝃) given by (5.10) has the same property. Thus, the anisotropic Stokes
system is elliptic in the sense of Agmon–Douglis–Nirenberg, as asserted.

5.3 Extension result in the weighted Sobolev space 1(Rn)

Lemma 16. Let Ω+ ⊂ Rn be a bounded Lipschitz domain with connected boundary and Ω− ∶= Rn∖Ω+.

(i) Let q+ ∈L2(Ω+) and q− ∈L2(Ω−). Then, there exists a unique function q ∈ L2(Rn) such that q|Ω± = q±. Moreover,||q||2
L2(Rn)

= ||q+||2
L2(Ω+)

+ ||q−||2
L2(Ω−)

.

(ii) Let u+ ∈H1(Ω+) and u− ∈ 1(Ω−) be such that 𝛾+u+ = 𝛾−u− on 𝜕Ω. Then, there exists a unique function u ∈ 1(Rn)
such that u|Ω± = u±. Moreover, there exists a constant C> 0 depending on n and Ω±, such that

||u||1(Rn) ≤ C
(||u+||H1(Ω+) + ||u−||1(Ω−)

)
. (5.19)

(iii) If u ∈ 1(Rn), then [𝛾u] = 0, where [𝛾u] = 𝛾+(u|Ω+) − 𝛾−(u|Ω−).

Proof.

(i) We can take q = E̊Ω+q++ E̊Ω−q− ∈ L2(R), where E̊Ω± are the operators of extension by zero defined in (2.32). Then,
evidently q|Ω± = q±. To prove the uniqueness, let us assume that there are two such functions, q1 and q2. Then,
q0:= q1 − q2 belongs to L2(Rn) and q0|Ω± = 0. Hence, q0 = 0 in Rn in the sense of Lebesgue classes.

(ii) We follow similar arguments to those for Theorem 5.13 in Brewster et al.27 Let Ω+ be a bounded linear extension
operator from H1(Ω+) to H1(Rn) (see, e.g., Theorem 2.4.1 in Mitrea and Wright5). Let us take

u∗
− ∶= (Ω+u+)|Ω− in Ω−. (5.20)

Then, u∗
− ∈ H1(Ω−) ⊂ 1(Ω−). Moreover, there exists a constant c> 0 depending on n and Ω±, such that

||u∗
−||1(Ω−) ≤ c||u+||H1(Ω+).

In addition, in view of (5.20), we have 𝛾−u∗
− = 𝛾−(Ω+u+) = 𝛾+u+ = 𝛾−u−, and hence, u− − u∗

− belongs to ̊1(Ω−).
Thus, E̊Ω−(u− − u∗

−) belongs to 1(Rn), and there exists a constant c1 = c1(n,Ω±), such that

||E̊Ω−(u− − u∗
−)||1(Rn) ≤ c1

(||u+||H1(Ω+) + ||u−||1(Ω−)
)
. (5.21)

Let us now define the function
u ∶= E̊Ω−(u− − u∗

−) + Ω+u+. (5.22)
It belongs to 1(Rn), and there exists a constant C1 > 0 depending on n and Ω±, such that the inequality (5.19)
holds. According to (5.20) and (5.22), we have also the following relations:

u|Ω+ = 0 + (Ω+u+)|Ω+ = u+ a.e. in Ω+,

u|Ω− = u− − u∗
− + (Ω+u+)|Ω− = u− − u∗

− + u∗
− = u− a.e. in Ω−,

and thus, the existence of a function u is proved.
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To prove that the function u is unique, let us assume that there are two such functions, u1 and u2. Then, u0:=u1 −u2
belongs to 1(Rn) and u0|Ω± = 0. Thus, u0 ∈ H1(Rn) ⊂ L2(Rn) and its support is a subset of 𝜕Ω. Hence, u0 = 0 in
Rn in the sense of Lebesgue classes (cf. also Theorem 2.10(i) in Mikhailov54).

