
A new unscented Kalman filter with higher order moment-matching

KSENIA PONOMAREVA, PARESH DATE AND ZIDONG WANG

Department of Mathematical Sciences, Brunel University,
Uxbridge, UB8 3PH, UK.

Abstract— This paper is concerned with filtering nonlinear
multivariate time series. A new approximate Bayesian algo-
rithm is proposed which generates sample points and corre-
sponding probability weights that match exactly the predicted
values of average marginal skewness and average marginal kur-
tosis of the unobserved state variables, in addition to matching
their mean and the covariance matrix. The performance of the
algorithm is illustrated by an empirical example of yield curve
modelling with real financial market data. Results show an
improvement in accuracy in comparison with extended Kalman
filter (EKF) and traditional unscented Kalman filter (UKF).
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I. INTRODUCTION

This paper is concerned with the problem of latent state
estimation for a nonlinear time series in discrete time. Our
analysis will focus on the general class of systems with the
following state space form:

X (k + 1) = f(X (k)) +Q(X (k))w(k + 1), (1a)
Y(k) = h(X (k)) + v(k), (1b)

where X (k) and Y(k) are the respective state vector and
measurement vector at time tk; f ,h are given vector-valued
deterministic functions; Q is a matrix valued deterministic
function; and v(k),w(k) are vector-valued random variables.
The time increment tk − tk−1 is assumed constant for all k.
We wish to find an estimate of the random vector X (k), k ≥
1, based on the noisy time series data Y(1),Y(2), ...,Y(k).

In the special case when f , h are affine in X (k), Q is
an identity matrix and v(k),w(k) are Gaussian, the optimal
recursive solution to the state estimation problem is given
by linear Kalman filter, as first outlined in [1]. However,
nonlinear and non-Gaussian models are used to capture the
dynamics of many phenomena occurring in the fields of radar
navigation, climatology, financial modeling and economet-
rics, among others. The optimal recursive solution to the
state estimation problem in nonlinear systems is usually not
available in closed form. Current approaches to address the
nonlinear filtering problems fall under one of the following
approximate Bayesian filtering methods:

(a) Extended Kalman filter (EKF). Under this filter, equa-
tion (1) or its continuous time analogue is locally linearized
resulting in a linear state space system. A Kalman filter
is then employed to obtain the conditional state density of

X (k). This approach is popular in engineering for more
than three decades and standard textbooks such as [2] carry
an extensive discussion of its theoretical underpinnings and
implementation. If the system is approximately linear then
EKF will work well. Nevertheless, such assumption is often
not easy to validate.

(b) Sequential Monte Carlo filter or particle filter (PF). For
this technique, the required conditional density function of
X (k) given measurement Y(k) at time tk is represented by a
set of random samples (or particles) and associated probabil-
ity weights. The particles and weights are updated recursively
as new measurements become available; see [3]-[5] and
references therein for more details on PF. PF can perform
better than EKF for highly nonlinear systems. However, as
large number of samples need to be generated at each time tk,
this type of techniques are computationally quite expensive
to implement, especially for large state dimensions.

(c) Unscented Kalman filters (UKF). This class of filters
provides an increasingly popular alternative to particle filters
in signal processing. UKF may be viewed as a compromise
between an EKF (in the sense that it uses a closed-form
expression for updating the state estimate) and a PF (in the
sense that it uses a set of particles - or sigma points - and
weights to evaluate the terms in that expression). Several
applications in communication, tracking and navigation are
discussed in [6] and [7], among others. Ensemble filter (EF)
used in climatology is closely related to UKF; see [8], [9]
and references therein.

UKF suffers from one major disadvantage, especially for
systems with significant noise terms in the transition equation
(1). Even if the density of X (k|k) at time tk is Gaussian,
a nonlinear f will lead to a prediction X (k + 1|k) whose
density is non-Gaussian in general. Unscented filter assumes
conditional Gaussianity throughout the filter recursions and
may lead to misleading results in case the density departs
too far from the assumed Gaussian density. We propose
an algorithm to partially alleviate this problem while still
working within UKF framework. Specifically, the sigma
points and weights are modified at each time step to match
exactly the predicted values of the average marginal skew-
ness and average marginal kurtosis of the the unobserved
state variables, in addition to matching their mean and the
covariance matrix.

