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4.1 Introduction

Partial Differential Equations (PDEs) with variable coefficients often arise
in mathematical modelling of inhomogeneous media (e.g. functionally graded
materials or materials with damage induced inhomogeneity) in solid mechan-
ics, electromagnetics, thermo-conductivity, fluid flows trough porous media,
and other areas of physics and engineering.

Generally, explicit fundamental solutions are not available if the PDE coef-
ficients are not constant, preventing formulation of explicit boundary integral
equations for them, which can then be effectively solved numerically. Never-
theless, for a rather wide class of variable-coefficient PDEs it is possible to use
instead an explicit parametrix (Levi function) taken as a fundamental solution
of corresponding frozen-coefficient PDEs, and reduce Boundary Value Prob-
lems (BVPs) for such PDEs to explicit systems of Boundary-Domain Integral
Equations (BDIEs), see e.g. [Mi02, CMN09, Mi06] and references therein.
However this (one-operator) approach does not work when the fundamental
solution of the frozen-coefficient PDE is not available explicitly (as e.g. in the
Lamé system of anisotropic elasticity).

To overcome this difficulty, one can apply the so-called two-operator ap-
proach, formulated in [Mi05] for some non-linear problems, that employs a
parametrix of another (second) PDE, not related with the PDE in question,
for reducing the BVP to a BDIE system. Since the second PDE is rather ar-
bitrary, one can always chose it by such a way, that its parametrix is available
explicitly. A simplest choice for the second PDE is the one with a fundamental
solution explicitly available.

To analyse the two-operator approach we apply in this paper one of its lin-
ear versions to the mixed (Dirichlet-Neumann) BVP for a linear second-order
scalar elliptic variable-coefficient PDE reducing it to four different BDIE sys-
tems. Although the considered BVP can be reduced to (other) BDIE systems
also by the one-operator approach, it can be considered as a simple "toy"
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model showing the main features of the two-operator approach arising also
in reducing more general BVPs to BDIEs. The two-operator BDIE systems
are nonstandard systems of equations containing integral operators defined
on the domain under consideration and potential type and pseudo-differential
operators defined on open sub-manifolds of the boundary. Using the results
of [CMN09], we give a rigorous analysis of the two-operator BDIEs and show
that the BDIE systems are equivalent to the mixed BVP and thus are uniquely
solvable, while the corresponding boundary domain integral operators are in-
vertible in appropriate Sobolev-Slobodetski (Bessel-potential) spaces.

4.2 Function spaces and BVP

Let Ω = Ω+ be an open three-dimensional region of R3, Ω−:=R3\Ω+ and the
boundary ∂Ω be simply connected, closed, infinitely smooth surface. More-
over, ∂Ω = ∂DΩ

⋃
∂NΩ where ∂DΩ and ∂NΩ are open, non-empty, non-

intersecting, simply connected sub-manifolds of ∂Ω with an infinitely smooth
boundary curve ∂DΩ

⋂
∂NΩ ∈ C∞. Let a ∈ C∞(R3), a(x) > 0 and also

∂j := ∂/∂xj (j = 1, 2, 3), ∂x = (∂1, ∂2, ∂3). We consider the following PDE
with scalar variable coefficient,

Lau(x) := La(x, ∂x)u(x) :=
3∑

i=1

∂

∂xi

[
a(x)

∂u(x)
∂xi

]
= f(x), x ∈ Ω±, (4.1)

where u is unknown function and f is a given function in Ω±.
In what follows, Hs(Ω+) = Hs

2(Ω+), Hs
loc(Ω

−) = Hs
2, loc(Ω

−), Hs(∂Ω) =
Hs

2(∂Ω) denote the Bessel potential spaces (coinciding with the Sobolev-
Slobodetski spaces if s ≥ 0). For S1 ⊂ ∂Ω, we will use the subspace
H̃s(S1) = {g : g ∈ Hs(∂Ω), supp(g) ⊂ S1} of Hs(∂Ω), while Hs(S1) =
{rS1

g : g ∈ Hs(∂Ω)}, where rS1
denotes the restriction operator on S1.

From the trace theorem (see, e.g., [LiMa72]) for u ∈ H1(Ω±), it follows
that u|±∂Ω := γ±u ∈ H

1
2 (∂Ω), where γ± is the trace operator on ∂Ω from Ω±.