(iii) Let u ∈ 1(Rn). Consequently, u ∈ H1
loc(R

n), and then, 𝛾+u = 𝛾−u, that is, [𝛾u] = 0.

5.4 Equivalent norms in the weighted Sobolev space 1(Rn∖𝜕Ω)n

We will further employ the following assertion concerning the equivalence of norms in Banach spaces (cf. Lemma 11.1
in Tartar66).

Lemma 17. Let (X, ||· || X) be a Banach space, and let (Y, ||· || Y), (Z, ||· || Z), (𝛶 , ||· || 𝛶 ) be normed spaces. Let  ∶ X → Y,
ℭ ∶ X → Z, and  ∶ X → 𝛶 be linear and continuous operators, such that

(i) The operator ℭ ∶ X → Z is compact.
(ii) ||P(·)||Y + ||ℭ(·)||Z is a norm on X equivalent to the norm || · || X.

(iii) The operator  ∶ X → 𝛶 satisfies the condition  (u) ≠ 0 whenever P(u) = 0 and u≠ 0.

Then, ||u|| ∶= ||P(u)||Y + || (u)||𝛶 , u ∈ X , is a norm on X equivalent to the given norm || · || X.

The following result for n = 3 is implied by Proposition 2.7(a) in Sayas and Selgas,33 and its proof is based on the Korn
inequalities (see, e.g., Theorems 10.1 and 10.2 in McLean48) and Lemma 17. The result for n> 3 follows with the same
arguments.

Theorem 11. Let n≥ 3. Let Ω ⊂ Rn be a bounded Lipschitz domain with connected boundary 𝜕Ω, and Ω− ∶= Rn∖Ω.
Then, ||E(·)||L2(Ω−)n×n is a norm in the weighted Sobolev space 1(Ω−)n, which is equivalent to the norm || · ||1(Ω−)n given
by (2.8) with Ω− in place of Rn. Therefore, there exists a constant C = C(Ω−,n) > 0 such that

C||u||1(Ω−)n ≤ ||E(u)||L2(Ω−)n×n ≤ ||u||1(Ω−)n ∀u ∈ 1(Ω−)n. (5.23)

Recall that 𝜌 is the weight function given by (2.4), 1(Rn∖𝜕Ω) is the space defined in (2.16)–(2.17),  is the space of
rigid body motion fields in Rn defined in (2.18), and 𝜕Ω is its trace. Note that dim  = n(n+1)∕2, compare Section 2.2.4,
and let

{
r𝑗 ∶ 𝑗 = 1, … ,n(n + 1)∕2

}
be a basis of .

Lemma 18. Let Ω ⊂ Rn, n≥ 3, be a bounded Lipschitz domain with connected boundary 𝜕Ω. Then, the formula

||w||2
1;𝜌;Rn∖𝜕Ω ∶= ||E(w)||2

L2(Rn∖𝜕Ω)n×n +
n(n+1)∕2∑

𝑗=1
|∫
𝜕Ω

[𝛾w] · 𝛾r𝑗d𝜎|2 ∀w ∈ 1(Rn∖𝜕Ω)n (5.24)

defines a norm in the weighted Sobolev space 1(Rn∖𝜕Ω)n, which is equivalent to the norm

||w||2
1(Rn∖𝜕Ω)n = ||𝜌−1w||2

L2(Rn∖𝜕Ω)n + ||∇w||2
L2(Rn∖𝜕Ω)n . (5.25)

