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Abstract 
 
We review financial portfolio optimisation. Markowitz mean-
variance portfolio optimisation is relatively well known, but has been 
extended in recent years to encompass cardinality constraints.  
 
Less considered in the scientific literature are portfolio optimisation 
problems such as: index tracking; enhanced indexation; absolute 
return; market neutral.  
 
We outline the mathematical optimisation models that can be adopted 
for portfolio problems such as these and solution approaches that can 
be used. 
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Key concepts 
 
Different types of portfolios require different mathematical 
models  
 
Even for portfolios intended for the same purpose the model to 
use is not uniquely defined 
 
Adopt an optimisation mindset in building/choosing a model 
 
Nonlinear models are more difficult to solve numerically than 
linear models 
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Back to school 
 
Could you solve 
 

2x + 3y = 7 
 

4x - 7y = 1 
 
simultaneous linear equations 
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Back to school 
 
Could you solve 
 

2(x/y) + 3xy = 7 
 

4x - 7y = 1 
 
simultaneous nonlinear equations 
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Markowitz mean-variance portfolio optimisation 
Purpose: portfolios which balance risk and return  
 
We need some notation, let: 
N be the number of assets (e.g. stocks) available 
μi be the expected (average, mean) return (per time period) of asset i 
σij be the covariance between the returns for assets i and j 
R be the desired expected return from the portfolio chosen 
 
Then the decision variables are: 
wi the proportion of the total investment associated with (invested 

in) asset i (0≤wi≤1)  
Using the standard Markowitz mean-variance approach we have that 
the unconstrained portfolio optimisation problem is: 
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minimise wiwjσij 
N

i=1
∑ ∑

N

j=1

subject to 
N

 wiμi = R 
i=1
∑

 wi = 1 
N

i=1
∑

 0 ≤ wi ≤ 1 i=1,...,N 
 
Here we minimise the total variance (risk) associated with the 
portfolio whilst ensuring that the portfolio has an expected return of 
R and that the proportions sum to one. This formulation is a simple 
nonlinear programming problem. 
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Usually nonlinear problems are difficult to solve, but in this case 
because the objective is quadratic and σij is positive semidefinite, 
computationally effective algorithms exist so that there is (in 
practice) little difficulty in calculating the optimal solution for any 
particular data set.  
 
The point of the above optimisation problem is to construct an 
efficient frontier, (unconstrained efficient frontier, UEF) a smooth 
non-decreasing curve that gives the best possible tradeoff of risk 
against return, i.e. the curve represents the set of Pareto-optimal 
(non-dominated) portfolios. 
 
One such efficient frontier is shown below for assets drawn from the 
UK FTSE index of 100 top companies. 
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Efficient frontier for the FTSE 100 

Risk - variance
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Selected portfolio
contains 1 asset

Selected portfolio
contains 30 assets
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The approach followed in Markowitz mean-variance optimisation is: 
• look into the (immediate) past for relevant data (in-sample data) 
• use that data to form a portfolio, as outlined in the model above, 

where the in-sample data is used to produce values for μi and σij 
that are used in the optimisation model 

• hold that portfolio into the (near) future (out-of-sample) 
 
The underlying logic is that, since accurately forecasting future 
prices/returns for assets is extremely difficult, data from the 
immediate past is our best guide to construct a portfolio to hold into 
the immediate future.  
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All of the mathematical models you will see here have been 
deliberately simplified because of time constraints. If you want to 
add in more realistic features such as: 
• restricting the proportion invested in any asset 
• restricting the proportion invested in sets of assets (class/sector 

constraints) 
• rebalancing an existing portfolio 
• incorporating transaction costs associated with trading 
• incorporating both long and short positions 

this can (in many cases) be done. 
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Transaction cost 
 
In the context of Markowitz mean-variance portfolio optimisation the 
role of transaction cost is that it is the price we pay (now) to enable 
us to move from our existing portfolio to a new portfolio that will (on 
the basis of in-sample optimisation), have a better performance than 
our existing portfolio.  
 
As such the role of the holding period, the number of time periods 
(H) for which we intend to hold the new portfolio, must be 
considered. In particular a consequence of the Markowitz model in 
the presence of transaction cost is that trading: 
• reduces return; but also 
• reduces risk. 
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As an indication as to how the holding period affects the efficient 
frontier the figure below shows efficient frontiers for a 31 asset 
example for a variety of holding periods.  
 