We will use γ for γ± if γ+ = γ−. We will use also notations u± for the traces
u|±∂Ω , when this will cause no confusion.

For a linear operator L∗ we introduce the following subspace of Hs(Ω±),
[Gr85, Co88],

Hs,0(Ω±;L∗) := {g ∈ Hs(Ω±) : L∗g ∈ L2(Ω±)},
‖g‖2Hs,0(Ω±;L∗) := ‖g‖2Hs + ‖L∗g‖2H0(Ω±) = ‖g‖2Hs + ‖L∗g‖2L2(Ω±).

In this paper, we will particularly use the space H1,0(Ω±;L∗) for L∗ being
either the operator La from (4.1) or the Laplace operator ∆, and one can see
that these spaces coincide.

For u ∈ H1,0(Ω±; ∆), we can correctly define the (canonical) co-normal
derivative T±a u ∈ H− 1

2 (∂Ω), cf. [Co88, McL00, Mi07], as
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〈T±a u,w〉
∂Ω

:= ±
∫

Ω±

[
γ±−1w·Lau+Ea(u, γ±−1w)

]
dx ∀ w ∈ H1/2(∂Ω), (4.2)

where γ±−1 : H1/2(∂Ω) → H1(Ω±) is a right inverse to the trace operator γ±,

Ea(u, v) :=
3∑

i=1

a(x)
∂u(x)
∂xi

∂v(x)
∂xi

= a(x)∇u(x) · ∇v(x)

and 〈·, ·〉
∂Ω

denotes the duality brackets between the spaces H− 1
2 (∂Ω) and

H
1
2 (∂Ω), which extend the usual L2(∂Ω) inner product; to simplify notations

we will also write sometimes the duality brackets as integral. Then for u ∈
H1,0(Ω±;∆), v ∈ H1(Ω) the first Green identity holds, [Co88, Lemma3.4],
[Mi07, Lemma 4.8],

∫

Ω±
v(x)Lau(x)dx = ±

∫

∂Ω

v(x)T+
a u(x)dS(x)−

∫

Ω±
Ea(u, v)dx . (4.3)

If u ∈ H2(Ω±), the canonical co-normal derivative T±a u defined by (4.2)
reduces to its classical form

T±a u :=
3∑

i=1

a(x)ni(x)
[
∂u(x)
∂xi

]±
= a(x)

[
∂u(x)
∂n(x)

]±
, (4.4)

where n(x) is the exterior (to Ω±) unit normal at the point x ∈ ∂Ω.
We will derive and investigate the two-operator boundary-domain integral

equation systems for the following mixed boundary value problem.

Lau = f in Ω (4.5)
u+ = ϕ0 on ∂DΩ (4.6)

T+
a u = ψ0 on ∂NΩ (4.7)

where ϕ0 ∈ H
1
2 (∂DΩ), ψ0 ∈ H− 1

2 (∂NΩ) and f ∈ L2(Ω). Equation (4.5) is
understood in the distributional sense, condition (4.6) in the trace sense, while
equality (4.7) in the functional sense (4.2).

Let us consider another auxiliary linear elliptic partial differential operator
Lb such that

Lbu(x) := Lb(x, ∂x)u(x) :=
3∑

i=1

∂

∂xi

[
b(x)

∂u(x)
∂xi

]
, (4.8)

where b ∈ C∞(R3), b(x) > 0. Then for u ∈ H1,0(Ω±; ∆) = H1,0(Ω±; ∆)
the associate co-normal derivative operator T±b is defined by (4.2) (and for
u ∈ H2(Ω±) by (4.4)) with a replaced by b. If v ∈ H1,0(Ω±; ∆), u ∈ H1(Ω)
then for the operator Lb holds the first Green identity,



4 T.G. Ayele and S.E. Mikhailov
∫

Ω±
u(x)Lbv(x)dx = ±

∫

∂Ω

u(x)T±b v(x)dS −
∫

Ω±
Eb(u, v)dx. (4.9)

If u, v ∈ H1,0(Ω±; ∆), then subtracting (4.3) from (4.9), we obtain the two-
operator second Green identity, cf. [Mi05],

∫

Ω±
{u(x)Lbv(x)− v(x)Lau(x)} dx =

±
∫

∂Ω

{
u(x)T+

b v(x)− v(x)T+
a u(x)

}
dS

+
∫

Ω±
[a(x)− b(x)]∇v(x) · ∇u(x)dx (4.10)

Note that if a = b, then, the last domain integral disappears, and the two-
operator Green identity degenerates into the classical second Green identity.

