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1 Introduction

Variational methods have been intensively used in the analysis of elliptic boundary
problems, in particular, boundary value problems for the Stokes and Navier-Stokes
equations (see, e.g., [16,23,51]). Employing variational methods, Angot [4,5] ana-
lyzed a well-posedness of some Stokes/Brinkman problems with constant isotropic
viscosity and a family of embedded jump conditions on an immersed (transversal)
interface with weak regularity assumptions.

The authors in [28] combined a layer potential approach with the Leray-
Schauder fixed point theorem and proved existence results for a nonlinear Neumann-
transmission problem for the Stokes and Brinkman systems in L?, Sobolev, and
Besov spaces.

Dong and Kim [18] obtained regularity results for the Stokes system with mea-
surable coefficients in one direction (see also [14]). Korobkov, Pileckas and Russo
[35] analyzed the flux problem in the theory of steady Navier-Stokes equations
with constant coefficients and non-homogeneous boundary conditions. Amrouche
and Rodriguez-Bellido [2] proved the existence of a very weak solution for the
non-homogeneous Dirichlet problem for the compressible Navier-Stokes system in
a bounded domain of the class C''! in R3.

An alternative integral approach, which reduces boundary value problems for
the Stokes system with variable coefficients and a large spectrum of other variable-
coefficient elliptic partial differential equations to boundary-domain integral equa-
tions (BDIEs), by employing explicit parametrix-based integral potentials, was
developed in [11,12,13,44,21].

Mazzucato and Nistor [10] obtained well-posedness and regularity results in
weighted Sobolev spaces for the anisotropic linear elasticity equations with mixed
boundary conditions on polyhedral domains. Brewster et al. [3] used a variational
approach to show well-posedness of Dirichlet, Neumann and mixed boundary prob-
lems for higher order divergence-form elliptic equations with L coefficients in
locally (e, d)-domains and in Besov and Bessel potential spaces.

The authors in [30] developed a variational analysis in the pseudostress setting
for transmission problems with internal interfaces in weighted Sobolev spaces for
the anisotropic Stokes and Navier-Stokes systems with L™ strongly elliptic coef-
ficient tensor, see also [18]. Note that in [30] and [18] it was assumed that the
coefficients of the viscosity tensor satisfy a stronger ellipticity condition than in
(2.4), for all matrices in R™*™ (not only for symmetric and with zero-trace, see [30,
Eqgs. (2)-(3)]). Such a condition allowed to explore the associated non-symmetric
pseudostress setting (see also [29], and [33,34] for the Stokes and Navier-Stokes
systems with non-smooth coefficients in compact Riemannian setting). The au-
thors extended in [31] and [32] their variational analysis to other transmission and
exterior boundary problems with internal interfaces for the anisotropic Stokes and
Navier-Stokes systems by assuming that the corresponding L viscosity tensor
coefficient satisfies the ellipticity condition only in terms of symmetric matrices
in R™*™ with zero traces, that is, the strong ellipticity condition (2.4). Only ho-
mogeneous Dirichlet conditions and zero velocity jumps were considered in the
(nonlinear) Navier-Stokes problems in [29]-[34].

In this paper we investigate non-homogeneous Dirichlet-transmission problems
for the anisotropic Stokes and Navier-Stokes systems in a bounded Lipschitz do-
main of R"® (n = 2,3 for the nonlinear problems) with a transversal Lipschitz in-
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terface that intersects the boundary of the domain. As in [31] and [32], we impose
the ellipticity condition (2.4), which is less restrictive than in [30] and [18]. We
show well-posedness results for the linear problems, as well as existence results for
the nonlinear problems in L2-based Sobolev spaces. First, we explore equivalent
mixed variational formulations and prove the well-posedness of linear Dirichlet-
transmission problems for the anisotropic Stokes system in a compressible frame-
work in bounded Lipschitz domains of R with transversal Lipschitz interfaces and
given data in L2-based Sobolev spaces. Next, we use well-posedness results in the
linear case and the Leray-Schauder fixed point theorem and show the existence of
a weak solution of the Dirichlet problem for the anisotropic Navier-Stokes system
with general non-homogeneous data in L?-based Sobolev spaces in a bounded Lip-
schitz domain in R", n = 2, 3. Finally, we prove the existence of weak solutions u
of the Dirichlet-transmission problems for the anisotropic Navier-Stokes system in
a bounded Lipschitz domain in R", n = 2,3, with transversal Lipschitz interface
and data in L2-based Sobolev spaces.

In addition to their mathematical interest, the anisotropic Stokes and Navier-
Stokes transmission problems analyzed in this paper are also motivated by indus-
trial applications related to the flow of immiscible fluids, liquid crystals, and flows
of non-homogeneous fluids with variable anisotropic viscosity tensors depending
on physical properties of the fluids (cf., e.g., [19], [39, Chapter 3]).

2 Anisotropic Stokes system with elliptic L® viscosity tensor coefficient

Let 2 C R™, n > 2, be an open set, and let £ denote a second order differential
operator in the component-wise divergence form®,

(8u); = 0o (0 Ejp(w)), i=1,....n, (2.1)
where u = (u1,...,un) ", and Ejg(u) := $(0jug + Ogu;) are the entries of the
symmetric part E(u) of Vu (the gradient of u). The coefficients a?jﬂ are essentially
bounded, measurable, real-valued functions constituting the tensor coefficient A,

that is,

[ aB af 00 ..
A= (aij )1§i,j7aﬁgn, a2 € 1®(Q), 1< i j,a,f<n, (2.2)
and satisfying the following symmetry conditions
a%ﬁ(a:) = alaﬁj (z) =aj](z), z€ (2.3)
(see also [18, (3.1),(3.3)]). In addition, we require that A satisfies the ellipticity
condition only in terms of all symmetric matrices in R™"*" with zero matriz trace.
This ellipticity condition has been first used in [31,32]. Thus, we assume that there

exists a constant Cy > 0 such that, for almost all x € 2,

0P (@)€iatjp > Ci (€%, V € = (Gia)iia=1,..n € R

0
1 The standard notation 0g for the first order partial derivative e B=1,...,n, and the
g

Finstein summation rule on repeated indices are used all along the paper.
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n
such that € =¢' and Zfii =0, (2.4)

i=1

where \£|2 = &aéia, and the superscript T denotes the transpose of a matrix. The
tensor coefficient A is endowed with the norm

A := max {||a;‘f||Lx(m i ja,B=1.. n} . (2.5)

The symmetry conditions (2.3) lead to the following equivalent forms of the
operator £,

(Lu); = da (a%’gaﬂuj), i=1,...,n; Lu=0q <Aaﬁaﬁu) , (2.6)

and the tensor coefficient A can be considered as consisting of n x n matrix valued
functions A®?, i.e.,

A= (A“B) 408 . (a‘?‘_ﬁ

, 1< a,8<n. 2.7
1<a,f<n 1J)1§zj§n sefsn 27

Let u be an unknown vector field, m be an unknown scalar field, f be a given
vector field and g be a given scalar field defined in 2. Then the equations

Lu,rm):=Lu—Vr=f, divu=gin 2 (2.8)

determine the Stokes system with variable anisotropic viscosity tensor coefficient A =

(Ao‘ﬁ> in a compressible framework.
1<a,B<n

According to (2.6) and (2.1), the Stokes operator £ can be written in any of
the following equivalent forms

L(u,7) = da (A“Baﬂu) —vn, (2.9)
(£(u,m)); = 0a(aff Eja(n)) — 0, i=1,....n. (2.10)

In addition, the following nonlinear system

Lunm)—(u-V)u=f, divu=gin 2 (2.11)
is called the anisotropic Navier-Stokes system with variable viscosity tensor coefficient
A= (AO‘B) in a compressible framework.

1<a,B<n

If div u = 0 in (2.8) and (2.9) one obtains the anisotropic Stokes and Navier-
Stokes systems in the incompressible case.
In the isotropic case, the tensor A in (2.2) has the following entries

a%ﬁ(I) = A(l‘)(sia(;jg + /.L(JZ) (604]'6[% + 6a36ij) , 1 <i,j,0,8<n, (2.12)

where \,p € L°(£2), and ¢! < p(z) < ¢y for ae. o € 2, with some constant
ey > 0 (cf., e.g., Appendix III, Part I, Section 1 in [54]). Then it is immediate
that condition (2.4) is fulfilled (see also [32]) and thus our results apply also to
the Stokes system in the isotropic case.
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3 Functional framework and preliminaries

Given a Banach space X, its topological dual is denoted by X’, and the notation
(-,-)x means the duality pairing of two dual spaces defined on a set X C R".

3.1 Sobolev spaces on Lipschitz domains in R"

Let n > 2 and let 2 be a bounded Lipschitz domain in R™, i.e., an open and
connected set with a connected boundary 9§2. Let D(£2) := C§°(£2) denote the
space of infinitely differentiable functions with compact support in {2, equipped
with the inductive limit topology. Let D’(£2) denote the corresponding space of
distributions on 2, i.e., the dual of the space D(£2). Let L?(£2) be the Lebesgue
space of square-integrable functions on 2, and L (£2) be the space of (equivalence
classes of) essentially bounded measurable functions on 2. Let also

L3(2):={f € L*(2) : (f, 1) = 0}. (3.1)
The dual of L3(£2) is the space L?(£2)/R. The Sobolev space H'(£2) is defined as
HY(2):={feL*(Q):VfeL*(2)"}, (3:2)

and is endowed with the norm
A1 ) = 11720y + IV FIT2 0y - (3-3)
The space H'(£2) is the closure of D(£2) in H'(R"), and can be also described as

H'(2):={f € H'(R") : supp f C 2}, (3.4)

where suppf := {z € R" : f(z) # 0}. The dual of H'(£2) is the space H'(£2).
Then the following equivalent characterization of the spaces H¥'(£2) holds

HEY(Q)={feD'(2):3F € HF'(R") such that F|, = f}, (3.5)

where |x = rx is the restriction operator of functions or distributions to a set X.

Let H'(£2) be the closure of D(£2) in H'(£2). The space H'(£2) can be equiv-
alently described as the space of all functions in H'(£2) with null traces on the
boundary of 2,

H (2):={f € H' () : v, f = 0 on 802}, (3.6)
where v, : H'(£2) — H?(002) is the trace operator, see Theorem A.1. Note that the
spaces H!(£2) and H'(£2) can be identified isomorphically (see, e.g., [11, Theorem
3.33)).

The dual of H'(£2) is denoted by H~'(£2), and is a space of distributions. (Note
that H~1(R") = H~}(R™).) Moreover, the following spaces can be isomorphically
identified (cf., e.g., [11, Theorem 3.14])

(H () =H'(2), HY(2)=(H(2) . (3.7)
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Let s € (0,1). Then the boundary Sobolev space H®(942) is defined by

x 2
89)—{f€L (992) /w/a /() L 1+)2deday<oo}, (3.8)

olx-y

where oy is the surface measure on 812 (see, e.g., [17, Proposition 2.5.1]). The dual
of H®(982) is the space H*(d12), and H°(812)=L>*(802).

By H'(2)", H ()", and H*(0£2)" we denote the spaces of vector-valued
functions whose components belong to the Sobolev spaces H'(£2), H 1(£2), and
H?(812), respectively.

For further properties of Sobolev spaces we refer the reader to [27,41,17].

We will need the following well known result (see, e.g., [36, Lemma 2.5], [7],
[3, Theorem 3.1]), for which we will provide several generalizations further on.

Proposition 3.1 Let 2 be a bounded Lipschitz domain in R™, n > 2, with connected
boundary. Then the divergence operator div : H' ()™ — L&(£2) is bounded, linear and
surjective. It has a bounded, linear right inverse Ry : LZ(2) — H'(2)™. Thus, there
exists a constant C = C(£2,n) > 0 such that

div(Rof) = f. IReflm 2y < Cliflz(oy, ¥f € L) (3.9)

4 Dirichlet problems for the anisotropic compressible Stokes system in
bounded Lipschitz domains

Dindo§ and Mitrea [17] obtained well-posedness results in Sobolev and Besov
spaces for the Dirichlet problem for the Stokes and Navier-Stokes systems with
smooth coefficients in Lipschitz domains on compact Riemannian manifolds. Mitrea
and Wright [17] obtained well-posedness results in Sobolev and Besov spaces for
Dirichlet problems for the Stokes system with constant coefficients in Lipschitz
domains in R™ (see also the references therein, and [2] for Dirichlet problems for
the Stokes, Oseen and Navier-Stokes systems with constant coefficients in a non-
solenoidal framework). Dirichlet problems for the anisotropic Stokes system in
exterior Lipschitz domains and in R"™, n > 3, have been studied in [30] by using
both variational and potential approaches (see also [15], [32] and [31]).

4.1 Mixed variational formulation for the anisotropic Stokes system in
bounded Lipschitz domains and partly homogeneous Dirichlet problem

Let 2 Cc R™, n > 2, be a bounded Lipschitz domain with connected boundary 942.
Recall that H'(£2)" is the closure of the space D(£2)" in H'(£2)™ and that

[ulgi(@)n = [[VullL2(@ynxn (4.1)
is a norm on the space H'(£2), equivalent to the norm
lall g2y = [lullzz(@)» + [IVullL2(@ynxn (4.2)
(cf., e.g., [22, Theorem I1.5.1 and Remark I1.6.2]), that is,

[ull g1 0yn < ClIVUllL2(gynxn YV ue HY(2)" (4.3)
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for some constant C = C(2,n) > 0. Let also H-'(2)" = (Hl(Q)”)/ and let
Il - llzr-1 (@)~ denote the corresponding norm on H~Y(2)" generated by the semi-
norm (4.1), i.e.,

lgllg-1 oy = sup (g V)ol, YeeH ()"  (44)
VEHI(Q)nv HVVHL2<Q)7L><71:1

This implies that
(&, V)l < lglm—1 @) IVVIr2@men, YeeH ()", ¥veH ()",
and
Igllz-1 2y < lgla-1(oyn, YgeH ()" (4.5)

Let ap.o @ HY(2)" x H'(2)" = R and by : HY(2)" x L*(2)/R — R be the
bilinear forms given by (A.3), (A.4), i.e.,

ano(uv) = (0 Bjp(u), Eia(v)) . Vuve ()", (4.6)
bo(v,q) == —(divv,q)o, Yve H' (2)", Vqe L*(2)/R. (4.7)
Let us also introduce the following spaces of divergence-free vector fields
Hiiw(2)" :={we H'(2)" : divw =0 in 2},
Hi ()" :={w e H'(2)" : divw = 0 in 2}
and note the characterisation
(@) = {w e B (2)" :bo(w.q) =0, Vg e L(2)/R}.
The Holder inequality implies that there exists a constant C > 0, such that
lan;2(w, V)| < CIVUll 2 gynxn [VV] L2 (ynxn, Yu,v € H' ()", (4.8)

Thus, the bilinear form ay, (-, : HY(2)" x Hl(.Q)” — R is bounded. Moreover,
the Korn first inequality applied to functions in H Ly,

1
||vVHL2(Q)7LX1L < 22 HE(V)HLz(Q)”X" (49)

(cf. [41, Theorem 10.1]) combined with the ellipticity condition (2.4) and the prop-
erty that the semi-norm ||V (-)| 12(0)3xs is a norm in H'(12)? equivalent to the norm
| | zr1.(2)3, shows that the bilinear form ag,o(-,-) : H, (2)" x Hi (2)" — R is
coercive, that is,

1 5
(ZA;Q(V,V) > §CA 1Hvul|i2(9)”><" ) Vv e Hélv(‘Q)n . (410)

On the other hand, the surjectivity of the operator div : H'(2)" — L2(£2) (see
Proposition 3.1) shows that the bilinear and bounded form bg, : H*(£2)"x LE(2) —
R satisfies the inf-sup condition (see Lemma C.3(ii)). Then Theorem C.1 and
Remark C.2 lead to the following well-posedness result, whose detailed proof can
be consulted in [31, Theorem 3.2] (see also [30, Lemma 3.1]).
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Theorem 4.1 Let conditions (2.2)-(2.4) hold. Let ay,; and by be the bilinear forms
defined in (4.6) and (4.7).