Here the dotted nature of the efficient frontiers results from the fact 
that (for computational reasons) we have only examined a limited 
number of values of R in plotting the frontiers seen. 
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Markowitz mean-variance portfolio optimisation with cardinality 
constraints 
Purpose: portfolios which balance risk and return AND which 
allow us to control the number of assets held 
 
Imposing a cardinality constraint to restrict the number of assets (K, 
say) in which we can invest can only (for a given level of return) 
increase risk. This is because in the UEF above, for a given level of 
return, the risk is at a minimum (as the mathematics for the 
Markowitz model explicitly requires). The practical reason why we 
might impose a cardinality constraint is that we may find it more 
convenient to have a portfolio with just a few assets, or simply that 
we desire a degree of control to shape the optimised portfolio with 
respect to the number of assets that it contains. 
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Introducing zero-one decision variables: 
zi = 1 if any of asset i is held, = 0 otherwise 
 
the cardinality constrained portfolio optimisation problem is: 

N N

minimise wiwjσij 
i=1
∑ ∑

j=1

subject to 
N

 wiμi = R 
i=1
∑

 wi = 1 
N

i=1
∑

 zi = K 
N

i=1
∑

 0 ≤ wi ≤ zi i=1,...,N 
 zi∈[0,1]  i=1,...,N 

 16 



Algorithmically the above mathematical program is hard to solve (as 
it is a mixed-integer quadratic program). A mixed-integer program is 
one in which some variables take continuous (fractional) values, 
some take integer values. 
 
Typically therefore in the literature metaheuristics such as: 
• genetic algorithms (evolutionary algorithms) 
• tabu search 
• variable neighbourhood search 
• simulated annealing  

have been applied to the problem. 
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Definitions 
 
An optimal algorithm is one which (mathematically) guarantees to 
find the optimal solution (e.g. to an optimisation problem) 
 
A heuristic algorithm has no such guarantee 
 
A metaheuristic is a “framework” within which you design a 
heuristic for the problem you are considering 
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For the unconstrained portfolio optimisation problem the frontier was 
a nice smooth continuous curve 
 
In the presence of cardinality constraints the efficient frontier may 
become discontinuous, where the discontinuities imply that there are 
certain returns which no rational investor would consider (since there 
exist portfolios with less risk and greater return). 
 
To illustrate this point the figure below shows four assets (stocks) 
drawn from the FTSE 100. In that figure all possible portfolios 
involving exactly two assets (K=2) are shown. 
 
For four assets there are 4×3/2 = 6 possible choices of pairs of assets, 
each of which leads to a different curve in the figure below. 
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The figure below shows the efficient frontier as derived from the 
figure above. Note the discontinuities – where there are return values 
for which there is no portfolio having that return which is not 
dominated. We refer to the cardinality constrained efficient frontier 
as the CCEF. 
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As an illustration of what can be achieved with cardinality 
constrained portfolio optimisation we show below some tradeoff 
curves for assets chosen from the DAX index. 
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Consistent portfolios 
Purpose: portfolios which perform out-of-sample in a fashion 
consistent with their in-sample performance  
 
The logic behind Markowitz approaches is that we use known data 
(in-sample data) to construct frontiers of the types you have seen 
above and then choose a portfolio from the frontier to invest in. Our 
portfolio then varies in value as we hold it out-of-sample. 
 
Criticisms of Markowitz approaches essentially often focus around 
the fact that, out-of-sample, portfolios chosen from the (in-sample 
derived) frontier do not behave in a fashion that their position on the 
frontier would imply.  
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Fact 
If you decide to invest in a portfolio (e.g. one chosen from the 
Markowitz efficient frontier) you are explicitly investing in a 
particular in-sample distribution of returns. 
 
Question 
If you consider the returns you get out-of-sample from your chosen 
portfolio would you like those returns to be drawn from the same 
distribution as the in-sample distribution or not? 
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The picture below shows an approach that attempts to illuminate this.  
 
In the green consistency region (shown using hollow squares) we 
have portfolios where we will typically get returns out-of-sample 
consistent with in-sample behaviour.  
 
The red region, shown using solid squares, exhibits inconsistent 
behaviour.  
 
Note that for this particular example most of the portfolios on the 
efficient frontier exhibit inconsistent behaviour. 
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Index tracking 
Purpose: portfolios which give the same return as a specified 
benchmark market index  
 
We can view the index tracking problem as a decision problem, 
namely to decide the subset of stocks to choose so as to (hopefully 
perfectly) mirror/reproduce the performance of the index over time. 
We call the subset of stocks we choose a tracking portfolio (TP). 
 
Suppose that we observe over time 0,1,2,...,T the value of N stocks, 
as well as the value of the index we want to track. Further suppose 
that we are interested in deciding the best set of K stocks to hold 
(where K<N), as well as their appropriate quantities. In index 
tracking we want to answer the question: 
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"what will be the best set of K stocks to hold, as well as their 
appropriate quantities, so as to best track the index in the future 
(from time T onward)?" 