4.3 Parametrix and potential type operators

As follows from [Mir70, Mi02, CMN09], the function

Pb(x, y) =
−1

4πb(y)|x− y| , x, y ∈ R3 (4.11)

is a parametrix (Levi function) for the operator Lb(x; ∂x) from (4.8), i.e.,
satisfies equation

Lb(x, ∂x)Pb(x, y) = δ(x− y) + Rb(x, y)

with

Rb(x, y) =
3∑

i=1

xi − yi

4πb(y)|x− y|3
∂b(x)
∂xi

, x, y ∈ R3. (4.12)

Evidently, the parametrix Pb(x, y) is a fundamental solution to the operator
Lb(y, ∂x) := b(y)∆(∂x) with "frozen" coefficient b(x) = b(y), i.e.,

Lb(y, ∂x)Pb(x, y) = δ(x− y).

The parametrix-based Newtonian and the remainder volume potential op-
erators, corresponding to the parametrix (4.11) and to remainder (4.12) are
given, respectively, by

Pbg(y) :=
∫

Ω

Pb(x, y)g(x)dx, Rbg(y) :=
∫

Ω

Rb(x, y)g(x)dx. (4.13)

Let us introduce the single layer and the double layer surface potential
operators, based on parametrix (4.11),
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Vbg(y) := −
∫

∂Ω

Pb(x, y)g(x)dSx, y /∈ ∂Ω, (4.14)

Wbg(y) := −
∫

∂Ω

[Tb(x, n(x), ∂x)Pb(x, y)]g(x)dSx, y /∈ ∂Ω. (4.15)

For y ∈ ∂Ω, the corresponding boundary integral (pseudo-differential) oper-
ators of direct surface values of the simple layer potential Vb and the double
layer potential Wb are

Vbg(y) := −
∫

∂Ω

Pb(x, y)g(x)dSx, (4.16)

Wbg(y) := −
∫

∂Ω

[Tb(x, n(x), ∂x)Pb(x, y)]g(x)dSx. (4.17)

We can also calculate at y ∈ ∂Ω the co-normal derivatives, associated with
the operator La, of the single layer potential and of the double layer potential,

T±a Vbg(y) =
a(y)
b(y)

T±b Vbg(y), (4.18)

L±abg(y) := T±a Wbg(y) =
a(y)
b(y)

T±b Wbg(y) =:
a(y)
b(y)

L±b g(y) (4.19)

The direct value operators associated with (4.18) are

W ′
abg(y) := −

∫

∂Ω

[Ta(y, n(y), ∂y)Pb(x, y)]g(x)dSx =
a(y)
b(y)

W ′
bg(y), (4.20)

W ′
bg(y) := −

∫

∂Ω

[Tb(y, n(y), ∂y)Pb(x, y)]g(x)dSx. (4.21)

From equations (4.13)-(4.21) we deduce representations of the parametrix-
based surface potential boundary operators in terms of their counterparts for
b = 1, that is, associated with the fundamental solution P∆ = −(4π|x− y|)−1

of the Laplace operator ∆.

Pbg =
1
b
P∆g, Rbg = −1

b

3∑

j=1

∂jP∆ [g(∂jb)] , (4.22)

a

b
Vag = Vbg =

1
b
V∆g;

a

b
Wa

(
bg

a

)
= Wbg =

1
b
W∆ (bg) , (4.23)

a

b
Vag = Vbg =

1
b
V∆g;

a

b
Wa

(
bg

a

)
= Wbg =

1
b
W∆ (bg) , (4.24)

W ′
abg =

a

b
W ′

bg =
a

b

{
W ′

∆ (bg) +
[
b

∂

∂n

(1
b

)]
V∆g

}
, (4.25)

L±abg :=
a

b
L±b g =

a

b

{
L∆(bg) +

[
b

∂

∂n

(1
b

)]
W±

∆ (bg)
}

. (4.26)
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It is taken into account that b and its derivatives are continuous in R3 and
L∆(bg) := L+

∆(bg) = L−∆(bg) by the Liapunov-Tauber theorem.
The mapping properties of the volume and surface potentials are proved in

[CMN09], see also Appendix A and B in [Mi06]. Similar to Theorems 3.3 and
3.6 in [CMN09] (see also Appendix A and B in [Mi06]), relations (4.23)-(4.26)
imply the two following jump relation theorems.