(i) Then for all given data § € H™(2)" and g € LE(R2), the variational problem

{aA;Q(u,v) +bo(v,m) = (§, V). VveH ()", (411)
bo(u,q) = —(9.q), Vg e L*(2)/R '

for (u,m) € HY(2)" x L?(2)/R is well-posed, i.e., (4.11) has a unique solution
and there exists a constant C > 0 depending only on ||A||, 2 and n, such that

lall 1oy + 1722y e < C (I8l a-1 (2= + l9llz2c2)) - (4.12)
(ii) Moreover, the pair (u,m) is the unique solution in H*(2)" x L*(2)/R of the

Dirichlet problem for the anisotropic Stokes system

{E(umr):—g, divu=g in 2, (4.13)

You=20 on 082,

(i4i) The solution can be represented in the form (u, ) = $U(F, g), where L : H1(2)" x
LE(92) — HY(2)" x L*(2)/R is a linear continuous operator.

4.2 Non-homogeneous Dirichlet problem

Let us consider the following non-homogeneous Dirichlet problem for the anisotropic
Stokes system

{[,(u, m)=-%, divu=g inQ, (4.14)

YeoB =@ on 012,

for the unknowns (u,7) € H'(2)" x L*(£2)/R, with the given data (§,g,¢) €
HY0Q)" x L*(2) x H%(E)Q)”, which satisfy the compatibility condition

/Qg(x)dm= /mcp-vda, (4.15)

where v is the exterior unit normal to 9f2.
To analyse the Dirichlet problem (4.14), we need the following well-known
Bogovskii-type result (see, e.g., [7], [24], and the proof of Theorem 3.2 in [2]).

Lemma 4.2 For any (g,¢) € L*(2) x H? (02)™ satisfying condition (4.15), there
exists v € H*(2)" such that

divv =g in 2
{’ynvch on 012, (4.16)
and there exists a constant ¢ = c(§2,n) > 0 such that
Wl < e(lgllzze + 1913 o0 ) (4.17)
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Theorem 4.3 Let conditions (2.2)-(2.4) hold. Then for all gwen data (§,9,¢) €
H Y (2)"x L2(2)x H? (02)" satisfying condition (4.15), the Dirichlet problem (4.14)
has a unique solution (u,7) € H'(£2)" x L*(R2)/R and there exists a constant C' =
C(£2,Cx,n) > 0 such that

H%(amn) . (4.18)

llallzr oy + lI7llL20ym < C (HgnH*l(Q)" +lgllzz(2) + el
Proof Let v € H'(2)" be the function given by Lemma 4.2. For the velocity-
pressure couple (v,0), let us also define

F=—L(,0)=—LveH (Q)" (4.19)

(cf. notations for £v in (2.6) and (2.1)). Then the fully non-homogeneous Dirich-
let problem (4.14) reduces to the following Dirichlet problem with homogeneous
Dirichlet condition, for the new function w :=u — v,

{ﬁ(wm) =—(F-%), divw=0 in 2, (4.20)

Yow =10 on 0f2.

Theorem 4.1 implies that the Dirichlet problem (4.20) has a unique solution
(w, ) in the space (u,7) € H'(2)" x L?(£2)/R and depends continuously on the
given data of this problem. Finally, the well-posedness of problem (4.20) implies
that the couple (u = w+ v, ) determines a solution of the full non-homogeneous
Dirichlet problem (4.14) in the space H'(2)" x L?*(£2)/R, and estimate (4.18)
holds. This solution is unique by the uniqueness statement in Theorem 4.1. ad

5 Dirichlet-transmission problems for the anisotropic compressible Stokes
system in bounded Lipschitz domains with transversal interfaces

Mitrea and Wright [47] obtained well-posedness results in Sobolev and Besov
spaces for transmission problems for the isotropic Stokes system with constant
coefficients in Lipschitz domains in R™ (see also the references therein). Various
transmission problems for the anisotropic Stokes system in Lipschitz domains in
R™, n > 3, with internal interface and homogeneous conditions for traces, have
been studied in [30] by using both variational and potential approaches (see also
[31] and [32]).

In this section we show the well-posedness of boundary value problems of
Dirichlet-transmission type for the anisotropic Stokes system in a compressible
framework in a bounded Lipschitz domain with transversal Lipschitz interfaces
satisfying the following assumption.

Assumption 5.1 Letn>2 and 2 C R™ be a bounded Lipschitz domain with connected
boundary 82. The domain 2 is divided into two disjoint Lipschitz sub-domains 27
and 27 by an (n—1)-dimensional Lipschitz open interface X, such that 0X = XNnon
is a non-empty (n — 2)-dimensional Lipschitz manifold. In this case X intersects 012
transversally and 2 = QT U X U Q™. Let the remaining boundaries I't = 90T \ X
and I'™ =90~ \ X of 027 and &2, respectively, be not empty, see Fig. 5.1.

Thus, I't and I'™ are relatively open subsets of 92.
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Fig. 5.1 Bounded composite domain 2 = 21 U X U 2~ with the interface X, for n = 3.

5.1 Sobolev spaces on bounded domains with partially vanishing traces
Let 2/ C R™ (n > 2) be a bounded Lipschitz domain with connected boundary
0. Let D and N be relatively open subsets of 8¢2', such that D has positive
(n — 1)-Hausdorff measure, DNN =0, DUN = 9’, and DN N = 9D = ON is an
(n — 2)-dimensional closed Lipschitz submanifold of 82’

We need the following space defined on the Lipschitz domains 2’

Cp ()" = {eply 19 € CF(R")", supp (p) N D =0} , (5.1)

and let H}(£2')"™ be the closure of C%(£2')" in H*(£2')". The space H},(2')" can
be equivalently characterized as

HY(2)" = {v € H'(2)" : (v, v)|p=0 on D} (5.2)
(cf. [8, Corollary 3.11]). Let also
Hb;div((}/)n = {W € Hp(2)" : divw = O} . (5.3)

Let = be a relatively open (n — 1)-dimensional subset of 352, e.g., D or N.
Let r- denote the operator of restriction of distributions from 82’ to =. Then the
boundary Sobolev spaces on N are defined by

H3(E)" = {¢l-: p € HI(02)"} | (5.4)

H3(2)" = {¢ € HE(02)": ¢=0 on 02/ \E} | (5.5)

H™3(E)" = (H: (&), B 3(2)" = (H?(2)") (5.6)
(cf., e.g., [11], [, Definition 4.8, Theorem 5.1]).

Lemma 5.2 The trace operator-y,, : HhH(2')" — 78] (N)™ is bounded, linear and sur-
jective, with a (non-unique) bounded, linear right inverse ’y;,l Hz (N)*— Hp ()™
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Proof Let v : H%(Fo)” — H'(£2))" be a bounded right inverse of the trace
operator v, : H'(2)" — H%(Fo)" (see Theorem A.1). Consequently, we have
yn,y;,lqb = ¢, for any ¢ € H%(Fo)". Therefore, if ¢ € I;T%(N)”, that is, ¢ = 0
on D, then 7,,7,'¢ = 0 on D, and, thus, v.'¢ € H}(2')". Hence, the exis-
tence of a right inverse *y;,l : H%(Fo)" — HI(Q/)" of the trace operator v, :
HY(2H)" — H%(Fo)” assures the existence of a bounded right inverse 7;,1 :
.FNI%(N)” — HE(2')" of the operator v, : H(£2')" — ITI%(N)”. |

5.2 Sobolev spaces, conormal derivatives and Green’s identity in a
bounded Lipschitz domain with a transversal Lipschitz interface

In the sequel, {2 is a bounded Lipschitz domain in R", n > 2, satisfying Assumption
5.1. We need the following spaces defined on the domains 2, 27 and 27,

Hhi ()" = {v € HY(2)™ : (vov)|p+ = 0 on ri} : (5.7)
Hio (25" = {vi e HY (5™ (’YQiVi)h"i =0 on Fi} , (5.8)
where v, : HY () - H%(GQi) are the trace operators acting on functions

defined on the domains 2% . The spaces H}i (2F)™ can be equivalently described
as

Hbs (0F)" = {v|Qi ve H}i(n)n} 7 (5.9)

and the space H'(2)" = {we HY(Q2F)" : yow =0 on 912} can be identified with
the space

{(v+,v_) € Hpw (M) x Hf—(27)": (7Q+v+)’2 = (yn_v_)|2}. (5.10)

This property is an immediate consequence of Lemma B.1.
Let us next introduce the Sobolev spaces on the interface X (cf., e.g., [8,41]).
First, define the space

HE(D)" = {q.’) e L2(2)": 34" € H?(9021)" such that ¢ = ¢>+12} . (5.11)
which can be identified with the space
{d) eL*(X)":3¢ € H%(&Q_)" such that ¢ = ¢_|2} (5.12)

due to the equivalence of both of them to the space defined as in (3.8), with X
instead of 92 (see also Lemma B.2 and Theorem A.1).
Let us also consider the space

02 (32007 = {Jﬁ e H2(921)": suppp’ C f} , (5.13)
which, by Lemma B.2(ii), can be identified with the space

HE(£007)" = {¢ e H3 (00 )" isupp C T}, (5.14)
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and both spaces inherit their norms from the spaces H B (8Qi)", respectively. Let
1
us denote by HZ (X)" the space consisting of all functions ¢ € H> (X)™ such that
their extensions by zero on 9027, ED‘E—»a(z-*- @, belong to }NI%(ZJ;&Q'*')”, ie.,
1 5 ~
HE (D) :={pecH*(D)": B, , e H(5;:000)").

1
Lemma B.2(ii) shows that the space HZ (X)™ can be also defined as

-

HZ (D) ={pecH*(2)": B _¢eH?(Z:007 )"}

>80

1
The space HZ (X)" can be endowed with the norm

3

190,50 =1 00s 9l ey 1B Bl oy )

o 1 ~
Note that the operators of extension by zero E__, . : Ho(X)" — H%(E;aﬂi)”
are continuous, and due to, e.g., [412, Theorem 2.10(i)] also surjective, implying that

1 ~
the space HZ (X)™ can be identified with the spaces H: (X;002%)". In addition,
1
by Theorem B.3 the space HZ(X)"™ can be characterized as the weighted space
1 s
HE, () consisting of functions ¢ € H?(X)", such that 6~ 2¢ € L2(X)", where
1

§(z) is the distance from z € X to the boundary dX. The counterpart of HZ,(-) on
smooth domains in R" has been considered in [38, Chapter 1, Theorem 11.7] and

1
on Lipschitz domains in Corollary 1.4.4.10 in [26]. Note also that the space H¢ (-)
is similar to the space L% ,(-) in [46, Eq. (2.212)], cf. also [44, p.3].

. 1
Lemma 5.3 The operator vy, : H'(2)" — HZ (X)"™ given by

VeV = (’Y:H (V|Q+)) |2 = (79— (V|Q—)) |Z]’ Vve ﬁl(g)n’ (5'15)
is linear, bounded and surjective.

Proof The linearity and boundedness of the operator v, are immediate conse-
quences of the linearity and boundedness of the trace operators

Vit Hbs (25)" = H2 (5;00%)", (5.16)

cf. Lemma, 5.2. The equality of restrictions to X of the traces from 27 and 27 in
(5.15) follows from the inclusion v € H'(£2)", see Lemma B.1(ii). The surjectivity
. 1
of operators (5.16) implies the surjectivity of the operator v, : H'(2)" — HZ (X)™.
1 . ~
To this end, let ¢ € HZ (£)". Then E__, . ¢ € H?(X;002%)" and by Lemma 5.2,
there exist v € H}i(Qi)" such that v, vt = Ezﬁanid’ on 902%. Hence, we
obtain that v, vt = vy,v™ on ¥. According to Lemma B.1(i) there exists a unique
function v € H'(2)" such that v|p+ = v. Moreover, since Vot vt =0on I't,
we deduce that y,v =0 (a.e.) on 812, and hence v € H'(£2)". O
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1
Lemma 5.3 implies that the space HZ (X)™ can be also characterised as

H-%(E)n = {¢ € LQ(E) :dv e Hl(.Q)" such that
= (’yrfr (v‘Q‘F)) }2 = (797 (V|Qf)) |E} . (517)

In addition, we consider the spaces

=

H™ 3 (D)™ = (B2 (2)"), B3 (2)" = (H(2)"). (5.18)

In Appendix A we provide a definition of the generalized conormal derivative,
associated with anisotropic Stokes operator £, on the entire boundary of the do-
main. If we need the conormal derivative only on a part of the boundary of the
domain, we do not not need the extension of the PDE right hand side to the
‘tilde-space’ on the rest of the boundary. To this end, we consider the following
counterpart of Definition A.3 in the case of ¥ ¢ (H}i ((Zi)”)/.

Definition 5.4 Let Assumption 5.1 and condition (2.2) hold. Let
~ !/
HYL(0F L) = {(ui,ni,fi) e B (QF)" x L2 (0F) x (H;i(ni)7l) :

L(uF 7F) =5 or in ni}. (5.19)
If (ut 7% 1) ¢ H}i (2%, L), then the formula

((boe (755 89)10, 8%) 1= (af Bjp(u®), Bia(r, 1 8%))
x

- <wi,div(7;i qsi)>Qi + <?i,7;i qsi>ni L VeE e HZ(S)",  (5.20)

0=+

defines the generalized conormal derivatives (t g+ (ut, 7 t; )]s € H™3(X)", where
1
'y;i tHE (D)™ — Hps (2F)" are bounded right inverses of the trace operators Yot
1
Hpo (25)" — HZ (D)™
Note that, in view of Lemma 5.2, all duality pairings in formula (5.20) are well-
defined. Moreover, as in Lemma A.4, we have the following result, whose proof
is omitted for the brevity (cf. [45, Proposition 8.1] for the Laplace operator, [34,

Lemma 7.6] for extensions to compact Riemannian manifolds, and [8, Definition
7.1] in the case of higher order elliptic operators).

Lemma 5.5 Let Assumption 5.1 and conditions (2.2) and (2.3) hold.

(i) The generalized conormal derivative operators to+ : Hps (0F, L) - H_%(Z)”
are linear and bounded, and definition (5.20) does not depend on the particular

1
choice of right inverses 'y;i cHE(X)" — H}i (Qi)" of the trace operators v, :

1
Hpo (25 — HZ (D)™
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(i) Let (uF, 7%, f%) € Hhi(2F,L). Let m € L*(2) and £ € H(£2) be such that

T =75, F=ft+f. (5.21)

Then the following first Green identities hold

((tox (0 755 F5)) o 7ow™) =< o Bjs(u®), Em(wi)>Qi
—(mdivwE) ge + (EwE) ge, ¥ wE € Hpa (0F)", (5.22)
and hence
((tor (b 75t + (tnf(uiﬂf;f*mzﬁzwk
= (e Bjp(a"), i)+ () Bjp(u), Bialw))

—(m,divw)g + (F,w)o, YweHY(2)". (5.23)

Note that the existence of a function = € L*(£2) as in (5.21) follows immediately
from Lemma B.1, while Lemma B.6 shows that f defined in (5.21) belongs indeed
to the space H~1(2)".