The rest of this paper are organized as follows. Section II
reviews the traditional unscented Kalman filter and Section



III introduces the new algorithm for unscented filter with
higher order moment matching. Section IV illustrates the
utility of our method by comparing its performance in filter-
ing nonlinear, multivariate time series with the performance
of the UKF as well as the EKF. Section V summarizes the
contributions of the paper and outlines directions for further
research.

II. UNSCENTED FILTER

Consider a random n-vector X with mean X̂ and covari-
ance Pxx. A nonlinear tranformation relates X to a second
random vector Y through

Y(k) = h(X (k)) + v(k),

where v(k) is the zero-mean noise vector as in equation (1).
Augmentation method (see, e.g. [10]) incorporates noise into
the augmented random state vector and from here onwards
we will assume h to be an augmented function. The problem
now is to calculate the mean Ŷ and covariance Pyy of Y .

In unscented filter, 2n+1 symmetric sigma points are
chosen so that they have the same mean and covariance as
X .

X(0) = X̂ ,
X(i) = X̂ ± (

√
(n+ κ)Pxx)i,

where i=1,2,...,n, κ is a scaling parameter and (
√
Pxx)i is

the ith column of the matrix square root of Pxx. Probability
weights Wi associated with the ith sigma point X(i) are
defined as

W0 =
κ

n+ κ
, (2)

Wi =
1

2(n+ κ)
, (3)

for i=1,2,...,2n. Given these sigma points and corresponding
weights Ŷ and Pyy are calculated as follows.

(a) Propagate each point through the function to get the set
of transformed sigma points

Y(i) = h(X(i)).

(b) The mean is given by the weighted average of trans-
formed poins

Ŷ =

2n∑
i=0

WiY(i).

(c) The covariance is the weighted outer product of the
transformed points

Pyy =

2n∑
i=0

Wi(Y(i) − Ŷ)(Y(i) − Ŷ)T .

More details on this algorithm can be found in [6]. Note
that, while matching first and second moment accurately,
UKF does not propagate information on 3rd and 4th mo-
ments. Other suggested algorithms, which try to match higher
moments, either require optimization or rely heavily on
analytical solver, as in [11].

III. NEW ALGORITHM FOR UNSCENTED KALMAN
FILTERING

A. Sigma point generation

We want to extend Julier and Uhlmann method in [6] to
asymmetric distributions by introducing additional variables
α and β in order to capture 3rd and 4th moments of
X (k + 1|k) using augmented UKF. Here we consider an
augmented method mentioned in section II, which has been
shown in [10] to give more accurate results compared to
non-augmented UKF in presence of significant noise terms.

Suppose we have X , random n-vector with mean X̂ and
covariance Pxx, and noise, m-vector with zero mean and
covariance Qxx, as in equation (1). Matrices P > 0, Q >
0 are such that Pxx=PPT and Qxx=QQT , where PT is
transpose of P and Pi is the ith column of matrix P. We
create 2(n+m)+1 sigma points and corresponding weights as
follows:

X(0) =

(
X̂

0m×1

)
= X̄ ,

X(i) =

(
X̂ + α

√
NPi

0m×1

)
, i = 1, 2, ..., n,

=

(
X̂ − β

√
NPi

0m×1

)
, i = n+ 1, ..., 2n,

=

(
X̂√

NQi−2n

)
, i = 2n+ 1, ..., 2n+m,

=

(
X̂

−
√
NQi−2n

)
, i = 2n+m+ 1, ..., 2n+ 2m,

where N = n + m and jth element of a sigma point X(i)

will be denoted as X(i)
j . Note that α 6= β would mean a

set of points distributed asymmetrically about the mean X̂ .
The probability weight corresponding to the point X(i) is
denoted as Wi. In order to exactly match the expected mean
and the covariance matrix, the weights Wi have to satisfy
the following conditions:

2N∑
i=0

Wi = 1, (4)

2N∑
i=0

WiX
(i) =

(
X̂

0m×1

)
, (5)

2N∑
i=0

Wi(X
(i) − X̄ )(X(i) − X̄ )T =

(
Pxx 0n×m
0m×n Qxx

)
.(6)

Note that Wi ≥ 0 and
∑2N
i=0Wi = 1 mean the set of prob-

ability weights and corresponding sigma points {Wi, X
(i)}

forms a valid probability distribution. This is not always the
case in unscented Kalman filter, since κ in (2)-(3) is not
restricted to be positive. Equations (4)-(6) give us explicit



expressions for weights in terms of N, α and β:

Wi =
1

α(α+ β)N
, i = 1, 2, ..., n, (7)

=
1

β(α+ β)N
, i = n+ 1, ..., 2n, (8)

= (
1

2N
), i = 2n+ 1, ..., 2n+ 2m, (9)

W0 = 1−
2N∑
i=1

Wi. (10)

Define the marginal 3rd and 4th central moments as

ωj =

2N∑
i=0

Wi(X
(i)
j − X̄j)

3,

ψj =

2N∑
i=0

Wi(X
(i)
j − X̄j)

4.

As we have only two degrees of freedom (viz α and β),
we choose to match the average third and fourth marginal
moments of the state vector alone (i.e. ignoring the moments
of noise terms). Note that it is possible to match average
marginal moments of the augmented state vector, although
it is not done here. We have

1

n

n∑
j=1

2N∑
i=0

Wi(X
(i)
j − X̄j)

3 =
1

n

n∑
j=1

ωj ,

1

n

n∑
j=1

2N∑
i=0

Wi(X
(i)
j − X̄j)

4 =
1

n

n∑
j=1

ψj .

Substituting expressions for Wi from (7)-(10) we get

α− β =

∑n
j=1 ωj√

N
∑n
l=1

∑n
k=1 P

3
ij

=: φ1, (11)

α2 − αβ + β2 =

∑n
j=1 ψj

N
∑n
l=1

∑n
k=1 P

4
ij

=: φ2, (12)

where Pij is entry in ith row and jth column of matrix P,
so that φ1 and φ2 are known from data. Solving these yields

α =
1

2
φ1 ±

1

2

√
4φ2 − 3φ2

1, (13)

β = −1

2
φ1 ±

1

2

√
4φ2 − 3φ2

1, (14)

where we take values of the same sign. Provided φ2 ≥ 3
4φ

2
1,

(which is trivially true for symmetric distributions), α and
β allow us to capture and propagate the marginal skewness
and marginal kurtosis.
Note that unscented filter in section II employs the same
weights Wi for all sigma points X(i) for i > 0. In
comparison, we have different expressions for probability
weights depending on i in (7)-(9). A similar approach is
taken in [11]. The paper proposes a method where a set of
nonlinear algebraic equations is solved to find support points
and probability weights to match a given set of moments.
However, the probability weights found are held constant
throughout the recursion and a closed form analytic solution

is given only for the Gaussian case (in particular, with zero
skewness).

B. Filtering Algorithm for Unscented Kalman Filtering

Once the sigma points X(i) and weights Wi are generated
as in the previous section, we can find the one step prediction
for mean and covariance matrix using

E(x|y) = E(x) + ΣxyΣ−1
yy (y − E(y)), (15)

E(x− E(x|y))(x− E(x|y))> = Σxx − ΣxyΣ−1
yy Σyx, (16)

for x and y jointly Gaussian.

The filtering algorithm can be described as follows.