Theorem 1. Let g1 ∈ H− 1
2 (∂Ω), and g2 ∈ H

1
2 (∂Ω). Then there hold the

following relations on ∂Ω,

[Vbg1]± = Vbg1,

[Wbg2]± = ∓1
2
g2 +Wbg2,

T±a Vbg1 = ±1
2

a

b
g1 +W ′

abg1.

Theorem 2. Let S1 and ∂Ω\S1 be nonempty, open, simply connected sub-
manifolds of ∂Ω with an infinitely smooth boundary curve, and 0 < s < 1.
Then

L+
ab +

a

b

∂b

∂n

(
−1

2
I +Wb

)
= L−ab +

a

b

∂b

∂n

(
1
2
I +Wb

)
on ∂Ω.

Moreover, the pseudo-differential operator rS1
L̂ab : H̃s(S1) → Hs−1(S1),

where

L̂abg :=
[

b

a
L±ab +

∂b

∂n

(
∓1

2
I +Wb

)]
g = L∆(bg) on ∂Ω,

is invertible, while the operators rS1

(
b

a
L±ab − L̂ab

)
: H̃s(S1) → Hs(S1) are

bounded and the operators rS1

(
b

a
L±ab − L̂ab

)
: H̃s(S1) → Hs−1(S1) are com-

pact.

For v(x) := Pb(x, y) and u ∈ H1,0(Ω; ∆), we obtain from (4.10) by stan-
dard limiting procedures (cf. [Mir70]) the two-operator third Green identity,

u + Zbu +Rbu− VbT
+
a u + Wbu

+ = PbLau in Ω, (4.27)

where

Zbu(y) := −
∫

Ω

[a(x)− b(x)]∇xPb(x, y) · ∇u(x)dx

=
1

b(y)

3∑

j=1

∂jP∆ [(a− b)∂ju] (y), y ∈ Ω. (4.28)
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Using the Gauss divergence theorem, we can rewrite Zbu(y) in the form that
does not involve derivatives of u,

Zbu(y) =
[
a(y)
b(y)

− 1
]

u(y) + Ẑbu(y), (4.29)

Ẑbu(y) :=
a(y)
b(y)

Wau+(y)−Wbu
+(y) +

a(y)
b(y)

Rau(y)−Rbu(y), (4.30)

which allows to call Zb integral operator in spite of its integro-differential
ansatz (4.28).

Note that substituting (4.29)-(4.30) to (4.27) and multiplying by b(y)/a(y)
one reduces (4.27) to the one-operator parametrix-based third Green identity
obtained in [CMN09],

u +Rau− VaT+
a u + Wau+ = PaLau in Ω.

Relations (4.28)-(4.30) and the mapping properties of P∆,Ra,Rb, Wa and
Wb, given by Theorems 3.1, 3.8 in [CMN09], imply the following statement.

Theorem 3. The operators

Zb : Hs(Ω) → Hs(Ω), s >
1
2
,

Ẑb : Hs(Ω) → Hs,0(Ω;∆), s ≥ 1,

are continuous.

If u ∈ H1,0(Ω; ∆) is a solution of equation (4.5) with f ∈ L2(Ω), then
(4.27) gives

Gu := u + Zbu +Rbu− VbT
+
a u + Wbu

+ = Pbf in Ω, (4.31)

Gu :=
1
2
u+ + Z+

b u +R+
b u− VbT

+
a u +Wbu

+ = [Pbf ]+ on ∂Ω, (4.32)

T u :=
(
1− a

2b

)
T+

a u + T+
a Zbu + T+

a Rbu−W ′
abT

+
a u

+L+
abu

+ = T+
a Pbf on ∂Ω. (4.33)

where Z+
b u = [Zbu]+ and R+

b u = [Rbu]+.
Note that if Pb is not only the parametrix but also a fundamental solution

of the operator Lb, then the remainder operator Rb vanishes in (4.31)-(4.33)
(and everywhere in the paper), while the operator Zb stays unless La = Lb.