5.3 Dirichlet-transmission problem with homogeneous Dirichlet conditions

First, we analyze the following Dirichlet-transmission problem for the anisotropic
Stokes system in 2 with homogeneous Dirichlet conditions

Lt 7t = pe, divat = g|o+ in O,
L',(uf,ﬂ*):’fv'*mf, divu™ = g|g- in 27,

(79+u )|2 = (’YQ— 7)|2 ~ on X, (5.24)
(tQ+( , T ’f+))‘2 (tQ*(uivﬂ'iﬁ‘i))'): :Iﬁz on Y,

(’79+u Jlr+ =0 on I'",
(Vo-u7)lp-=0 on I'”

and the given data (?"'fﬂg, P, )€ . The space
90— (H}+(Q+)")/ < (- (9—)")/ « L3(2) x H-3(z)" (5.25)
is endowed with the norm
L e e L P

tllgllzacoy 1ol -y 50

Note that the conormal derivative operators t+ and t-, as introduced in Def-
inition A.3, correspond to the outward unit normal vectors to 21 and 27, re-
spectively, that have opposite directions on X. However, if one would consider the
conormal derivatives with respect to unit normal vectors of the same direction on
X, then the sum in the corresponding transmission condition in (5.24) would be
replaced by the difference, leading to the jump of the conormal derivatives as, e.g.,

in [30,31,32].
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We show that (5.24) has a unique solution (u™, 7, u™,77) in the space

Xoro- ={vT ¢ v ,¢) v e (@@hH", v eH (27)",
" =dlgr, ¢ =dlo-, e€ L*(2)/R}, (5.26)

endowed with the norm
I a v g )z oo = IVl @oyn + IV o yn + llallL2 o)z

(The choice of the space L?(£2)/R for the pressure is only for convenience, and one
may consider the space L3(£2) as well.)

Let (ut, 7", u™,77) € X5+ o and u and u~ satisfy the homogeneous in-
terface condition for traces in (5.24), (v,,u%)|y — (v,_u7)|s = 0 on ¥. Then
Lemma B.1 implies that there exists a unique pair (u,7) € H'(2)" x L*(2)/R
such that

ulpr =ut, ulp-=u, wlor=7", wlo- =7 . (5.27)

Assuming that u’ and u™ also satisfy the homogeneous Dirichlet condition in
(5.24) we have that u € H*(2)". Therefore, (u,7) € H'(£2)" x L*(£2)/R.

Note that the membership of £t to (H}+(Q+)”)/ and the identification of
this space with the space defined by (B.13) in Lemma B.6 imply that Flcan
be considered also as a distribution in H~!(£)". Similarly, the assumption f~ €
(Hp- ((27)")/ implies that £~ can be considered as a distribution in H~'(£2)".

Let also § € H'(£2)" be such that

(Fvie:= _<f‘+’v>9+_<?_7v>9— + <¢2772V>E
= (FT+F V), + (i, Ve, Yve T (", (5.28)

that is, § = —(F" + F7) + 754, Note that 4% : H™3(2)" — H'(2)" is the
adjoint of the trace operator vy, : H'(£2)" — fI%(E)" defined by (5.15), and the
support of 5. is a subset of .

Now, we can show the well-posedness of the Dirichlet-transmission problem
(5.24) (see also [4, Theorem 1.2], [5, Corollary 3.1] for interface problems involving
the Stokes and Brinkman systems in Lipschitz domains with transversal interfaces
and jump conditions in the isotropic case (2.12)).

Theorem 5.6 Let Assumption 5.1 and conditions (2.2)-(2.4) hold.

(i) Then for all (Afv"",?*,g, P.)E DO the Dirichlet-transmission problem (5.24) has a

unique solution (u+,7r+, u~,7m ") in the space ?{Qﬂgﬂ and there exists a positive

constant C = C(27,027,Cy,n) such that
It 7t u 7w )z, o <CIEE ,0,9,)llyo (5.29)

(ii) The solution can be represented in the form (u 7+ u™,77) = U° (f'*',f'i 9, ),
where $1° : P° — X+ - is a linear continuous operator.
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Proof Let us prove that the Dirichlet-transmission problem (5.24) with the un-
knowns (u+,7r+,u_,7r_) € X+ - is equivalent, in the sense of relations (5.27),
to the variational problem (4.11) with the unknowns (u,7) € H*(£2)" x L?(2)/R,
and with § € H~1(2)" given by (5.28).

First, assume that (u+, atu, )€ X+ - satisfies the Dirichlet-transmission
problem (5.24). Let (u,7) € H'(£2)" x L2(£2) be the pair defined by formula (5.27)
(cf. Lemma B.1). Then the first equation of variational problem (4.11) follows from
the Green identity (5.23) and relation (5.28) for §F. The second equation in (4.11)
follows from the equations divu®™ = g|,+ in 2% and the inclusion divu € L?(02).

Conversely, assume that (u,7) € H'(2)" x L?(2)/R satisfies the variational
problem (4.11) and let (u™, %) = (u|o+, 7|+ ). Then the first equation in (4.11)
can be written as

<a%ﬁEjﬁ(u+)aEia(W+)>Q+ — (7, div W+>Q+
+ <a?jBEjB(u_)v Eia(W_)>9_ — <7T_,div w_>Q_
—(F W) —(F W)y + (W, 7sW)s =0 Yw e H'(Q)". (5.30)

Since the spaces D(£2F)" are subspaces of H'(£2)", the (distributional form of)
the anisotropic Stokes equation in (5.24), in each of the domains 21 and 027,
follows from equation (5.30) written for all w € D(27)™ and w € D(27)", respec-
tively. A similar argument yields that the second variational equation in (4.11)
implies the divergence equation divu® = ¢* in 2*. Thus, (ut, 77, u™,77) satis-
fies the anisotropic Stokes system in 27 U 27, the Dirichlet boundary condition
(Yot uj[)|ri =0 on I't, and the interface condition (VoruM)|s = (y,_u7)|s on
Y. Then substituting (5.30) into the Green identity (5.23), we obtain the equation

(b (0" 7" F )bt (071 F) |y (W)L}, = (075 w) e (5:31)

In view of Lemma 5.3, formula (5.31) implies

<(t.(24r (u+7ﬂ+;?+)+t(2* (u_vﬂ-_; E‘_))|Z]7¢)>E :<1/’Z7¢>27 V¢GH%(Z)’” (532)

Therefore, (to+(u®,77; )+t (u, 7 f'_)) |E =1, on X.

Consequently, the Dirichlet-transmission problem (5.24) and the variational
problem (4.11) are equivalent, as asserted. By Theorem 4.1, the variational prob-
lem (4.11) in the space H'(£2)" x L?(£2)/R is well-posed. Hence the proved equiv-
alence implies the well-posedness of problem (5.24) in the space X+ -, and
estimate (5.29) follows from (4.12) and (5.28). Together with Theorem 4.1(iii) this
also implies the representation of item (ii). |

5.4 Dirichlet-transmission problem with non-homogeneous interface and
Dirichlet conditions
Let the space 2)e consists of all elements

(Ff 970 0,9, ,0) €

(H}+ (m)”)/x (H}_ (rz*)”)'xLQ((ﬁ) KL2(Q7)xHE (2)"H ™2 (5)"xH? (902)"
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such that ¢, g7, ¢, and ¢ ., satisfy the compatibility condition

/+g+daz+/ g_d$:/ go-l/da—i—/ ¢, vydo, (5.33)
2 - o2 P

where vy, is the unit normal to X oriented from 21 to £27. The space Qe is
endowed with the norm

T F- ot — |Ft =
||(f £ 7,979 7<P27¢27<P)H@. = Hf ||(H;+(Q+)n)’+||f |‘(H17(Q_)"),

Fllg Nz + 97 2o + lesll g o, F sl + el

(o slg=3(on Hz(90m)

Let us also define the space M., consisting of all elements
1
(67,97 0yn0) € L3(2T) x L2(27) x HE ()" x H* (992)"
satisfying the compatibility condition (5.33), with the norm

I6"97 00 @lat, = 9" ey + 197 Iz + 10l 3 o+ 1003

(5.34)

Let us consider the following non-homogeneous Dirichlet-transmission problem

Lut 7)) =fF|oe, divat =gt in 27,

Lu 77 )=f|p-, divu =g~ in 27,

(’79+u )‘E - £7Q— u7)|2 =¥ . on 27 (535)
(to+r (7t f0)) [ + (to- (w7, 7 5f7))|s =9, on ¥,

(Vo ut )\F+ =®|r+ on I',

(Yo-u )l = lr- on '™,

with the unknown functions (u®, 7

,u”, 7" ) in the space X+ - defined in
(5.26), and with the given data (f"', ,g+,g7,<p2,1,b2,<p) € 9.
In order to analyze the non-homogeneous Dirichlet-transmission problem, we

need the following Bogovskii-type transmission result.

Lemma 5.7 Let Assumption 5.1 hold. Then for all given data (g+7g_, P p) € M
there exist v& € H'(2F)™ such that

divv® =g* in 07, (5.36)
divv™ =g~ in 027, (5.37)
(’Yn+V+)|z — (1, Vv )ls =, on X, (5.38)
(Vo vVOlre = @lps on I, (5.39)
(Vo- Vv )lr-=lp- onI'", (5.40)
and, moreover,
IV I oy < Collg™, 97 050 @), (5.41)

with some constant C'x; = C (27,027, n) > 0.
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Proof Let 'yﬁi Hz (002" — H'(2F)™ be some continuous right inverses to the

corresponding trace operators and E_, . : H%(I’i)" ~ H: (0£2) some continu-
ous extension operators. Let us introduce the functions

—1 1 40
vi= T Yo SO+§’Y.Q+EE~>BQ+(’DE7 (5.42)
_ _ 1 1 e
1 1
Vi =Te-T0 ¢~ i’yﬂ_Ezﬂan* P (5.43)

where 7" : H%(aﬂ)” — H'(2)" and 'Y;Zi :H? (002%)" — H* (%)™ are contin-
uous right inverses to the corresponding trace operators, while r . : HY(2)" —
H! (Qi)" are restriction operators to the corresponding domains, and each of them
is a continuous operator. Then vli belong to Hl(Qi)”, respectively, and satisfy
transmission and boundary conditions (5.38)-(5.40). Let us now define

g = divvi e L2(2%F) (5.44)

Then by the divergence Theorem and condition (5.33) we obtain
/ gi (2)dx +/ g7 (z)dz = / div v} (z)dz —|—/ divvy (z)dz
2+ 2- 2+ 2-

:/ ’y!ﬁvf-udaJr/ Vgp-V1 -vdo
ot on-

= / 794— Vi‘r : VdO' +/ 7()* V; : UdO' +/ (’Yf)"'vii— B ’YQ* V;) ’ VZdO'
I+ - X

:/ LP'Vd0+/ p, vydo z/ g+dz+/ g dr. (5.45)
o0 X 0+

Let g2 € L*(£2) be such that g2|o, = gt fgf[. Hence g2 belongs to the space L3(12)
defined in (3.1). Then by Proposition 3.1 there exists vo € H'(£2) satisfying

divve = g2 in 2, (5.46)
and a constant C = C(£2,n) > 0 such that
Ivallz(oyr < Cllg — g1llz2(0) < Cllgz2llz(0)- (5.47)

Finally, choosing v* := v1i + 7+ v2 and using inequality (5.47) and continuity of
the operators involved in (5.42)-(5.44), we obtain the desired result. ]
+

Let us define the operators £ : H(Q2F)" — H™1(F)", cf. (2.1), as

.+ .
(2 vi)i = 0aEo+ (a?jBEjﬁ(vi)), i=1,...,n, V vt e Hl(Qi)", (5.48)
where Eg+ are the operators of zero extensions from 2% onto R™. Then by (2.9)
= .

we have that (£ v¥)|p+ = £(vE,0) in 2%

Theorem 5.8 Let Assumption 5.1 and conditions (2.2)-(2.4) hold. Then for all
(f+,f7,g+,gf,<p2,¢2,cp) € Qe the Dirichlet-transmission problem (5.35) has a
unique solution (™, 7 u”,77) in the space X+ - and there exists a constant
C=C(2F,027,Cp,n) >0 such that

I m w7 )z, o <CIETE 07,9 0%, 9o,
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Proof Let v¥ € H*(2%)" be the functions given by Lemma 5.7. Defining f* :=
a5yt e H™ (%)™ we obtain that |+ = £(v+,0) in 2F and t o+ (vF,0; %) =
0 by Definition A.3.

Then the fully non-homogeneous Dirichlet-transmission problem (5.35) reduces
to the following Dirichlet-transmission problem with homogeneous Dirichlet con-
ditions on I'* and homogeneous interface condition for the traces across X, for

the new functions w* := u* — v*.
L(wh,nh) = ( —f+)|m, divwt =0 in 2T
Lw 77 )=({F" —f7)|op-, divw™ =0 in 27
(’YQ+W )|2 = (’YQ— v _)‘2 _ 3 on X (5.49)
(tm(w+ )| + (b (Wi f 7)) =9, on ¥
('7Q+W N+ _0 on I'*
(Vp-w)lp-=0 on I'".

Theorem 5.6 implies that the Dirichlet-transmission problem (5.49) has a unique
solution (w¥, 7", w™,77) in the space X+ o- and depends continuously on the
given data of this problem. Finally, the well-posedness of problem (5.49) implies
that the functions (u* = w* + vt 7%) determine a solution of the full non-
homogeneous Dirichlet-transmission problem (5.35) in the space X+ -, and
depends continuously on the given data (¥+,¥_,g+,g_,cp2,1/)2,cp) € e. This
solution is unique by the uniqueness statement in Theorem 5.6. ad

5.5 Dirichlet-transmission problem with more general non-homogeneous
interface and Dirichlet conditions

Let us now consider the non-homogeneous Dirichlet-transmission problem

Lt 7t =1T|os, divat =g7T in 27,

Lu ,77) :?_|Qf7 diva™ =g~ in 27,

(VoruF)ls = (v, )z =, ~ on X, (5.50)
(t+( +,w+;f+))\z + (to- (07,77 5f7)) s =9, on X,

(Ve uD)lre =7 on I't,
(Vo-uT)lr-=¢~ on I'”,

with more general data (anrf*,gﬁg*, <p2,1/:2,<p+, @) €9), where 9 consists of

(gt g o, 0T 07) € (H}m((l* ”) ><( )")
x L2(QT)x L2(027) x H? (2)"x H™ 2 (2)" x H? (I'M)" x H? (I'™)",

such that ¢, ¢, Py @1, satisfy the compatibility condition

/ g+dm+/ gfdm:/ t,o+-l/d0'+/ ¢7»ud0+/ ¢, -vydo, (5.51)
o+ - r+ - b

and the condition

1
o, — 1P+ B € H(D)" (5.52)
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for some extensions #* € H%(aﬂi)” such that r ., &+ = p*. This space is
endowed with the norm

I 0T 0 0¥, 0T @ )y =
Hf+||(H;+(Q+)n)/ + ||f_||(H;7(Q,)n)' + g L2+ + l9™ lIp2c0-)

+ [l |l +lle™

H™3(2)n H2(I+)m (5.53)

+ el + el

1 1 .
Hz ()™ H2 ()

1
Remark 5.9 (i) Condition (5.52) is particularly satisfied if o, € HZ ()" and Pt =
7.4 @ for some ¢ € H%(aﬂ)", as in the case considered in Section 5.4. Indeed, we
can choose &+ = Yot 75 ¢ and obtain that ot c H%(E)Qi)” and

+ —1 —1 +
TP =T Y1 Vo P=Ta VoV P=T,aP =@,

which implies that &t are extensions of <pi. Moreover, the property 'yglcp S HI(Q)”
implies that

- -1 -1
7‘2¢+_7‘2¢' =TsVo+VYo P~ TsVo-T0 p=0.

(i) If condition (5.52) is satisfied for some functions &+ € H? (092%™ such that
Pt = T & then it is also satisfied for all functions F € H%(B.Qi)" such that

1
ot = L &F because DT — B =0 on I't and hence r. (8 — ) € HE (X)".

In order to analyze the non-homogeneous Dirichlet-transmission problem, we
need the following generalized Bogoskii-type transmission result.