(a) Given X̂ (k|k − 1), Pxx(k|k − 1) use

X (i)(k + 1|k) = f(X(i)) + PxyP
−1
yy (Yk − h(X (i)(k|k))),

X̂ (k + 1|k) =

2N∑
i=0

WiX (i)(k + 1|k),

where Yk is the true measurement and X (i)(k|k) = f(X(i)).
Pxx(k + 1|k) is computed similarly using (16). Covariance
matrices Pxy(k + 1|k) and Pyy(k + 1|k) are worked out as

Pxy(k + 1|k) =

2N∑
i=0

Wi(X (i)(k|k)− X̂ (k|k))v(i)(k)T ,

Pyy(k + 1|k) =

2N∑
i=0

Wiv
(i)(k)v(i)(k)T ,

where v(i)(k) = Y(i)(k + 1) − Ŷ(k + 1), Y(i)(k + 1) =
h(X (i)(k|k)) and Ŷ(k + 1) =

∑2N
i=0WiY(i)(k + 1).

(b) Calculating average marginal skewness and average
marginal kurtosis of X (i)(k+ 1|k) provides us with updated
values for α and β via (13)-(14). Now we use these values to
generate new set of sigma points and corresponding weights
at time tk+1.

IV. NUMERICAL EXAMPLE

To test the efficiency of the new algorithm for unscented
filtering we consider discretisation of the multi-factor CIR
model with nonlinear measurement equation. The state evo-
lution is given as below. This is a multivariable extension of
the model first proposed in [12]; see [13] for more details
on the use of this model in filtering context.

Xj(k + 1) = κjεjθj + (1− κjεj)Xj(k) +Qj(k)wj(k),

for j = 1, 2, where wj(k) are zero mean, unit variance
and uncorrelated Gaussian random variables. The standard
deviation Q is given by

Qj(k) = σj

√
εj(

1

2
θj(κjεj + (1− κjεj)Xj(k − 1)),



where κj , σj and θj are constants and

εj =
( 1− e(−κj∆))

κj
.

The observable variables are exponential in the latent states
and are given by

Yi(k) = Π2
j=1

Ai,j exp(−
2∑
j=1

(Bi,jXj(k)))

+ zi(k),

where

Ai,j =

(
2γj exp((κj + γj + λj)Ti/2)

2γj + (κj + λj + γj)(exp(Tiγj)− 1)

) 2κjθj

σ2
j
,

Bi,j =
2(exp(Tiγj)− 1)

2γj + (κj + λj + γj)(exp(Tiγj)− 1)
,

γj =
√

(κj + λj)2 + 2σ2
j .

zi(k) is observational noise with zero mean and a constant
variance h2 for each i and λi are constants. In practice, Ti
represents time to maturity and Yi(k) represents the price of
a zero coupon bond with maturity Ti + tk, at time tk. Here
we use three maturities, T1 = 1, T2 = 2 and T3 = 4.

For numerical experiments, we use weekly data from
February 2001 to July 2005 for 3 different UK government
bond yields. Here 180 observations were used for calibration
and 42 were used for out-of-sample validation. A 2-factor
model was calibrated using the extended Kalman filter and
the maximum likelihood method. In-built optimization rou-
tines from MATLAB were used for calibration. Table 1 re-
ports the parameter values obtained as a result of calibration.

Table 1. Parameter values

θ1 0.0254
θ2 0.0175
σ1 0.0710
σ2 0.1870
κ1 0.0978
κ2 0.8035
λ1 −0.0350
λ2 −0.0490
h 0.001

After calibration, we use the sigma point generation
method described in section III to generate sigma points at
each tk, with initial values for mean θj and diagonal elements

of covariance as
θjσ

2
j

2κj
. Eleven sigma points are generated at

each tk. Bearing in mind the nonnegativity restriction on state
variables Xj(k) ≥ 0 we replace any negative element of state
estimate Xj(k|k − 1) with zero. These points are then used
to construct X̂j(k + 1|k), j = 1, 2 and the corresponding
predictions of Yi(k + 1), i = 1, 2, 3. As a benchmark for
comparison, we use the predictions made using the extended
Kalman filter and traditional UKF described in section II.

To compare the performance of sigma point filters and
extended Kalman filters, for each time to maturity τk we

consider the sample mean of the relative absolute error
(MRAE) defined as

MRAEi =
1

M

M∑
j=1

|Yi(j)− Ŷi(j)|
Yi(j)

.