For some functions f, Ψ, Φ, let us consider a more general "indirect" inte-
gral relation, associated with (4.31),

u + Zbu +Rbu− VbΨ + WbΦ = Pbf, in Ω (4.34)

Similar to the proof of Lemma 4.1 in [CMN09], one can prove the following

Lemma 1. Let f ∈ L2(Ω), Ψ ∈ H− 1
2 (∂Ω), Φ ∈ H

1
2 (∂Ω), and u ∈ H1(Ω)

satisfy (4.34). Then u ∈ H1,0(Ω; ∆), Lau = f in Ω and

Vb

(
Ψ − T+

a u
)−Wb

(
Φ− u+

)
= 0 in Ω.
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4.4 Two-operator boundary-domain integral equations

Let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be some extensions of the given data
ϕ0 ∈ H

1
2 (∂DΩ) from ∂DΩ to ∂Ω and ψ0 ∈ H− 1

2 (∂NΩ) from ∂NΩ to ∂Ω,
respectively. Let us also denote

F0 := Pbf + VbΨ0 −WbΦ0 in Ω.

Note that for f ∈ L2(Ω), Ψ0 ∈ H− 1
2 (∂Ω) and Φ0 ∈ H

1
2 (∂Ω), we have the

inclusion F0 ∈ H1,0(Ω, La) due to the mapping properties of the Newtonian
(volume) and layer potentials (cf. Theorems 3.1 and 3.10 in [CMN09]).

To reduce BVP (4.5)-(4.7) to one or another two-operator BDIE system,
we will use equation (4.31) in Ω, and restrictions of equation (4.32) or (4.33)
on appropriate parts of the boundary. We will always substitute Φ0 +ϕ for u+

and Ψ0 + ψ for T+
a u, cf. [CMN09], where Φ0 ∈ H

1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω)
are considered as known, while ψ belongs to H̃− 1

2 (∂DΩ) and ϕ to H̃
1
2 (∂NΩ)

due to the boundary conditions (4.6)-(4.7) and are to be found along with
u ∈ H1,0(Ω; ∆). This will lead us to segregated BDIE systems.

4.4.1 Boundary-domain integral equation system (GT )

Let us use equation (4.31) in Ω, the restriction of equation (4.32) on ∂DΩ and
the restriction of equation (4.33) on ∂NΩ. Then we arrive at the following two-
operator segregated system of BDIEs,

u + Zbu +Rbu− Vbψ + Wbϕ = F0 in Ω, (4.35)
Z+

b u +R+
b u− Vbψ +Wbϕ = F+

0 − ϕ0 on ∂DΩ, (4.36)
T+

a Zbu + T+
a Rbu−W ′

abψ + L+
abϕ = T+

a F0 − ψ0 on ∂NΩ . (4.37)

Note that due to Lemma 1, all terms of equation (4.35) belong to H1,0(Ω; ∆)
and their co-normal derivatives are well defined. System (4.35)-(4.37) can be
rewritten in the form

AGT U = FGT ,

where

U> := [u, ψ, ϕ] ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ),

FGT := [F0, r∂DΩ
F+

0 − ϕ0, r
∂N Ω

T+
a F0 − ψ0]>,

AGT :=




I + Zb +Rb −Vb Wb

r
∂DΩ

[Z+
b +R+

b ] −r
∂DΩ

Vb r
∂DΩ

Wb

r
∂N Ω

T+
a [Zb +Rb] −r

∂N Ω
W ′

ab r
∂N Ω

L+
ab


 .
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4.4.2 Boundary-domain integral equation system (GG)

To obtain another system, we will use equation (4.31) in Ω and equation
(4.32), associated with the operator G on the whole boundary ∂Ω, and arrive
at the two-operator segregated BDIE system (GG),

u + Zbu +Rbu− Vbψ + Wbϕ = F0 in Ω, (4.38)
1
2
ϕ + Z+

b u +R+
b u− Vbψ +Wbϕ = F+

0 − Φ0 on ∂Ω . (4.39)

System (4.38)-(4.39) can be written in the form

AGGU = FGG ,

where

FGG := [F0, F+
0 − Φ0]>,

U> := [u, ψ, ϕ] ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ),

AGG :=
[

I + Zb +Rb −Vb Wb

Z+
b +R+

b −Vb
1
2I +Wb

]
.