Lemma 5.10 Let Assumption 5.1 hold and let
(67,97 st 07) € LAQF) x LH(Q7) x HE(2)" x H3 (I'M)" x H2(I7)"

satisfy conditions (5.51) and (5.52) Then there exist v € H (2%)™ such that

divvT =g in 27T, (5.54)

divv. =g 2, (5.55)

(’Y_rz+v+)|2 - (7g7v7)|2 = ‘102 on E’ (5'56)

(’yn+v+)|p+ =t onrt, (5.57)

YoV )r- =9 onI, (5.58)

and, moreover,

IVl i oy IV a1 (2= ym SCE(H9+||L2(Q+)+ g™ 20
+ —

1503 sy H1 T3 oy 107y o)+ (5:59)

with some constant C's; = C' (27,027, n) > 0.
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Proof We will prove this lemma by modifying the proof of Lemma 5.7 appropri-
ately. Let Wﬁi H? (892F)" — HY(2F)™ be some continuous right inverses to the
corresponding trace operators.

Let &% ¢ H%(aﬂi)" denote some extensions of the functions ¢ that is,
T &+ = pT. Let us introduce the functions

D, =, —re®T Fr B, (5.60)
_ 1o

Vi'_ = 'Y_Qi (¢+ + iEZ‘*}aQ‘*’ ¢2)7 (561)
— — - 1

vi =, (8 — 3B 00 Ps). (5.62)

1 o
Due to condition (5.52) and Remark 5.9(ii), &, € Hg (¥)" and hence E__, . &, €

H %(8Qi)". Then vli € H'(2F)" and satisfy transmission and boundary condi-
tions (5.56)-(5.58). Let us now define

g :=divvi e L*(2F) (5.63)

Then by the divergence Theorem and condition (5.51) we obtain

/Q+ gf‘dw—i—/_ gy dx = /Q+ divvi*'dx—l—/_ divvy dz (5.64)

:/ ~yQ+v1"~yda+/ V- V1 -vdo
o0+ 002~

:/+’yn+vf~vda+/ 707v1_~ud0+/(7Q+vf—797v1_)~uzda
r - P

:/ (p+41/d(7+/ <p7~uda+/ goz~u2da:/ g+dm+/ g dx.
r+ - 37 0+ 2_

Let g2 € L?(£2) be such that g2|n, = gt —gli. Hence g2 belongs to the space L3(12)
defined in (3.1). Then by Proposition 3.1 there exists vo € H'(£2) such that

divva =gz in 2, [vallgi(o)n < Cllg2llrz(0). (5.65)

where C = C(£2,n) is a positive constant.
Finally, choosing v* := vli +7 . v2 and using the inequality in (5.65) and the
continuity of the operators involved in (5.60)-(5.63), we get the assertion. O

Theorem 5.11 Let Assumption 5.1 and conditions (2.2)-(2.4) hold. Then for all
(f‘L,f_,ng,g_,cpz,'tpz,(er,cp_) € Q) the Dirichlet-transmission problem (5.50) has
a unique solution (u™, 7T, u™,77) in the space X+ - defined in (5.26), and there
exists a constant C = C’(QJ", 027,Cx,n) >0 such that

[ 7w u 7 )z, o <CIEE 0 0 007 0 )l

Proof We use arguments similar to those in the proof of Theorem 5.8. Let vt e
H'(02%)™ be the functions given by Lemma 5.10. For the velocity-pressure couples
(vE,0), let f'j: =85yt ¢ H™'(02%)", where operators &% are defined in (5.48).
Hence f* € H1(02F)", i+ 54 = £(v+,0) in 27F, cf. (2.9), and t o+ (vF,0;fF) =0
by Definition A.3.
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Then for the new functions wt := u* —vi7 the fully non-homogeneous Dirichlet-

transmission problem (5.50) reduces to the following Dirichlet-transmission prob-
lem with homogeneous Dirichlet conditions on I'* and homogeneous interface
condition for the traces across X.

Lwt at) = — )|+, divwt =0 in 27,

Lw ,n)=({F —f)|g-, divw™ =0 in 27,
(7!2+W+)|E :~(79—W7)‘2 _ on X, (5.66)
(tor (W a s f T — 7))o + (to-(w,n5f —f7))|y =9, on X,
(VoswH)lr+ =0 on I'T,

(Yo-w )lr- =0 on I'".

Theorem 5.6 implies that the Dirichlet-transmission problem (5.66) has a unique
solution (w*, 7%, w™,77) in the space X+ - and depends continuously on the
given data of this problem. Finally, the well-posedness of problem (5.66) implies
that the functions (u™ = w* + v, 7%) determine a solution of the full non-
homogeneous Dirichlet-transmission problem (5.50) in the space X+ -, and the
solution depends continuously on the given data (?"',?_ 97,97, P, et p)E
). This solution is unique by the uniqueness statement in Theorem 5.6. ad

6 Dirichlet problem for the incompressible anisotropic Navier-Stokes
system with general data in a bounded Lipschitz domain.

In this section, we consider the existence of a weak solution of a fully non-
homogeneous Dirichlet problem for the anisotropic Navier-Stokes system in the
incompressible case with general data in L2-based Sobolev spaces in a bounded
Lipschitz domain in R", n = 2,3.

We use the well-posedness result established in Theorem 4.1 for the Dirichlet
problem for the Stokes system and the following variant of the Leray-Schauder fizxed
point theorem (see [25, Theorem 11.3]).

Theorem 6.1 Let X denote a Banach space and T : X — X be a continuous and
compact operator. If there exists a constant Mo > 0 such that ||z||x < Mo for every
pair (z,\) € X x [0,1] satisfying © = ATz, then the operator T has a fized point o
(with ||lzo|lx < Mo).

Recall that £2 ¢ R™ is a bounded Lipschitz domain and denote
1
HZ (09)" = {<p € H2(002)" : (p,v)pn = 0}. (6.1)

Next we restrict our analysis to the case n € {2,3}, which will allow to use
some compact embedding results. Consider the following Dirichlet problem,

(6.2)

Lu,7m)=-F+ (u-V)u, divu=0 in £,
You = on 0f2.

for the couple of unknowns (u,7) € H'(£2)" x L?(£2) /R and the given data (F, ) €
1
H™Y0Q)™ x HZ (092)™.
The main tool for our next arguments is the following assertion (see, e.g., [35,

(1.4)], [37])-
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1
Lemma 6.2 Let ¢ € HZ(902)". Then for any € > 0 there exists ve = ve(p;2) €
HY (2)" such that

Yove = @ on 002 (6.3)
and the following Leray-Hopf inequality holds
(v V)ve,v) | el VVITz(gymxn, ¥ v E Hiz(2)". (6.4)

Next we show the following existence result (see also [52, Proposition 1.1] in the
isotropic incompressible case (2.12) with p = 1).
Theorem 6.3 Let 2 C R", n € {2,3}, be a bounded Lipschitz domain. Let con-

1
ditions (2.2)-(2.4) hold. Then for all given data (§, @) € H 1(2)" x HZ(00)",
the Dirichlet problem for the anisotropic Navier-Stokes system (6.2) has a solution
(u,7) € H(2)™ x L*(2)/R.

Proof We reduce the analysis of the nonlinear problem (6.2) to the analysis of a
nonlinear operator in the Hilbert space Ioiéiv(ﬂ)" and show that this operator has
a fixed-point due to the Leray-Schauder Theorem (cf. [37], see also [35]).

To this end, we represent a solution of problem (6.2) in the form

u=ug+ve, (6.5)

where v. € HJ},,(92)" satisfies relations (6.3) and (6.4) with an e that will be
specified later, while ug € H},, (2)".
Then the Dirichlet problem (6.2) reduces to the nonlinear equation

L(up,m) = Feug (6.6)
for the couple of unknowns (ug,n) € H, (2)" x L?(£2)/R, where
Few:=—F - Lve + (W ve) - V)(W+ve), VweHy(2)"  (6.7)

(cf. notations in (2.6), (2.1) and (2.8)).

For a fixed ve € H},, (£2)", formula (6.7) defines a nonlinear mapping w — Few,
and the nonlinear operator Fe acts from HY, (£2)" to H~'(£2)™ due to the inclusion
Lve € HH(02)™ (provided by (2.5)) and estimate (D.6).

By Theorem 4.1, the linear operator

L Hi (2)" x L*(2)/R — H 1 (02)" (6.8)
is an isomorphism. Its inverse operator can be split into two operator components,
£l =W,P),

where U : H~1(2)" — HY,(2)" and P : H 1(2)" — L?(2)/R are linear contin-
uous operators such that £L(UF,PF) = F for any F € H*(£2)". By applying the
operator £~ ! in equation (6.6) we obtain the equivalent nonlinear system

ug = Ucug, (6.9)
m = P-uy, (6.10)
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where U. : H};, (2)" — H}, (2)" and P- : H}, (£2)™ — L?(£2)/R are the nonlinear
operators defined as

U.w:=UF:-w, (6.11)
P.w :=PFw (6.12)
(cf. also [37] for p =1 in the isotropic incompressible case (2.12)).

Since 7 is not involved in (6.9), we will first prove the existence of a solution
up € H,(£2)" to this equation and then use (6.10) as a representation formula.
This formula provides the existence of the pressure field = € L?(2)/R.

In order to show the existence of a fixed point of the operator U, and, thus,
the existence of a solution of equation (6.9), we employ Theorem 6.1.

We show first that Up is continuous. Let w,w’ € HY (£2)". Then by (6.7) and
(D.6) there exists a constant c¢; > 0 such that

B By s < [ 9w — (-9,

) L
+ ||(v5 ' V)(W - wl) + ((W - W/) ' V)VEHH—l(Q)n

< H((W - wl) ' V)W + (W/ : V)(W - W/)”H—I(Q)n

+ 20% HW - Wl”Hl(Q)n HVE||H1(Q)”

<cf||w - W/||H1(Q)n (Iwll a2y + W g2y + 20vellgroyn) - (6.13)

This estimate shows that the operator Fe : H} (2)" — H~ ()" is continuous.
Consequently, the operator Ue = U Fe : HY, (2)™ — H},,(£2)" is also continuous,
as asserted.

Next we show that the operator U, is compact. To this end, we assume that
{wi}ren is a bounded sequence in the space H} (2)" endowed with the norm,
coinciding with semi-norm (4.1), and prove that the sequence {Fswy} ey contains
a convergent subsequence in H~*(£2)".

Let M > 0 be such that HWkHFIj“V(Q)n < M for all k € N. Since the embedding
of the space H};, (£2)" into the space L*(£2)" is compact (see, e.g., [, Theorem
6.3]), there exists a subsequence of {wy,}rcn, labeled as the sequence for the sake of

brevity, which converges in L*(£2)", and, hence, is a Cauchy sequence in L*(£2)".
From (6.7), (D.6) and (D.18), we obtain

HFEWk - Fewé”H—l(Q)n < H((Wk - W@) : V)Wk-'-(Wg : v)(wk - W[)HH*%Q)”
+ [(ve - V) (Wi — wy) + ((wg — wy) - V)VEHHfl(Q)n
<t ([IWellar oy + 1Well e (ayn + 2lvellzroyn) 1We = Well o gyn
< 2e1 (M + [[vell i (ayn) IWh = well pagoyn - (6.14)
This inequality, combined with the property that {wy}rcn is a Cauchy sequence
in the space L4(.Q)”, implies that {Fewy }ren is a Cauchy sequence in the space
H~Y(2)". Therefore, Fe : HY (2)" — H 1(2)" is a compact operator. Hence,
the operator Us = UF: : HY (2)" — HL (2)" is also compact, as asserted.

Next, we show that there exists a constant Mo > 0 such that if w € H;, (2)"
satisfies the equation

w = AUsw (6.15)
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for some A € [0,1], then ||w| g1 (o)» < Mo. Let us also introduce the function
q:= AP-w. (6.16)

By applying the operator £ to equations (6.15)-(6.16) and by using relations (6.11)
and (6.12), we deduce that whenever the pair (w,\) € HL (2)" x R satisfies
equation (6.15), then the equation

L(w,q) = A\Few, (6.17)

is also satisfied. (Recall the isomorphism property of operator (6.8).) Then the
first Green identity (A.6) implies the equation

<GZBEJ‘/3(W), Eia(w)>9 = —(A\Few,wW)g, (6.18)
which, in view of relation (6.7), takes the form

< QBE >Q ME,who — /\<aaﬁE ﬁ(vs),Eia(w»Q
—)\< W+V5)'V w,w>Q—)\< ve -V vg,w>Q—)\<(w-V)vg,w>Q. (6.19)

Relation (D.14) implies that (((w 4 ve) - V)w,w) , = 0. Then by using the Korn
first inequality (4.9), the ellipticity condition (2.4), equation (6.19), the Holder
inequality, relation (D.17), and the Leray-Hopf inequality (6.4), we obtain for
A >0 that

1 __ _
50 1\|Vw||%2(9)nm <Cy 1||]E(W)||%2(_Q)"X" < <a?jﬁEjB(W),Em(W)>Q
S MBS a1 () VW L2 (2ynxn + AMAN VW L2(0ynxn[[VVel L2 (2)nxn
—|— )\”Vg“%zz(g)n HVW”LQ(Q)an + )\E”VWH%2(_Q)n><n, (620)

where the norm || - || -1y~ is defined in (4.4) and [[A]| is the norm of the viscosity
tensor coefficient given by (2.5). Hence, for X € [0, 1],

1 _._
(§CA t- 5) VW 2 (@ynxn < ISNm-1(0yn + ANV Vel L2(2ynxn + Vel Fa(ayn -

Choosing ¢ < %CA_l in the Leray-Hopf’s inequality (6.4), we obtain the estimate

2
IV 22 ynn < g (I3 U=y HIANI9e | a(yecr Vel Facayr )

<o
(6.21)

that is, [[w| g1 (o) < Mo, where My is given by the right hand side of (6.21) mul-
tiplied by the equivalence constant between the norm and semi-norm in H L)n.

Therefore, the operator Ue : H};, (2)™ — HY, (£2)" satisfies the hypothesis of
Theorem 6.1 (with X = H};, (£2)"), and hence it has a fixed point ug € H;, ()",
that is, ugp = Ucug. Then with 7 € L?(£2)/R as in (6.10), we obtain that the couple
(up,7) € HL,, (£2)™ x L2(2) /R satisfies the nonlinear equation (6.6). Consequently,
the couple (u,7) = (ve +ug,7) € H (2)" x L?(£2)/R is a solution of the nonlinear
Dirichlet problem (6.2). (Recall that ve is an extension to H}, (£2)™ of the function

1
@ € HZ (002)", and, thus, it satisfies the Dirichlet condition (6.3).) O
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7 Dirichlet-transmission problem for the anisotropic Navier-Stokes system
in a bounded Lipschitz domain with a transversal Lipschitz interface

In this section we show the existence of weak solutions of Dirichlet-transmission
problems for the anisotropic Navier-Stokes system with data in L2-based Sobolev
spaces in a bounded Lipschitz domain in R", n = 2, 3, satisfying Assumption 5.1.
First, we analyze a Dirichlet-transmission problem for the incompressible Navier-
Stokes system with general PDE right hand sides and a jump of conormal deriva-
tives on the transversal Lipschitz interface. We reduce this nonlinear problem
to a Dirichlet problem for the Navier-Stokes system whose analysis is based on
the Leray-Hopf inequality and the Leray-Schauder fixed point theorem. Then, we
study a Dirichlet-transmission problem for the anisotropic Navier-Stokes system
in a compressible framework with non-homogeneous Dirichlet condition and trace
and conormal derivative jumps across the internal Lipschitz interface. We use a
Bogovskii-type result established in Lemma 5.7, some useful estimates and the
Leray-Schauder fixed point theorem to show the existence of a weak solution to
this nonlinear problem. In the case of all small data, the uniqueness of the weak
solution is also established.