Proof. First, we note that by Theorem 11, ||E(·)||L2(Ω−)n×n is a norm in 1(Ω−)n, which is equivalent to the norm || ·||1(Ω−)n , defined as in (5.25) with Ω− in place of Rn∖𝜕Ω. Moreover, in view of the second Korn inequality (see, e.g.,
Theorem 10.2 in McLean48 and Proposition 11.4.2 in Mitrea and Wright5), ||E(·)||L2(Ω+)n×n + || · ||L2(Ω+)n is an equivalent
norm in the space H1(Ω+)n. Therefore,

||E(w)||L2(Ω−)n×n + ||E(w)||L2(Ω+)n×n + ||w||L2(Ω+)n = ||E(w)||L2(Rn∖𝜕Ω)n×n + ||w||L2(Ω+)n (5.26)

is a norm in the space 1(Rn∖𝜕Ω)n, equivalent to the norm (5.25) of this space.
Now, we consider the operators

P ∶ 1(Rn∖𝜕Ω)n → L2(Rn∖𝜕Ω)n×n, P(w) ∶= E(w), (5.27)



32 KOHR ET AL.

ℭ ∶ 1(Rn∖𝜕Ω)n → L2(Ω+)n, ℭ(w) = w|Ω+ , (5.28)

 ∶ 1(Rn∖𝜕Ω)n → R
n(n+1)∕2,  (w) ∶=

⎛⎜⎜⎝∫𝜕Ω[𝛾w] · 𝛾r1d𝜎, … ,∫
𝜕Ω

[𝛾w] · 𝛾rn(n+1)∕2d𝜎
⎞⎟⎟⎠ , (5.29)

which are linear and continuous. Moreover, the operator ℭ is compact due to the compact embedding of the space
H1(Ω+)n in L2(Ω+)n. In terms of these operators, the norm in (5.26) becomes

||E(w)||L2(Rn∖𝜕Ω)n×n + ||w||L2(Ω+)n = ||P(w)||L2(Rn∖𝜕Ω)n×n + ||ℭ(w)||L2(Ω+)n . (5.30)

In addition, the operator  satisfies the condition  (w) ≠ 0 whenever P(w) = 0 and w≠ 0. Indeed, the condition
P(w) = 0 is equivalent to w|Ω+ ∈ |Ω+ and w|Ω− = 0; compare Section 2.2.4. Assume that  (w) = 0 and P(w) = 0.
Then, 𝛾±w ∈ 𝜕Ω and

∫
𝜕Ω

[𝛾w] · 𝛾r𝑗d𝜎 = 0, 𝑗 = 1, … ,n(n + 1)∕2. (5.31)

Since 𝜕Ω = span
{
𝛾r𝑗 ∶ 𝑗 = 1, … ,n(n + 1)∕2

}
, (5.31) yields that [𝛾w] = 0 on 𝜕Ω, and accordingly that w ∈

1(Rn)n (cf. Lemma 16) implying that w ∈ ̃1(Ω+)n. Then, by the first Korn inequality (see, e.g., Theorem 10.1 in
McLean48),

2||grad (w)||L2(Ω+)n×n ≤ ||E(w)||L2(Ω+)n×n = ||P(w)||L2(Ω+)n×n = 0,
and thus, w|Ω+ = a+, which, together with the condition 𝛾+w = 𝛾−w = 0, implies that w|Ω+ = 0. Hence, w = 0 in
Rn, which contradicts the assumption w≠ 0. Thus,  (w) ≠ 0 whenever P(w) = 0 and w≠ 0, as asserted.

Consequently, the conditions of Lemma 17 with X ∶= 1(Rn∖𝜕Ω)n, Y = L2(Rn∖𝜕Ω)n×n, Z = L2(Ω+)n, and 𝛶 ∶=
Rn(n+1)∕2 are satisfied, and hence,

||P(w)||Y + || (w)||𝛶 = ||E(w)||L2(Rn∖𝜕Ω)n×n +
n(n+1)∕2∑

𝑗=1

|||||||∫𝜕Ω [𝛾w] · 𝛾r𝑗d𝜎
||||||| (5.32)

is a norm on 1(Rn∖𝜕Ω)n equivalent to norm (5.25). This result and the equivalence of the norms (5.24) and (5.32)
show that (5.24) is also a norm in 1(Rn∖𝜕Ω)n equivalent to norm (5.25).
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