This was computed over the relevant set of M observations
of in-sample and out-of-sample data separately. Tables 2-
3 list the errors computed for one step ahead prediction
of yields for the extended Kalman filter (EKF), traditional
unscented filter (UKF) and the higher order sigma point
filter (HOSPF) proposed here. It can be seen that the new
sigma point filter outperforms the extended Kalman filter
and unscented filter, in-sample and especially out-of-sample
and for all yields. In particular, the improvement for out-of-
sample predictions achieved with HOSPF is over 10% for
all the yields, as compared to UKF. This small improvement
is obtained with very little extra computational effort.

Table 2. Relative absolute errors of 1-step ahead
in-sample prediction

τk EKF UKF HOSPF
1Y 0.00237 0.00079 0.00075
2Y 0.00388 0.00198 0.00190
4Y 0.00606 0.00365 0.00349

Table 3. Relative absolute errors of 1-step ahead
out-of-sample prediction

τk EKF UKF HOSPF
1Y 0.004114 0.00075 0.00066
2Y 0.006832 0.00144 0.00125
4Y 0.011320 0.00300 0.00268

V. SUMMARY

In this paper, we have proposed a new algorithm in
which the sigma points and weights are modified at each
step to match exactly the predicted values of the average
marginal skewness and the average marginal kurtosis,
besides matching the mean and covariance matrix. For
filtering high dimensional data, this algorithm is a very
useful alternative to the extended Kalman filter (due to
improved accuracy) and is computationally no more difficult
than the standard UKF. A numerical example shows that
our method ouperforms the traditional UKF and the EKF.
Currently we are testing the sensitivity of this algorithm
to the changes in model parameters and the theoretical
accuracy using Taylor series expansion of the estimation
error.

References

[1] KALMAN, R.E. (1960) A new approach to linear filter-
ing and prediction problems, Journal of Basic Engineering,
82, 35-45.

[2] B. ANDERSON AND J. MOORE (1979) Optimal Filter-
ing, Prentice-Hall



[3] G. KITAGAWA (1996) Monte Carlo filter and smoother
for non-Gaussian nonlinear state space models, Journal of
Computational and Graphical Statistics, 5, 1-25.

[4] ARULAMPALAM, M.S., MASKELL, S., GORDON, N.
& CLAPP, T. (2002) A tutorial on particle filters for online
nonlinear /non-Gaussian Bayesian tracking, IEEE Transac-
tions on Signal Processing, 50, 174-188.

[5] DAUM, F. (2005) Nonlinear filters: beyond the Kalman
filter, IEEE Aerospace and Electronic Systems Magazine, 20,
57-69.

[6] S. JULIER AND J. UHLMANN (2004) Unscented filter-
ing and nonlinear estimation, Proceedings of the IEEE, 92,
401-422.

[7] A. FARINA, B. RISTIC, AND D. BENVENUTI (2002)
Tracking a ballistic target: comparison of several nonlinear
filters, IEEE Transactions on Aerospace and Electronic Sys-
tems, 38, 854-867.

[8] H. MITCHELL AND P. HOTEKAMER (1998) Data
assimilation using an ensemble Kalman filter technique,
Monthly Weather Review, 126, 796-811.

[9] EVENSEN, G. (1994) Sequential data assimilation
with a nonlinear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics, Journal of Geography,10,
143-162.

[10] YUANXIN WU, DEWEN HU, MEIPING WU, AND XI-
AOPING HU (2005) Unscented Kalman Filtering for Additive
Noise Case: Augmented versus Non-augmented, IEEE Signal
Processing Letters, 12, 357-360.

[11] D. TENNE AND T. SINGH (2003) The higher order
unscented filter, Proceedings of American Control Confer-
ence, 3, 2441-2446.

[12] COX, J.C., INGERSOLL, J.E. AND ROSS, S.A.
(1985) A theory of the term structure of interest rates,
Econometrica, 53, 385-407.

[13] GEYER, A. AND PICHLER, S. (1993) A state-space
approach to estimate and test multifactor cox-ingersoll-ross
models of the term structure, Journal of Financial Research,
22, 107-130.