7.1 Dirichlet-transmission problem in a bounded Lipschitz domain with
conormal derivative jump on a transversal Lipschitz interface

Let us consider the following Dirichlet-transmission problem for the incompressible
anisotropic Navier-Stokes system with a prescribed conormal derivative jump but with-
out velocity jump on the interface,

Lut, 7)) = o + (ut - V)ut, divat =0 in 21,

L, 77 )=f|p- +(u -V)u~, divu~ =0 in 27,

(7g+u+)‘2 :’_(:Y_Qf u:)|2 on X,

(to+ (0, 7T fF + Egi - (0T - V)ul))|, (7.1)
+(t9_(u_,ﬂ_;?_+EQ__>Q+(U_~V)U_))|2:1/)E on X,

(Ve u)lr+ = @lr+ on I'",

(Yo-u)lr- = elr- on I'”

with the unknown (u™, 77, u™,77) € X+ - and the given data (?"',?_, Y., p) €
1

(H (29)) x (HE_(27)") x H™3(Z)" x HZ(992)". Recall that X o is the

space defined in (5.26), and note that Egx_,, in (7.1) is the operator of extension

by zero from 2% to 1.

Existence of a weak solution

Let (ut, 7 ,u",n7) € X+ - Assume that ut and u~ satisfy the homogeneous
interface condition (v, u™)|; — (7,_u”)|5 =0 on X. Then by Lemma B.1, there
exists a unique pair (u,7) € H'(£2)" x L?(£2)/R such that

u|Q+ = u+7 u|.Q* = u_7 7T|.QJr = 7I'+, 7T|.Q* =7 . (72)
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Let also § € H H(2)" = (f[l(())")/ C (ﬁéiv(ﬂ)")/ be such that
& v)g=—(F"+F,v),+ @ 1sv)s, YveH (2", (7.3)

that is, § = —(f* +f7) + 759, Here 77 : H™2(2)" = H™'(2)" denotes the
adjoint of the trace operator vy : H'(£2)" — I?%(E)" defined by (5.15), and the
support of y5 4 is a subset of x.

An argument similar to that for problem (5.24) implies the following result.

Lemma 7.1 The nonlinear Dirichlet-transmission problem (7.1) is equivalent, in the
sense of relations (7.2), to the nonlinear Dirichlet problem (6.2) with § = —(fT +

)+,

Proof Assume that (u+,7r+,u7,7r7) € X+ - satisfies the nonlinear Dirichlet-

transmission problem (7.1). Let (u,7) € H'(£2)" x L?(£2)/R be the pair defined by
relations (7.2) (cf. Lemma B.1). Then the Green identity (5.23) and relation (7.3)
for § give the following weak equation:

<af‘jBEj5(u)7Em(w)>Q—|—((u -Vu,w), — (divw, m)
= —<f‘+ +f_,w>9 + <¢2,72w>2 Nwe HY ()", (7.4)

which implies the distributional form of the first Navier-Stokes equation in (6.2).
Note that the variational form of the nonlinear Dirichlet problem (6.2) is given
by equation (7.4) complemented by equations

(divu,q)o =0, VgeL?(2)/R,
Yol = @ on 0f2.

Conversely, assume that (u, 7)€ H'(£2)"xL?(£2)/R satisfies the Dirichlet prob-
lem (6.2) and let (u*,7%) = (u|g=, 7|+ ). Then by the Green identity (A.6) and
relation (7.3), the first equation in (6.2) can be written in the equivalent variational
form

<a?jﬁEj5(u+),Em(w+)>Q+ — <7r"",divw+>9+ — <(u+ . V)u+,w+>9+
+ <a%ﬁEjﬁ(u_),Eia(W_)>97 - <7r_,divw_>97 - <(u_ ~V)u_,w_>9,
— <f‘+7W>_QJr — <f'_,w>g_ + (W, 1swW)s =0, Vw e Ijll(Q)n (7.5)

Since the spaces D(2F)" are subspaces of H'(£2)", the (distributional form of
the) anisotropic Navier-Stokes equation in (7.1), in each of the domains 2% and
27, follows from equation (7.5) written for all w € D(27)" and w € D(27)",
respectively. The second equation in (6.2) implies the equation div ut =0in 0.
Thus, (u+, T, u_,ﬂ'_) satisfies the anisotropic Navier-Stokes system in 2T U2,
the Dirichlet boundary condition (v,,. ui)|ri = ¢|p+ on I'", and the interface
condition (v,, u¥)|y = (v, u7)|y on X. Then substituting (7.5) into the Green
identity (5.23), we obtain the equation

<(t9+(u+,7r+;f'++Ec’Q+_>Qf(u+~V)u+))‘2 (7.6)
+ (to- (uiﬂf;fi +EBo o+ (u” ‘V)“i))|gv (’YQW)\2>2 = <¢2,72W>2-
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In view of Lemma 5.3, formula (7.6) can be written in the equivalent form

(b (ut,m 5 + Borsg (ut - D)),

+to- (0, m 5 + Egoi(u” Vu )| d) =¥, 0) Ve H? (D).

Therefore, (tQ+ (ut, 7T )+t (0™, 77 f‘))|2 =1 on X.
Consequently, problems (7.1) and (6.2) are equivalent, as asserted. O

Theorem 7.2 Let 2 CR", ne€ {2,3}, be a bounded Lipschitz domain satisfying As-
sumption 5.1. Let conditions (2.2)-(2.4) hold. Then for all given data (T, f'f,wz, ®)
in the space (Hllw(()"')")l x (Hp- (.Q_)")/ x H™2(X)" x H2(902)", the Dirichlet-
transmission problem (7.1) for the anisotropic Navier-Stokes system has a weak solu-
tion (ut, 7T, uT,77) € X+ o defined by relations (7.2) in terms of the solution
(u,7) of the nonlinear Dirichlet problem (6.2) with § = —(FT +£7) + 5.

Proof The pair (u,7) € Hi;, (£2)" x L?(£2)/R is a solution of the variational problem
(7.4), and then, in view of Lemma 7.1, the functions (u, 7", u™,77) € X+ o-
defined by (7.2) satisfy the nonlinear problem (7.1) in the distribution sense. 0O

Uniqueness result for the Dirichlet-transmission problem (7.1)

Next we show that an additional constraint to the given data of the nonlinear
Dirichlet-transmission problem (7.1) leads to the uniqueness of the weak solution
of this problem.

Recall that ~f, : H_%(Z)" — H™ ()™ is the adjoint of the trace operator
vs : HY(R2)" — H?(%)" defined by (5.15), and that Cy is the ellipticity constant
n (2.4). On the other hand, in view of Lemma 4.2, there exists an extension vy
of p € Hé (02)™ to H;, (2), that is, v,ve = ¢ on 92, and

19velzsyn s Vel < Clell g oo (7.7)
with some constant C' = C(£2,n) > 0.
Then we prove the following uniqueness result (see also [52, Lemma 3.1] in the
isotropic case (2.12) with x = 1 and homogeneous Dirichlet condition, and [30,
Theorem 4.2] for a nonlinear transmission problem in a pseudostress approach).

Theorem 7.3 Let n = 2,3 and 2 C R" be a bounded Lipschitz domain satisfying

Assumption 5.1. Let conditions (2.2)-(2.4) are satisfied. Let (f"+,f7,cp,1/)2) be given
1
in the space (H b (7)) x (Hh-(27)") x HZ (092)" x H™3(Z)". Let

- 1 -
BN () + (BCIA| + C;* Ceoer) ]l 4 < 70:% (7.8)

HI00)" > 4
where Cy, C, co, and c1 are the constants in (2.4), (7.7), (D.2), and (D.1), respec-
tively, while § = —(f* +£7) + 75 (). Then the nonlinear problem (7.1) has only

one solution (u™, 7T, u~,77) € X0+, 0--
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Proof The solution existence is implied by Theorem 7.2. To prove that it is unique
under the theorem conditions, let us assume that u(® u® ¢ H}\ (92)™ are the
velocities in two solutions of the nonlinear problem (7.1) in the sense of (7.2). Let
us write them in the form

u® =v,+ul? =12 (7.9)

where v, € HJ;, (£2)" satisfies the relation v,ve = ¢ on 92 and estimate (7.7),

while uél), ugf) € H};, ()" satisfy equations (6.6)-(6.7) with v, instead of ve.

Let us denote @ := u®) —u® = u(()l) — u(()Q), 7i=r) - 7r(2), where 7 is the
pressure term corresponding to u(i), i = 1,2. Using the first equations in the two
upper lines of (7.1), we obtain

£ =u® . v)u® - (u® . v)u?, (7.10)
This implies that
<a%BEj/3(ﬁ), Eia(ﬁ)>(z:_<(ﬁ' V)u(1)7ﬁ>9 - <(u(2) -V)u, ﬁ>Q' (7.11)

Moreover, identity (D.14) and the assumption that @ € HY;, (£2)" show that the
last term in the right-hand side of (7.11) equals zero. Therefore, equation (7.11)
reduces to

(a} Bjp(), Bia(0)) , = —((u- V)u'™ @), (7.12)
On the other hand, estimate (4.10) implies that
||VHH%,2(.Q)"><" < 2CA<a%ﬁEj,3(ﬁ)v Eia(ﬁ)>g ) (713)

and by the Holder inequality and inequalities (D.2) and (7.7) together with (D.13)
and (D.1), we obtain

@ v)yu @), | = (@ v)a@u®) | < [@llraom IVl L2y 0Dl Lago)n

_ __ 1
<l L1y IV L2 2y ([Pl c2yn + IVeallLacayn)

< co| V|2 gy (c0||vug)1> 2 (ymcn + Cc1||<pHH%(aQ)n) . (7.14)
Hence
V112 2 gy < 2Cacoll VE]Z2( gy (co||Vu(()1)||Lg(Q)nxn+Ccl||<p\|H%(39)”> .
(7.15)

Moreover, an estimate similar to (6.20) with A = 1, combined with estimates
(D.2), (D.1), (D.13) and (7.7) together with relation (6.19) imply that

1 __ _
5% 1|\V11§J1)||2L2(Q)nXn <Cy 1||E(u(()l))||%2(9)"><" < <a?jBEjB(u(()1)):Eia(ug)l))>9
1 1
<M1 (2)n IV0S L2 ymxn + VA IVUSY [ L2 ymxn VYool L2 (2ymxn
vl 3ayn IVuS | L2y + 19052 1 L2 (ymxn 0§ a2y Vel Loy

1 1
< I8N V95" 2 (ymen + CIAINIVUG 2 (@men 2] 5 )
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(1) (1))2
+C? C1H<PHH (69)"” u, ||L2(_Q)"X"+CClCO||59||H%(8Q)nHvu0 22 (2ynxn -

Thus, we obtain the estimate

1 - 1
(§CA - CClCo||<P||H2(aQ)n> 176" 2y

<ULy + CIAL Il 3 o0, + Ol - (716)
From (7.8) we have,
1 1 -
OF Ceaetllelly s oy < 3O~ BIBNa-12 — ACIBNIRN 4 oy < 3CF

This implies that the term (%Cgl Carcollgll, 3 (amn)ispositive. Dividing (7.16)

by this term and substituting the obtained inequality to (7.15), we obtain

—2 —12
HquLz(Q)"X" S 2CACO||VuHL2(Q)’!LX7l

1811y + CIAN IRl 3 o + Ol
8 [Co T +Oellel s o) ]
5Ca *06160|\90||H2(3mn
This finally reduces to
1 2 o2
268 IVl (gynn <
[BI8 11110y + BCUAN el 13 0 + C Ceocrllell g ] 17Ty

In view of assumption (7.8), this is possible only if Vi = 0, and since @ € H'(£2)",
we obtain that u™ = u® in 0. Moreover, equation (7.10) reduces to the equation
V7 =0, that is, 7 = 7(2) in L2(2)/R. 0

In the special case of zero Dirichlet datum on 92, we obtain the following
result.

Corollary 7.4 Let n = 2,3 and 2 C R"™ be a bounded Lipschitz domain satisfy-
ing Assumption 5.1. Let A satisfy conditions (2.2)-(2.4). Let G,wz) cH ()" x

H_%(E)" and F € H1(2)" be given by F = —(fF +£7) +5 (). If

1 __
AN -1y < ZCA27 (7.17)

where co is the constant given in (D 2), then the nonlinear problem (7.1) with ¢ =0
has a unique weak solution u € H, (2)".
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7.2 Dirichlet-transmission problem for the compressible anisotropic
Navier-Stokes system with trace and conormal derivative jumps on a
transversal Lipschitz interface in a bounded Lipschitz domain

Let us consider the Dirichlet-transmission problem

Lut 7t) =fF|or + (ut - V)ut, divut =4+ in %,
Lu 77 )=f"|g-+(u -V)u, divu =g~ in 27,
(79+u+)‘2*(79—u_)|2 =¥ on Y,

(to+ (u+7ﬂ+;F+ +Boi o (ut -V)ut))|,
+<tQ—(u7,7r7;,f\:7+EQ—HQ+(U7'V)U7))’2:¢E on X,

(Yor uD)r+ = olr+ on I't,

(Y,-u )l =l on I'”

(7.18)

with the unknowns (ut, 7"

,u”, 7 ) € X+ - and the given data
(?‘*‘,?_,g"‘,g_, e Py, ) € Ve Recall that X+ - is the space defined in (5.26),
and Qe is the space defined in the beginning of Section 5.4.

Note that by Lemma 5.7 there exist some functions vi € H'(2%F)" such that

div v:’,f =gt in 21,
divvg =g~ in 27,
('yrfrv:g)lz - (Ianv‘;)'E =¢, on X, (7.19)
(Vor Vo)l = elr+ on I't,
(’y”_v;)|p_ :('P‘F_ on I,

and some constant Cs = Cx (21,27 ,n) > 0 such that
+ —
HVLPHHI(Qi)" < CZH(9+79 ,LpEvLP)HM. ) (720)

where [|(¢7, 97, ¢, )M, is defined by (5.34).

On the other hand, by (D.1) there exists constants cli > 0 depending only on
0F and n, such that

+ * +
HVHL“(Qi)" < Cc1 HVHHl(Qi)" < Cl”V”Hl(Qi)n ; Vve Hl(.Q )n’ (721)

where ¢f = max(c]",¢;). In addition, inequality (D.2) holds on 2.
Let us prove the existence of a solution to problem (7.18) by employing argu-
ments similar to those in the proof of Theorem 6.3.

Theorem 7.5 Let Assumption 5.1 and conditions (2.2)-(2.4) hold with n € {2,3}.
Let (F7 £, 97,97, 0., %, 0) €De.
(@) 1f
_ 1 1 -1, « 1
||(9+79 750);’90)”/\/1. < ZCA 1CO 1(01 +CO) 1021 ) (7'22)

where Cy, Cx, ci and co, are the constants in (2.4), (7.20), (7.21) and (D.2),
respectively, then the Dirichlet-transmission problem (7.18) for the Navier-Stokes

system has a solution (u™, 7T, u™,77) € Xo+ 0--
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(id) 1f
I a-1 (o + (BCsIAI+207 Creolet +¢0)) (79710500l

<10i?, (1.23)

where § = (fFH +17) — V5, then the nonlinear Dirichlet-transmission problem
(7.18) has a unique solution (u™, 77, u”,77) € Xo+ 0
Proof (i) Let us represent the unknowns u® of problem (7.18) in the form

ut =uf + vif , (7.24)

where (v, vy) € HY(27)" x H' (27)™ satisfy relations (7.19) and estimate (7.20).
Then the nonlinear Dirichlet-transmission problem (7.18) reduces to the problem

L(uf,nt) = (Fiud)o+, divaf =0 in 0%,
L(ug,m) = (Foug)|o-, divug =0 in 27,
(’yn+uar)|z = (7_()— ua)‘z on X, 795
+ A Pyt — = Fouo )| — (7.25)
(t9+(u07ﬂ- ’F‘PuO ))‘Z + (tQ*(uOﬂT 7F<pu0 ))‘Z —T/’Z on 27
(’YQ+U(J)F)‘F+ =0 on I'",
(Vo-ug)lr- =0 on I,

for the unknowns (uf, 7+, uy,77) € X0+ -, where
~ ~ L+ o
Fiwi c=ft_¢ vi + Eg= [((wjE + vg) V) (wE Vi)] . (7.26)

Recall that £ : HY(2F)" — H='(2%)" are the operators defined in (5.48) and
(£5vH) | pe = £(vE,0) in 2%, For fixed v € H'(52)", formula (7.26) defines non-
linear operators w* Hf‘iwi from the space H'(£27)" to the space (H}i (Qi)")/
due to estimate (D.5) and the inclusion fbivi e H (25" — (Hps ((Zi)")/.