4.4.3 Boundary-domain integral equation system (T T )

To obtain one more system, we will use equation (4.31) in Ω and equation
(4.33) on ∂Ω and arrive at the two-operator segregated BDIE system (T T ),

u + Zbu +Rbu− Vbψ + Wbϕ = F0 in Ω, (4.40)(
1− a

2b

)
ψ + T+

a Zbu + T+
a Rbu−W ′

abψ + L+
abϕ =

T+
a F0 − Ψ0 on ∂Ω. (4.41)

System (4.40)-(4.41) can be written in the form

AT T U = FT T ,

where

FT T := [F0, T+
a F+

0 − Ψ0]>,

U> := [u, ψ, ϕ] ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ),

AT T :=

[
I + Zb +Rb −Vb Wb

T+
a [Zb +Rb] (1− a

2b
)I −W ′

ab L+
ab

]
.
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4.4.4 Boundary-domain integral equation system (T G)

To reduce BVP (4.5)-(4.7) to a BDIE system of "almost" the second kind (up
to the spaces), we will use equation(4.31) in Ω, the restriction of equation
(4.33) on ∂DΩ, and the restriction of equation (4.32) on ∂NΩ. Then we arrive
at the following two-operator segregated BDIE system (T G),

u + Zbu +Rbu− Vbψ + Wbϕ = F0 in Ω, (4.42)(
1− a

2b

)
T+

a Zbu + T+
a Rbu−W ′

abψ + L+
abϕ =

T+
a F0 − Ψ0 on ∂DΩ, (4.43)

1
2
ϕ + Z+

b u +R+
b u− Vaψ +Waϕ = F+

0 − Φ0 on ∂NΩ. (4.44)

System (4.42)-(4.44) can be rewritten in the form

AT GU = FT G ,

where

FT G := [F0, r
∂DΩ

(T+
a F0 − Ψ0), r

∂N Ω
(F+

0 − Φ0)]>,

U> := [u, ψ, ϕ] ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ),

AT G :=




I + Zb +Rb −Vb Wb

r
∂DΩ

T+
a [Zb +Rb] (1− a

2b
)I − r

∂DΩ
W ′

ab r
∂DΩ

L+
ab

r
∂N Ω

[Z+
b +R+

b ] −r
∂N Ω

Vb
1
2I + r

∂N Ω
Wb


 .

4.4.5 Equivalence and invertibility

Using the arguments similar to the proofs of Theorems 5.2, 5.6, 5.9 and 5.12
in [CMN09], one can prove the following equivalence theorem.

Theorem 4. Let f ∈ L2(Ω) and let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be
some fixed extensions of ϕ0 ∈ H

1
2 (∂DΩ) and ψ0 ∈ H− 1

2 , respectively.

(i) If some u ∈ H1(Ω) solves the mixed BVP (4.5)-(4.7) in Ω, then the solu-
tion is unique and the triple (u, ψ, ϕ) ∈ H1(Ω)× H̃− 1

2 (∂DΩ)× H̃
1
2 (∂NΩ),

where
ψ = T+

a u− Ψ0, ϕ = u+ − Φ0 on ∂Ω, (4.45)

solves BDIE systems (GT ), (GG), (T T ) and (T G).
(ii)Vise versa, if a triple (u, ψ, ϕ) ∈ H1(Ω) × H̃− 1

2 (∂DΩ) × H̃
1
2 (∂NΩ) the

solves BDIE system (GT ) or (GG) or (T T ) or (T G), then the solution is
unique, u solves BVP (4.5)-(4.7), and relations (4.45) hold.
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Application of the representation Lemma 5.13 and Corollary 5.14 as well as
Corollary 5.16 about invertibility of the mixed BVP (4.5)-(4.7) operator, from
[CMN09], along with the equivalence Theorem 4 above, lead to the following
invertibility result.

Theorem 5. The following operators are continuously invertible,

AGG : H1, 0(Ω; ∆)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ) → H1, 0(Ω;∆)×H

1
2 (∂Ω),

AT T : H1, 0(Ω; ∆)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ) → H1, 0(Ω;∆)×H− 1

2 (∂Ω),

AGT : H1, 0(Ω; ∆)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ) →

H1, 0(Ω;∆)×H
1
2 (∂DΩ)×H− 1

2 (∂NΩ),

AT G : H1, 0(Ω; ∆)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ) →

H1, 0(Ω;∆)×H− 1
2 (∂DΩ)×H

1
2 (∂NΩ).
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