In addition, the inclusion (uf, 7", uy,77) € X+ -, the homogeneous inter-
face condition for traces (v,, ud )|z — (7,-ug )|z = 0 in (7.25), and Lemma B.1
imply that there exists a unique pair (ug,7) € H*(2)" x L?()/R such that

wlor =ug, wlo- =uy, 7o =7", 7wlp-=71". (7.27)

Since ug and uy also satisfy the homogeneous Dirichlet condition in (7.25) and are
divergence-free, we have that ug € HY, (£2)™. Hence, (ug,7) € H},, (2)"xL*(2)/R.
For any w € H},,(£2)" let Fow be defined by
Fow = f‘;r(frw + f‘;rn_ w—fyzwz
=3 (2+v$ + & vo) + B [(vh VIVE] + Eg- [(ve - VIve] + (w- V)w
+ (Bgiv + Eg-vy) - V)w+w- (Bgi Vvy + Eo-Vvy), (7.28)
where F=(f" + 1) —v5e,, 75 : H 2(2)" — H'(2)" is the adjoint of the

trace operator vy, : H'(2)" — oz (X)™ defined by (5.15), and hence § € H~ ()"
due to Lemma B.6. For fixed v$ € HY(2F)", formula (7.28) defines a nonlinear
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operator w — Fow from HY (2)" to H™'(£2)™ due to Lemma B.6 and estimates
(D.5) and (D.6).

Now, arguing as in the proof of Lemma 7.1 (cf. also Theorem 5.6), we ob-
tain that the nonlinear Dirichlet-transmission problem (7.25) with the unknowns
(ua',ﬂ"",ug,w*) € X+ - is equivalent, in the sense of relations (7.27), to the
nonlinear equation

L(ug,7) =Fpup in 2 (7.29)

for the unknowns (ug, ) € H;, (2)" x L?(£2)/R, with Fy, given by (7.28).
The following arguments are similar to those in the proof of Theorem 6.3. By
Theorem 4.1, the linear operator

L Hio(2)" x L*(2)/R — H ()" (7.30)
is an isomorphism. Its inverse operator can be split into two operator components,
£t =W,P),

where U : H~2(Q2)" — HY,(2)" and P : H~'(2)" — L?(£2)/R are linear con-
tinuous operators such that £(UF,PF) = F for any F € H(2)". Applying the
operator £~ ! to equation (7.29) we obtain the equivalent nonlinear system

ug = Uuo, (731)
m = Puo, (7.32)

where U : H}, (2)" — H}, (2)" and P : HY, (2)" — L?(22)/R are the nonlinear
operators defined as

Uw :=UF,w, (7.33)
Pw :=PF,w. (7.34)

Since 7 is not involved in (7.31), we will first prove the existence of a solution
up € Hi ()™ to this equation and then use (7.32) as a representation formula.
This provides the existence of a pressure field = € L%(2)/R.

In order to show the existence of a fixed point of the operator U and, thus, the
existence of a weak solution of nonlinear problem (7.25), we employ Theorem 6.1.

Let us show first that U is continuous. Let w,w’ € Hi, (£2)™. Then by (7.28),
(D.6), (D.20) and (D.21) we obtain that

!/ / /
HF‘PW —Fow HH*l(Q)" = ||(W V)w — (w' - V)w ||H*1(.Q)"
+ ||((E_Q+V:; + EQ—V;) . V)(w — W/) + (w — w/) . (EQJer;f + EQ_VV;)HH—I(_Q)n
/ / /
+ 2((f:f)2 ||W - Wl||H1(Q)n (chJ;HHl(Qﬂn + HVA/_:”Hl(Q*)")
<||w— W/HHl(mn (Wl iy + AW [ mr(2)n

+2(¢D) 2 IvE Il (v yn + 2(cD) Ve ll (o))
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This estimate shows that the operator Fy : H} (£2)" — H™'(2)" is continuous.
Consequently, the operator U =UFy, : Hi,, (2)" — H;, (2)" is also continuous,
as asserted.

Next we show that the operator U is compact. To this end, we assume that
{wg }ren is a bounded sequence in the space I—Qléiv((l)” and prove that the sequence
{Fuwp }ren contains a convergent subsequence in H~!(§2)™.

Let M > 0 be such that ||wk||H1(_Q)" < M for all k € N. By (728),

||F4ka — F‘owHHfl(Q)n S H((Wk — Wg) . V)Wk —|— (Wg . V)(Wk — We)HHfl(Q)n
| (Bgivg + Eg-vg) - V) (wy, — Wz)HHﬂ(Q)n

+ H(Wk - Wg) . (EOQJFVV?; + EQ*VV;)HH—l(Q)n'
Employing estimates (D.6) and (D.18) to the first norm in the right hand side,
(D.23) for the second norm, and estimate (D.20) for the third norm, we obtain

|Fowy, — FcheHHfl(mn < (Cl||Wk||H1(Q)n +ec1llwell g oyn

+3cT IVl (s yn + 3C>1F||V<;HH1(Q*)") Wk —Wella( o)

+ (@I PIvE o + () e 1P Iva i oy ) Inis (Wi = wo)ls sy
< (261M +3ci IVl oy + 3CT||VL;||H1(Q*)") Wi = well Lagoyn

+ (@I PIvE sy + (2) - IPIva -y ) s (Wi = wo)lls sy
(7.35)

where we denoted v, (Wi, — wy) := 170+ (W — Wy) = ryv0- (W — wy) and took
into account that r ., v+ (wy —wyg) =0 and 7.y, (Wi, —wy) = 0.

Since ||lw| g1 ()= < M and the embedding of the space H'(2)" into the space
L*(£2)™ is compact (see, e.g., [I, Theorem 6.3]), there exists a subsequence of
{wi}ren, labelled as the sequence, which converges in L*(£2)", and, hence, is a
Cauchy sequence in L*(2)".

Since ||lwg|[g1(2yn < M, the sequence {yywy}ren is bounded in HY?(2)".
Further, for n = 2,3 the space H/?(X)" is compactly embedded in L?(X)™. For
bounded Lipschitz domains in R* ™!, this follows by the Rellich-Kondrachev com-
pactness theorems, e.g., from the embeddings in [50, Section 2.2.4, Corollary 2(i)]
for R*~! and can be extended to (n— 1)-dimensional bounded Lipschitz manifolds
by standard arguments (cf. also a more general statement in [46, Proposition 3.8]).
Then again, there exists a subsequence of {wg },cn, labelled as the sequence, such
that {7, W} }ren converges in L3(X)", and, hence, is a Cauchy sequence in L3(X)".

Inequality (7.35) combined with the these Cauchy properties implies that Fy :
HY (2)" — H™Y(2)" is a compact operator. Hence, the operator U = UFy, :
HL (2)" — HY, (2)™ is also compact, as asserted.

It remains to show that there exists a constant Mp > 0 such that if w €
H},, (£2)" satisfies the equation

w = \Uw (7.36)
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for some A € [0,1], then ||w| g1 (o)» < Mo. Let us introduce the function
q = APw. (7.37)

By applying the operator L to equations (7.36)-(7.37), and by using relations (7.33)
and (7.34), we deduce that whenever the pair (w,\) € H};, (£2)" x R satisfies equa-
tion (7.36), the equation £(w, ¢) = AF,w is also satisfied. (Recall the isomorphism
property of operator (7.30).) Then the first Green identity (A.6) implies

an(w,v) = (a3 Bip(w), Bia(v)) = ~(\Fpw,v)o ¥ ve i (2)", (7.38)
which, in view of relation (7.28), takes the form
a0 (w,v) ==MF V) =A((a Ejp(vE). Bia () g1 +(a5 Ejs (ve). Bia(v) )
- >\<EQ+ [(v§ - VIVE] + Bo- [(vp - V)vg]
+ (Barvg + Eo-vg) - V)w
W (Bor Vv + Eg-Vvg) + (w- v)w,v>g, Vv e Lo (2)". (7.39)

Moreover, formula (D.14) and the inclusion w € HY (£2)"

<(w . V)w,w>Q = 0. Then by (7.39) we obtain the formula

imply the relation

apo(W,w) = — AF W) — A(@Zﬁ%(vm Eia(w)) g +(a2P By5(vp), Em(w»g,)
N Eor (v - VIvE] + Eo- [(ve - VIvg]ow)
—/\< ((Emvj; + Emv;) : v) w,w>Q
~Mw (Bqu Vv + Eo-Vvy) ,w>Q : (7.40)

Arguments similar to those for estimate (6.20) combined with formula (7.40), the
inclusion X € [0,1] and inequalities (D.2), (7.21), and (7.20) imply that

SO VW3 e < O3 W) 32y < s (w,w)

<NBN ez (2)n VW L2 (2)nxn
+ IAT(IVVS 2 (symen + 19Vl L2y ) VWl 2y
+ IVl 1998 Iz gy +Vi sy IVl 2= yen ) Wl sy
+ (VS ls@eyn + Ve lzaaeye ) 19l Lagaymce Wl sy
+ (||vv$||L2(Q+)”><" + HVV;HLZ(Q*)"W%)HW”%%Q)"

<NBN a1 2y VW L2 (2)nxn
+ [[A]] (HV:EHHl(m)n + ”V;HHl(Q—)") VWl L2 0ynxn

+ cocl (HV:;H%P(QHN + ||V;||2H1(Q—)n) VW L2 (2ynxn
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+ 00(2){ (HV:‘;HHI(Q-F)"L + ||V; ||H1(Q+)n> ||VWH%2(Q)7LXH
+ B IV e 2y + Vgl @iy ) IV 2 ymcn
U8l a2y IV L2 (ynxn + A1 Cx (g™ 07 0 @M IVWI 22y
+2c0c1C% (g7 97, 0 @i VW L2 (2ynxn
+2(coct +c)Cxll(gT, 97, 0., 0)llnm. ||VW||2L2(Q)an (7.41)

Therefore, we obtain the estimate

1 - _
(§CA ' —2c0(cl +c0)Cxll(gT g »‘PZ,‘P)HM.) VWl L2 (@)nxn (7.42)
<INy + ClANIGT 97 e @)lme +2c0e1CE (97,97 000 @), -
In view of assumption (7.22), estimate (7.42) can be written in the form

VWl L2 (2ynxn <

180 -1 2y + ColAN T, 97 @5 @)l + 2c0ciCEN(gh, 97 @ @),
5C T = 2c0(ct +0)Cxll(g 97 ¢ )M,

)

(7.43)

that is, |[w|g1(0)» < Mo, where Mo is given by the right hand side of (7.43)
multiplied by the equivalence constant C' from (4.3).

Therefore, the operator U : HY (2)" — H};, (2)" given by (7.33) satisfies
the hypothesis of Theorem 6.1 (for X =H};, (£2)"), and hence it has a fixed point
up € HY, (2)", that is, up = Uug. Then with e L?(£2)/R as in (7.32), the couple
(uo, ) € HY, (£2)™ x L?(£2) /R satisfies the nonlinear equation (7.29). Consequently,
the couples (ua' + v$,7r"'7 u, +vg,m ) € X+ - provide a solution of the non-
linear Dirichlet-transmission (7.18) in the sense of relations (7.24). (Revall the
equivalence between the nonlinear Dirichlet-transmission problem (7.25) and the
nonlinear equation (7.29).)

(ii) Let us assume that condition (7.23) holds. Then it is immediate that condi-
tion (7.22) holds as well, and, thus, the nonlinear Dirichlet-transmission problem
(7.18) has at least one solution in the space X+ -

Now, assume that the nonlinear problem (7.18) has two solutions,
(u(1)+,7r(1)+,u(1)7,7r(1)7) and (u(2)+,7r(2)+,u(2)7,7r(2)7) in the space X+ -.
Let us represent the velocities in 2% in the form

GRS (D)%

=vi+u)*, i=1,2, (7.44)

where (v, vy) € H(27)" x H' (£27)" satisfy relations (7.19) and estimate (7.20),
while

oloe =0, ulg- = ud" OF 2, = (1.5

w(i)|9+ —

corresponds to the pairs (ul”, 7)) € H'(2)" x L2(2)/R.
Let us also introduce the notations g := u\" —u(?, 7:= 1 — 72,

at = uMF g @F = Uo| o+, 7t =g _ 2 2F = T -
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Using (7.29) and (7.28), we obtain,
L(to, 7) = E‘Q+[(u(1)+ . V)u(1)+ _ (u(2)+ . V)u(2)+]
+ Eo- (M7 v)u®T — @ v)pu® ], (7.46)
that is,
ﬁ(ﬁo,ﬁ) =T - (Vuél) + E‘Q+Vv$ + EOV_Q_VVQ;)
+ ((u((f) +Eqivh +Eqg-vy) V)t in 2.

This implies that

(a7 Bjp (W), Bia(W0)) o =—((80-V)ug” o) o, ~( (8o (B Vv +Eo-Vvg), o),
~{((Bgsvy + Eq-vg) - V)uo, 1), — ((uf - V)do, W), (7.47)
Moreover, identity (D.14) and the inclusion Wy € HJ,, (£2)" show that the last term

in the right-hand side of (7.47) equals zero. Therefore, inequality (4.10) similar to
(7.14) implies that

% 2 VT 72 ynxn < (0l Bjp(To0), Bia(To)),,
< (@0 - V)u§” @), |+ [{(Ho - (Bos Vv + Eg-Vvy), W), |
+ [((Barveg + Eg-ve) - V)0, o), |
< anvu(()l)HL?(Q)"X"||VﬁOH2L?(Q)"><"
+2c0(ci +¢0)Cxll (g7, 97, @5 @) VB[ T2(oynxn.  (7.48)

Employing in (7.48) estimate (7.43) for w = u(()l), after some simplifications we

obtain

2
1 . « _ _
<§CA ' —2co(ct +co)Cxll(gT, g 7<P27¢P)||M.) ||V110\|2L2(Q)nm

< (I8l -1y + ColAIGT 97 05 )lan,
+ 2COCTC%||(Q+, 9_7 5027 So)Hg\/l.) ||Vﬁ0|‘%2((2)”x" ) (749)
which implies

1

2OVl Zyrn < (BUBU -1 (2 + BCSIANIGT 97 000,

+2C; eo(el +c0)Cxll(gt. 97, @50 #)llm,
2 % 2 W 21— 2 2
—c5(4(ct +c0)® —2coci)C5 (g7, 9 a‘PE#P)HM.)||Vu0\|L2(Q)"X"
< (C(2)|||§H|H*1(Q)” +3CsAN (g, 97 @0 @)llm,

+2C5 co(eh +c0)Cxll (gt 97,000 @), ) IVl 22y
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In view of condition (7.23), this is possible only if

_ 1 2
V80|72 (2ynxn = IV (uf" — uf ))HL2(Q)"><" =0.

Hence, uél) = uéQ) in 2 and relations (7.44) imply that uV* = u®* in QF.
Finally, equation (7.46) leads to Vr = 0, i.e., 7)) = 7(2) in L2(2)/R. O

APPENDIX

A Trace and generalized conormal derivative for the anisotropic Stokes
system in a Lipschitz domain

Let 2 C R™ be a bounded Lipschitz domain in R™. The following trace theorem holds (see
[16], [42, Lemma 2.6], [47, Theorem 2.5.2]).

1
Theorem A.1 Then there exists a linear, bounded trace operator v, : H'(£2) — H2 (912)
such that v, f = flaq for any f € C>(R2). The trace operator vy, is surjective and has a

(non-unique) linear and bounded right inverse operator ’ygl : H%((‘)Q) — HY (). The trace
operator v : HY(R™) — H%((?Q) can also be considered and it is linear and bounded with a
bounded linear right inverse v~ : H? (002) — HL(R™)2.

Let £ be the divergence form second-order elliptic differential operator given by (2.6).

The coefficients A%# of the anisotropic tensor A = (Ao‘ﬂ)1<a p<n A€M XN matrix-valued
<a,B< 5

functions in L°°(R™)™*"  with bounded measurable, real-valued entries aiaj , satisfying the

symmetry and ellipticity conditions (2.3) and (2.4). Let £ denote the Stokes operator defined
in (2.9) and let us consider the anisotropic Stokes system (2.8), i.e.,

L(u,m)=f, divu=gin 2 (A1)

for (u,7) € H' ()™ x L2(2), with f € H~1(2)" and g € L?(£2). System (A.1) is understood
in the sense of distribution, i.e.,

A AR A =

where
ano(a,v) = (af Bis(u), Bia(v)) = (A%795(w), 0a(v)) (A-3)
bo(v,q) == —(divv,q)e, (A.4)

The space D(£2)" is dense in H!(£2)"™ and D(£2) is dense in L2(£2), while the bilinear forms
ap.o t HH(2)™ x HY(2)" - R and by : HL(2)™ x L2(£2) — R, defined by (A.3) and (A.4),
are bounded. Hence (A.2) implies the following weak formulation of the Stokes system,

ap.0(u,v) +bo(v,m) = —(f,v)o, Vv € HY(2)",
{ bo(u,q) = —(9,9) 2, Vqe L2(0). (A-5)

The first equation in (A.5) can be considered as the Green identity, as follows.

Lemma A.2 Let 2 be a bounded Lipschitz domain in R™, n > 2, and let conditions (2.2),
(2.3) be satisfied. Then the following first Green identity holds

(P Bj5(0), Bia(w)),, — (m,divw)o + (f,w)o =0 (A.6)

for all w € HY ()", u € H ()" and £ € H=1(£2)" such that L(u,7) = f in £,

2 The trace operators defined on Sobolev spaces of vector fields on £2, or R™ are also denoted
by v, and «, respectively.
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Let v = (v1,...,v,) | denote the outward unit normal to §2, which is defined a.e. on the
boundary 812 of £2. In the special case, when (u, 7)€ C1(2)™ x C°(£2), the classical conormal
derivative (i.e., the boundary traction field) for the anisotropic Stokes system (A.1) where
f € L2(2)" and g € L?(£2), is defined by the formula

t5H(u,m) = — (v, v + 7, (af);BEjﬂ(u))ya = —(vomMV + 74 (Aaﬂaﬁu)l/a (A7)
where Ejg(u) := % (0j(ug) + 9g(u;)) and the symmetry conditions (2.3) show that

Yo (a%ﬁaﬁ (u5))Va = 7q (a?jBEjﬁ(u))ua . Then the following first Green identity holds

(85, m),v), , = (a3 Bjp (W), Bia(v)) = (m,divv)o + (£(u,m),v)q, Vv € DR™)".

(A8)

2

As in [31, Definition 2.2] and [32, Definition 1], formula (A.8) suggests the following def-
inition (cf. also [16, Lemma 3.2], [42, Definition 3.1, Theorem 3.2], [30, Definition 2.4], [417,
Theorem 10.4.1] for other equations).

Definition A.3 Let conditions (2.2) and (2.3) be satisfied and
HY(2,L) = {(u, mf) € HY Q)" x L2(2) x A~ Q)" : L(u,7) = f|o in Q}

If (u,mr,f) € HY (2, L), then the generalized conormal derivative to(u, ;) € H™3 (o2)™
is defined in the weak form as

(to(u,m f‘),d5>ag = <a?jﬂEj5(u),Eia(’y;1¢)>n — <7r,div('y;1elf')>Q

+(E,7 ' B),,, VBEHE(02)", (A.9)

where 'y;l : H%(BQ)" — HL(2)™ is a bounded right inverse of the trace operator v, :
HY(Q)" — HZ (902)".

Thus, for given (u,; f') € HY(2,L), we have tQ(u,ﬂ;f') € H_%(BQ)". In addition, [31,
Lemma 2.3], [32, Lemma 1] imply the following property (see also [16], [12, Definition 3.1,
Theorem 3.2], [43], [47, Theorem 10.4.1]).

Lemma A.4 Let 2 be a bounded Lipschitz domain in R™, n > 2, and let conditions (2.2),

(2.3) hold. Then the generalized conormal derivative operator to : H (02, L) — Hf%(ﬁﬁ)”
s linear and bounded, and definition (A.9) does not depend on the particular choice of a

right inverse 7;1 : H%(aﬂ)” — HY(2)™ of the trace operator vy, : HL ()" — H%(GQ)”‘
In addition, for all w € HY(2)" and (u,n,f) € H (2, L), the following first Green identity
holds,

(ta(u,mE),vow) = (aif Bjp(u), Bia(w)), — (m divw) g + (£, W) . (A.10)

We also adopt the simplified notation tg (u, ) for to(u,;0).

B Extension results for Sobolev spaces on Lipschitz domains with
Lipschitz interfaces

Let 2 C R™, n > 2, be a bounded Lipschitz domain satisfying Assumption 5.1. Thus, 2 = 27U
X2, where X' is the (n—1)-dimensional Lipschitz interface between the disjoint Lipschitz sub-
domains 21 and 27, and X meets transversally £2. The boundary d2%F of 2% is partitioned
into two relatively open subsets I'T and ¥, and I't and I'~ are not empty. Let Yot be the

trace operator from H'(£2%) to H? (80%).
The proof of the following extension property is based on similar arguments to those for
Theorem 5.13 in [8] (see also Lemma C.1 in [32]). We omit the details for the shortness.
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Lemma B.1 The following assertions hold.

(i) Let ut € HY(21) and u~ € HY(27) be such that 'ynJrqu =7,-u" on X. Then there
exists a unique function u € H'(2) such that u|gp+ =u®. Moreover, there exists C' =
C(n, 2%) > 0 such that [[ull 1 () < € (Iu* ey + a1 (o)) -

(i) If u € HY(£2) then Yot Ulot) =7, (ulg-) on X.

Lemma B.2 Let It and I'> be two (n—1)-dimensional Lipschitz hyper-surfaces in R™, n > 2,
that coincide on a relatively open (n — 1)-dimensional subset Iy having a Lipschitz boundary.
Assume that either one of the following assumptions holds:

(1) It and Iz are the graphs of two Lipschitz functions;
(2) I and Iz can be mapped by rigid rotations into two Lipschitz graphs;
(8) It and Iz are two bounded Lipschitz surfaces in R™.

Let 0 < s < 1 and functions f; € L*(I}), fi =0 on I3\ To, i = 1,2, and fo = f1 on I'y. Then
f1 € HS(Iy) if and only if fo € HS(I%).

Proof (1) Let It and Iz be graphs of two Lipschitz functions z, = (1(z') and z, = (2(a’),
2/ € R*" ! and Iy be the image of a domain Sy C R*71, ie., z, = (1(z') = (2(z’) for
' € So CR* 1.

By the definition of the Sobolev spaces on Lipschitz graphs (see, e.g., [11, p. 98]), f1 €
H®(I1), 0 < s < 1, means that f, € H¥(R"™1), where f¢, (z') = fi(z',¢i(2")), 2/ € RP—L
On the other hand, fe,(z') = fa(2/,{2(2")) = fi(a',(1(2’)) for ' € Sp, and fe,(z') =
fa(a', 2(z")) =0 = fi(a’,C1(a")) for ' € R*~1\ Sp. Hence fe,(a') = fe, (a') for almost any
2/ € R*~1 which implies f1 € H*(I'1) if and only if fo € H*(I%).

(2) Let further ¢ = 1,2. By the assumption of item (2), there exist constant invertible
rotation matrices ¢; € R™*™ such that I} = {z = ®;y, y € I3}, i = 1,2, are Lipschitz
graphs, i.e., they are represented by two Lipschitz functions, z1,, = (1(2}) and z2,, = (2(z}),
where x1,n,22,n € R and z,z} € R™—1. By the definition of Sobolev spaces on Lipschitz
hyper-surfaces, the inclusion f; € H®(I;) implies that fe, € H*(R"™!), where f¢,(z') =
fi(@; M2, ¢i(2)), o) € RPL

Let I'y; C I'; be the images of Iy through the above mapping, i.e., I'}; 3 x; = Py, y € I,
and, on the other hand, I'j; > x; = (2}, (i(})), @ € Soi, where Sp; are Lipschitz domains in
R™~1. Then

@2_1@’2 = @2_1(55'2,@(:6'2)) =y= @1_1(1"1,@(3:’1)) = @l_lacl, Yy € Iy, ) € So1, 4 € Soa,
and
feo(@h) = fa(@5 ' (2, Ca(ah)) = fa(y) = fi(y) = f(Py (2, C1 (7)) = fe, (&),
Yy € I, a:ll € So1, aCIZ € Soa. (B.l)
By definition of the rigid rotation matrices and graph functions, we have,
(21, (21)) = Pry = (P1y, P1ny), (25, C2(2)) = Doy = (Pry, P2,ny), vy € [0,

where the matrices &, € R(=DXn and Din € R1X"™ are parts of the corresponding matrices
@;. Then

o = Py = 205" (2h.Ca(eh) ) = Phy = P40y (24,1 (a})) . o4 € Son. o € Soo. (B2)

Since ¢1 and (2 are Lipschitz functions, relations (B.2) imply that 2} = @ (z}) and z}, = z}(z})
are mutually inverse bi-Lipschitz mappings for ] € So1, =5 € Soa.

Assume now that f; € H¥(I'1) and fy =0 on I3 \I'o. Then f¢, € H*(R""!) and f¢, =0
on R7—1 \gm. Assume also that a function fy € LZ(FQ) is such that fo = f1 on I'p and fo =0
on I3 \ I'y. From (B.1) we have for any x}, € So2 that

f(z(xIQ) :f(1(xll(xl2))7 (B.3)
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where the Lipschitz map 2 («}) is defined for x}, € Sp2 by (B.2). By the Kirszbraun theorem
(cf., Lemma 1.29 and Theorem 1.31 in [53]) the map 2’ (z}) can be extended to all 2}, € R*~1

with the same Lipschitz constant. Hence, taking into account that f¢ (z}) = 0 for =} €
R"=1\ So1 and f¢, (z4) = 0 for 2, € R"~1 \ Spa, we obtain that for such extension, relation
(B.3) holds for almost any z, € R”?~1. Then, cf., e.g., Theorem 3.23 in [41], the inclusion

fe, € H¥(R™™1) implies that fe, € H*(R"~1) and thus fo € H*(I3).

(3) Assume now that Iy and I'> are bounded Lipschitz hyper-surfaces in R and arrange
finite covers of both of them by open balls such that the intersections of each ball with the
corresponding surface can be extended (possibly after some rigid rotations) to Lipschitz graphs.
Moreover we choose the covers in such a way that the balls covering the closure of Iy coincide
for both surfaces. Arranging the subordinate partition of unity (see, e.g., [41, p. 98]) and
employing item (2) for the balls intersecting the boundary of I'y yield the asserted result. O

Let us show that the space HJ(-) can be characterized as the weighted space H(-), whose
counterpart on smooth domains in R"™ was given in [38, Chapter 1, Theorem 11.7], see also
Corollary 1.4.4.10 in [26] for Lipschitz domains.

Theorem B.3 Let I' be a (n—1)-dimensional Lipschitz graph or a bounded Lipschitz hyper-
surface in R™, n > 2, and let Iy be its relatively open (n — 1)-dimensional subset with a
(n — 2)-dimensional Lipschitz boundary OIy. Let 0 < s < 1.

Let H§y(Io) denote the space of all functions ¢ € ﬁS(FO), such that §~5¢ € L?*(Iv),
where 6(x) is the distance in R™ from x to the boundary 8Ip.

Then the space Hy,(Io) coincides with the space HJ(I), i.e., with the space of all func-
tions from H®(Iy) such that their extensions by zero to I' belong to H*(I').

Proof Let first I' be graph of a Lipschitz function x,, = {(z’) € R, 2’ € R*~! and Iy be the
image of a domain Sp C R”™1, i.e., z, = ((2) for 2’ € Sy C R*~ L. For all z,% € I'g, we have

o' —&'| < |z — 2| = \/va’ — @2 +[C(a") = ¢@)? < VIt A2’ — ). (B.4)

where A is a finite Lipschitz constant of the function ¢ on the domain Sp. The distance to the
boundary is defined as

§(x) = inf |z—&| = inf e N —¢(@))2 B.
(@) = inf |o == _inf \[lo! — &P +1C@) - @)L, (B.5)

Denoting ¢'(z') = infz/cpg, |#' — 2’|, we obtain from (B.5) and (B.4) that

§(a)) < o(x) < V1+ AZS (). (B.6)

By the definition of the Sobolev spaces on Lipschitz graphs (see, e.g., [11, p. 98]), fe
H*(I'), 0 < s < 1, means that fo € H*(R*™!), where fc(z') = f(a/,¢(2')), 2’ € R*! and
¢ € H5(Ip), 0 < s < 1, means that ¢, € H(Sp).

Let ¢ € H§y(I0). Then ¢ € H#(I), 6~5¢ € L2(Ip). The surface measure formula

do(z) = /1 + |grad ¢(=')|2dz’ (B.7)

(see, e.g. [41, Eq. (3.28)]) together with (B.6) implies that ¢¢ € H#(Sp) and (8")"%¢¢ € L?(So),
where ¢¢(z') = ¢(a',{(x")), 2’ € So. Then by Corollary 1.4.4.10 in [26] we obtain that the
extension of ¢¢ by zero from Sp to R"~! belongs to H*(R"~!) and hence the extension of ¢
by zero from Iy to I" belongs to H*(I').

Conversely, let ¢ € H $(Io) be such that its extension by zero from Iy to I' belongs to
H3(I"). Then ¢¢(z') = ¢(z’,¢(a’)) belongs to H#(Sp) and its extension by zero from to So
to R"~! belongs to H*(R"~!). Hence by Corollary 1.4.4.10 in [26] we obtain that (6') "¢, €
L2(So), which by (B.6) and (B.7) implies that 6 ~5¢ € L%(I}) and thus ¢ € HS,(I0).

Let now I' be a (n — 1)-dimensional bounded Lipschitz hyper-surface. Let us arrange a
finite cover of the hyper-surface by open balls such that, as usual, the intersections of each
ball with the hyper-surface can be extended (maybe after corresponding rigid rotations) to
a Lipschitz graph. Arranging the subordinate partition of unity (see, e.g., [11, p. 98]) and
employing the above arguments to each of these graphs we obtain the asserted result. O
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In addition, the following extension result holds (see also [51, p. 373]).

Lemma B.4 Let n > 2 and 2 C R™ be a bounded Lipschitz domain satisfying Assumption
5.1. Then there exists an extension operator Eqt _, o from the space H}Jr (25" to HH(2)".

Proof Letut € H}+ (2T)". Letu,, € H}+ (£2)™ be the function defined by u,, := €4 _, ou’,
where £o4+ 5 = rp 0o Egt_,gn, and Eq4 pn is the Rychkov extension operator from
HY(2T)™ to HY(R™)™ (cf, e.g., [17, Theorem 2.4.1]). Thus, 7o+ (u,) = ut, where r
denotes the restriction to Qfl N 3

In addition, (y,u,)€H2(I'")" and (y,u,)| .- €H2(I'7)" Let Ep— 5 (voug) [p-)
be the extension of (y,u, )| - by zero on X. Then Lemma B.2 (ii) (applied to the functions
fi = y,u, and f = EF*%E ((voug)|—), which are equal on I'~ and vanish on I't and
X, respectively) implies that E'Ffﬁz (vgu)|p-) € ﬁ%(lj*)". Moreover, by Theorem A.1,
there exists u™ € H;(Q‘)” such that

u = ’Y;i (EI_'**)E((VQUQ)|F7 )) ) (B.8)

where 7;£ :H%(aﬂ_)” — HY(27)™ is a right inverse of the trace map Y CHY () —

H?(9Q7)". Thus, u~ € H(27)", (v, u~)|; =0, (797 u—) | =(rpug)l,_ . Let ug be
o

the extension by zero of u™ in 21, ug := EOQ__MQ.;. u~ . Therefore, up € H'(£2)™ and ug =0
in 27, In addition, (v,u0)|r- = (v, u,,)|,._ . Moreover,

u:=u, —ug = SQJFHQU'* — Eﬂ'QfﬁnJru_
=Egtout —Eg o+ ('Y;i (EF*%E((’YIZUQ)lp—))) : (B.9)

satisfies u € H(£2)™ and, by construction, (v,, u)|,.4 =0,ie,7,u=0 (ae.)on I'". Moreover,
or = ut in 2. Consequently, u is an extension of ut from Hllﬂr (27)" to HY(2)™.

Finally, we define the extension operator Eg4 _, : H11,+(Q+)” — H(£2)", such that

u|

EQJFHQ(u'*) := u, where u has been constructed above. Consequently,

Egiout i=Eqi out —Eg- o4 (’Y;i (Er——w <79 (Eg+out) |F_))) - (B.10)

An alternative construction of such an extension map can be consulted in [51, pp. 373, 374]. O
Let us introduce the space (cf., e.g., [41, p. 76]),
H;i(R")" ={®c HL(R")" : supp® C I'+}. (B.11)
r

Note that, & € H;i(R")” if and only if & =75, i.e.,
r

(v, )0 = (vav, oo Vv EH () (B.12)

for some ¢ € A3 (I't)™, which is uniquely defined by &, cf. [12, Theorem 2.10(ii)].
/
Lemma B.5 The dual (H}Mr (Q)”) of the space Hllﬂr (2)™ can be identified with the space
H=1(2)"/H=L(R™)".
r+

Proof First, we remark that due to (B.12), the space Hllﬂr (21)" defined as in (5.2) can be
also equivalently defined as

Hllﬂr(.Q)" ={ve HY(2)" : yov =0 on F+}
= {ve H @) (rov,dlon =0, Vo e A 2(I)"}
= {v € HY ()" : (v,®) =0, VB € H;i(R”)”} =HY(Q)" L H;i(R")”.

Then a duality argument (see, e.g., [19, Sections 4.8, 4.9]) yields the required identification. O
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Lemma B.6 The dual (Hll,+ (Q*)”)l of the space HIl,+ (21)™ can be identified with the space
H-1 (Q‘*’)"/H%(R")" and also with the space
r

{QOEH_I(Q)”:cpZOOn 0"}, (B.13)

Proof The identification with H—1 (Q*)"/H%(R")" follows from Lemma B.5 applied to £27.
r

To prove the identification with the space in (B.13), assume first that ¢ belongs to the
space defined in (B.13). Thus,

e e HH Q)" = (I'(2)") and (g, )o = (0,9 ) =0, Yy~ € D(Q7)", (B.14)

i.e., ¢ has the support in 0+ (¢ =0 on £27). We have used the equivalent description of the
space H1(£2)" given in formula (3.7) and the identification of H1(£2)" and H(£2)".

Note that ¢ : H(£2)" — R is linear and bounded. Let Eq+ _, o, be an extension operator
from H}+ (21" to Ifll(Q)”, which exists in view of Lemma B.4. Therefore, the mapping

di=poBgr o Hr (27" =R, ¢@ph) =@ (Egs ov"), VoteH (20"
is linear and bounded as well. Hence, we have that
o) = (), VYT eHL, (2F)", where p=Eqi_ (") e H (2)"

This definition agrees well with the condition that ¢(%»~) = 0 for any 9~ € D(£27)", and
shows that for a fixed E,+_, 5, any functional ¢ from the space (B.13) can be identified with
a functional ¢ € (Hll,+ (_Q"")")/.

To prove that the functional ¢ does not depend on the extension operator E,+_, , let us

; ; 1 1
con51del." two such extension operétors, E?zﬁan and/ E’r'ZJr%_(2 frorltll HFJr(_QJ/r/)n to H*(2)",
generating for a fixed ¢ two functionals, ¢’ := ¢ o EQJFHQ and ¢' :=po EQ+%Q. Then

' $1) =" (W) = @ (Boe L ov") — @ (Bhe L, ov7")
=¢ (E;ﬁﬁg"/ﬁ - E?ﬁﬁg"/ﬁ) . Vot e H11~+(~Q+)n-
Denoting v, = E/(Hanlﬁ _DE;;+~>.Q¢+7 we obtain that v, € ﬁl(ﬂ)" and ¥y = 0 in
0%, implying that r,_%o € H'(£227)™ and hence Y,— %o = 0. Thus, there exists ¥y €
HY(27)™ ¢ HY(2)™ € HY(R™)™ such that 1, = r, o and a sequence {¥;};exy C D(27)™
converging to ¥ in H'(27)". By (B.14) then () = p(r,%o) = limieo p(r,¥;) =
lim; 00 ¢(¥;) = 0, and, hence, the asserted independence property follows.
/

Conversely, assume that ¢ € (HII,+(Q+)”) and let r_, o+ be the restriction operator
from the space H1(£2)" to HJ., (27)™. Then the mapping ¢ := ¢ 07g_, o+ : HY(Q)" - R
is linear and bounded, i.e., ¢ € H~1(£2)". In addition, for any ¥~ € D(£27)", we have that
P~ € HY(2)", and accordingly that ¢ (¢~) = ¢(0) = 0, where the last equality is provided
by the linearity of the mapping ¢ : H;+ (21)" — R. Consequently, ¢ belongs to the space
defined in (B.13), and ¢ can be identified with ¢ through the relations ¢ := ¢porg_, o+ :
Hl(Q)"—HRandd):gaoEQJr%Q:H}+(Q+)"—>R. O

C Abstract variational problems and well-posedness results

A main role in our analysis of variational problems is played by the following well-posedness
result from [6], [9, Theorem 1.1}, (cf., also [20, Theorem 2.34] and [10]).
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Theorem C.1 Let X and M be two real Hilbert spaces. Let a(-,-) : X x X — R and b(-,-) :
X X M — R be bounded bilinear forms. Let V' be the subspace of X defined by

Vi={veX:bw,q) =0, Vge M}. (C.1)
Assume that a(-,-) : V X V. — R is coercive, that is, there exists a constant cq > 0 such that
a(w,w) > collwl|%, Yw €€V, (C.2)

and that b(-,-): X x M —R satisfies the condition

b(v,q)

inf sup —————— > ¢y, C.3
a€eM\{0} vex\fo} Ivllx llallam (3

with some constant ¢, > 0. Let f € X’ and g € M’. Then the variational problem

a(u,v) +b(v,p) = f(v), VveEX,
{b(u,q> "o, Yae M, ©4)

with the unknown (u,p) € X X M, is well-posed, which means that (C.4) has a unique solution
(u,p) in X X M and there exists a constant C > 0 depending on cq and cp, such that

lullx + llpllae < C U Flxr + Nlgllae) - (C.5)

Remark C.2 The linearity and well-posedness of problem (C.4) under conditions of Theorem
C.1 imply that the solution of the problem can be represented in the form (u,p) = M(f,g),
where the solution operator 4 : X' x M’ — X x M is linear and continuous.

We need also the following useful result (see [20, Theorem A.56, Remark 2.7].

Lemma C.3 Let X and M be reflexive Banach spaces. Let b(-,-) : X X M — R be a bounded
bilinear form. Let B : X — M’ be the bounded linear operator defined by

(Bv,q) = b(v,q), Vv € X, Vq € M, where (-,-) denotes the duality pairing between the dual
spaces M’ and M. Let V := Ker B. Then the following assertions are equivalent:

(i) There exists a constant ¢, > 0 such that b(-,-) satisfies the inf-sup condition (C.3).
(i) The operator B : X/V — M’ is an isomorphism and ||Bw||p¢ > cpllwll x v, w € X/V.

D Useful norm estimates

In this appendix we provide several estimates, embeddings, and identities (some of them well
known), used in the analysis of the Navier-Stokes problems. Let 2 denote a bounded Lipschitz
domain in R™, n € {2, 3}.

e By the Sobolev embedding theorem (see, e.g., [1, Theorem 6.3]), the space H'(2)" is
compactly embedded in L*(£2)™ and there exists a constant c1= c1(£2,n) > 0 such that

IVliLaan < allvligign, YveH ()" (D.1)

Due to the equivalence in H!(£2)™ of the semi-norm IVl L2 (@ynxn with the norm || - || g1 (gyn
given by (3.3), estimate (D.1) also implies

IVllLaayn < collVVllz2(@ynxn, Vv eH ()", (D-2)

with some constant ¢y = co(§2,n) > 0.
e By the Holder inequality, we obtain for all vi,va,vs€ HY(2)",

|<(V1 'V)V21V3>Q| < ||V1HL4(Q)n||V3||L4(Q)n||VV2||L2(Q)an

< alvillpaceyn Vsl o)n IVVallz(oynxn- (D-3)
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This also means that for all vi,ve, vz € H'(2)",

|(Baltvy - Vvalva) | <IBavil [Val 2 n) 1B Vvall 2 nyce
< villpaayn lvaliLaoyn IV vall 2 (oynxn
< allvillpaeyn Ivall g @)n IVVall gz (gynxn, (D.4)
where V3 € HY(R™)" is such that r, V3 = v3. This implies that Eq[(vi - V)va] belongs to
the space H~1(2)" = (Hl(Q)")/ Moreover, in view of (D.1), for all vi,ve € H(2)?,

|Baltv-wval| -, < Vil Izl oy (D-5)

Taking vz € H1(2)™ in (D.3), it follows that the term (vi - V)va belongs to the dual of
the space H!(£2)", that is, to the space H~1(£2)" and for all vi,ve € H'(£2)™,
[(vi-V)vellg-1(0yn < erllVillaca)n IVValliLz(gynxn

<calvillpaoyn IVallgr oy < Glvillgroynlivellgioyn.  (D6)

e The dense embedding of the space D(£2)™ into H!(£2)", the divergence theorem and
estimate (D.6) imply the following identity for any vi,ve,vs € H ()"

((vi-V)va,v3)p = /{2 V- (vi(vz-v3))dx — ((V-vi)va+ (vi-V)v3,va) o
= (yovi - V,70V2 - Y2V3)gn — (V- vi)vz + (vi - V)v3,va) , (D.7)

where v is the normal vector on 0f2 directed outward 2.
To obtain an alternative versions of estimate (D.4), which does not involve [|[Vva|| 2 (gynxn,

let use (D.7) and take into account that vovi,vove, yovs € HY/2(802)™. Further, we em-
ploy that for the Lipschitz domain 2 € R™, n = 2,3, the space H/2 (0£2)™ is continuously
embedded in L3(02)™ (e.g., by the embeddings in [50, Section 2.2.4, Corollary 2(i)] for R"*~!
that can be extended to Lipschitz surfaces by standard arguments, cf. also a more general
statement in [46, Proposition 3.8]). Thus, there exists a constant co = c2(842,n), such that

I8l 200y < c2llBllgi/zpon s Ve HY? @)™ (D-8)
Hence by the Hélder inequality we have for all vi,va,vs€ H(2)",

|(vevi v, v0ve - vevs)an| < Ilhevil lvevel ll a2 g0)llvevslics oo
< lvevillLsaay e vallLs oy 12 vsliLs aa)»

< C%”’YQVIHHIM(aQ)n ||'YQV2||L3(BQ)n||79V3‘|H1/2(39)n- (D.9)
Then from (D.7) and (D.9) we obtain for any v1, vz, vs € H ()"

((v1-V)va,va) ol < lvevillLs@aey InevallLs@e) e vsllLs o
+ IV - villpzcoynxnlIvallpagayn Vsl Laoyn + IVillLacoyn Vel Laoyn IV Vsl L2 (@ynxn
< C%H’YQHQHVIHHl(Q)n H'VQV2”L3(8(2)" ||V3||H1(.Q)"
+ 2a1|[vill g oynIvallLagoyn IVall g1 oyn
= Ivillz @y (BllvellPlvevallLs ey + 2etlvalLaceym)IIVall g (oyn (D.10)

where ||vo| = ”79”Hl((z)"aHl/?(aQ)" is the norm of the trace operator. Similar to (D.5)
and by using the previous estimate, we obtain for all vi,ve € H'(£2)" that

|Ealtvi- yval | < Vil oy (Blrel e vall s ooy + 2e1lvallsggyn). (D11)

—I(Q)n
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e For vz € H(2)™, (D.7) simplifies to

((vi-V)va,v3)y =—((V-vi)va+ (v1-V)v3,va), , VVvi,va € HI(Q)”, v3 € ﬁl(Q)n,
(D.12)

In view of (D.12) we also obtain the identity
((vi-V)va,v3)o=—((v1-V)v3,va), ,Vv1 € H&iV(Q)”, vy € Hl(.Q)”7 vy € Ijll((?)",

(D.13)
and hence the well known formula
((vi-V)va,va), =0, Vvi€HL (2)", vac H}(2)". (D.14)
On the other hand, in the more general cases (D.7) and (D.12) imply
2((vi-V)va,v2)g = (voV1 - V,72V2 - 70V2) g0 — (V- Vv1),v2 - va) (D.15)
Vvi,vo€ HY(Q)",

2((v1-V)ve,va)p = —((V-v1),va-va) , Yvi€HY ()", va€ HL(2)". (D.16)

Similar arguments to those for (D.3) and identity (D.13) imply the estimate
[{(vi-V)v2,vs) 0| = [((vi-V)vs,v2) o] < IIVillpaoynlivallLacoyn [V Vallp2(gynxn (D.17)

for all vi € H}, ()", vo € HY(£2)", v3 € H'(0)". Therefore
11 F)vallig sy < 01 - Dl o < N1 lgagopn Iv2llzagopn
<alvillgioynlivallpagayn Yvi € Hyy (2)™, v2 € HY(2)™. (D.18)

e Let now Assumption 5.1 hold and §2 be either 2 or £2~. Similar to (D.4) we have that
for any vi,ve € H1(£2/)® and v € HY ()"

[(Barl(vi-V)valovs) | =[((va - V)va,va) g
<Avillzacenyn IvalliLaon = IVVall L2 (orynxn
< Cﬁ\\V1||L4(Q/)n||V3HH1(Q')n HVVQHLQ(Q’)"X"
<cllvillpacenn Vsl g (o)n [IVVallp2 (orynxn - (D.19)

Taking v3 € H'(£2)" in (D.19), we find that T, Eq/[(v1 - V)va] belongs to H1(£2)" and

|Bar((vi - Oyva| < IVl agns 1V vall 2y

H—I(Q)n
< lvillpagennlivellmr e < (@2 IVillgr oy IVallgi(gnn Yvi,ve € H'(2)",  (D.20)

where ¢} = ¢1(£2,n), cf. (D.1). If, moreover, vi € H!(£2)", then (D.20) implies

HEQ, (7 vi - V)va]

/
s e < NIy V2 1y

< (C/1)2||V1HHI(Q)’!L||V2HH1(Q/>"L Vvi € HY(2)", vo € HY(2))". (D.21)

e Let again Assumption 5.1 hold. In order to obtain some alternative versions of estimates
(D.19) and (D.20), which do not involve [Vva||p2(gprynxn, we implement (D.10) for £’ and

find that for all vi,vo EHl(Q’)" and v3 EHl(Q)”
[(Barl(vi-V)valvs) | = [{(va - D)va,va) g
< vl onn (€5 lva P lvervallLaaaryn + 2¢tvallLagonm)Ivall g ayn, (D.22)

where ¢}, = ¢2(962',n). If we take vz € H'(£2)", then (D.22) implies

|Bar((vi - D)val| < Vil gy (5 170 120 vall Lo gasrys

H=1(2)n

+ 264 vallpagaryn ), ¥ vive € HY(Q)". (D.23)
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