 
Our basic approach in index tracking is a historic look-back 
approach. To ask the historic question: 
"what would have been the best set of K stocks to have held, as well 

as their appropriate quantities, so as to have best tracked the index 
in the past (i.e. over the time period [0,T])?" 

and then hold the stocks that answer this question into the immediate 
future.  
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Let: 
Vit be the value (price) of one unit of stock i at time t
It be the value of the index at time t 
C be the amount we have to invest at time T  
 
Then our decision variables are: 
xi the number of units of stock i that we choose to hold in the TP 
zi = 1 if any of stock i is held in the TP 

= 0 otherwise 
 
Without significant loss of generality we allow [xi] to take fractional 
values. 
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The constraints associated with the index tracking problem are: 
 

N

i=1
∑ zi = K 
ViTxi/C ≤ zi    i=1,...,N 

N

i=1
∑ViTxi = C  
xi ≥ 0       i=1,...,N 
zi∈[0,1]      i=1,...,N 
 

These constraints are general in the sense that they also apply to 
the other portfolio problems we consider below, but these 
constraints will not (for space reasons) be repeated below. 
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In time period t we get a return associated with the index, Rt = 
loge(It/It-1), where we define return using continuous time. If, in each 
and every time period, the return associated with the TP,  

N N

rt = loge[[
i=1
∑Vitxi]/[

i=1
∑Vit-1xi]], was EXACTLY equal to Rt then this 

might seem ideal. A possible objective in terms of index tracking is 

therefore: minimise 
T

t=1
∑ (rt - Rt)2/T, i.e. minimise average squared 

error. 
 
The index tracking problem, as formulated above, is a mixed-integer 
nonlinear program, and so hard to solve. Algorithmically 
metaheuristics can be applied.  
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Alternatives 
One consideration when working in the finance area as it relates to 
portfolio optimisation is that problems are (mathematically) 
typically not uniquely defined. That is, there are different 
mathematical models that take different (but valid) views of the 
problem. Taking Markowitz mean-variance (for example, where we 
are seeking portfolios that balance risk and return) could we not 
define risk using some measure other than variance?  
 
With regard to index tracking an alterative view relates to regression. 
Suppose we perform a linear regression of the return from the 
tracking portfolio against the return from the index, i.e. the regression 
rt = α+βRt. What intercept α and slope β would you expect to get if 
you perfectly track the index? 
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Answer:          intercept α = 0 
         slope β = 1 
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Answer:          intercept α = 0 
         slope β = 1 

 
Optimisation model:  minimise |α - 0|  

         minimise |β - 1|  
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Optimisation model:  minimise |α - 0|  
         minimise |β - 1|  

 
For example here we could adopt a two-stage approach and first 
minimise |β - 1| to achieve an optimal value for β of β*; then 
minimise |α - 0| but setting β=β* to retain the optimal value of β 
achieved at the first stage. 
 
Although this optimisation model seems nonlinear in fact we can 
linearise it so as to end up with a (mixed-integer) linear program that 
computationally is easily solved. 
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Consider the two different mathematical optimisation models for 
index tracking above: 
• one a nonlinear model based on minimising the average squared 

difference between tracking portfolio return and index return 
• one a linear model based on regression, seeking to achieve 

regression coefficients for the tracking portfolio, when its return is 
regressed against index return, as close to ideal values (intercept 
zero, slope one) as possible 

Each of these models had their own logic and each, by themselves, 
seem perfectly reasonable. However there is limited overlap between 
them. One uses regression coefficients for example, the other does 
not. This is an illustration of one of the key concepts we introduced 
at the start of this tutorial paper: even for portfolios intended for the 
same purpose the model to use is not uniquely defined. 
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In fact there are other alternative models for index tracking. 
 
For instance instead of using least-squares (mean) regression (which 
as a statistical technique dates from the late 1800’s) use quantile 
regression (dating from the late 1970’s). 
 
More specifically adopt a regression model for index tracking, but 
based on median (50% quantile) regression. 
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Enhanced indexation – specified excess return 
Purpose: portfolios which achieve a specified excess return with 
respect to a given benchmark market index  
 
• take the return Rt given by the current index 
• create an artificial (enhanced return) index whose return is At = 

Rt+R* where R* is the desired excess return per time period 
• track this enhanced return index At 
 
So here for example we could apply our first index tracking model 

above directly and minimise 
T

t=1
∑ (rt - At)2/T to find an enhanced 

indexation portfolio.  
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But again alternatives exist, specifically: 
 
1. use least-squares mean regression, as above for index tracking, but 

with respect to At, seeking a regression slope of one and a 
regression intercept of zero (so seeking rt = At) 

 
2. use median quantile regression, as above for index tracking, but 

with respect to At, seeking a regression slope of one and a 
regression intercept of zero 
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Question 
 

minimise 
T

t=1
∑ (rt - At)2/T 

 
Can you see how to use this to decide the composition of an 
exchange traded fund (ETF) portfolio that gives a multiplier λ of the 
return on a specified index? 
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Question 
 

minimise 
T

t=1
∑ (rt - At)2/T 

 
Can you see how to use this to decide the composition of an 
exchange traded fund (ETF) portfolio that gives a multiplier λ of the 
return on a specified index? 
 
Answer         Set At = λRt 
 
e.g. λ=2, λ=-1 
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Enhanced indexation - outperform 
Purpose: portfolios which do better than a given benchmark 
market index  
Here one objective that can be used is a modified Sortino ratio, 
namely:  

maximise ( rt/T - Rmean)/√[ 

T

t=1
∑

T

t=1
∑ (min(0, rt - Rmean))2/T] 

   where Rmean=(
T

t=1
∑Rt/T) is the mean return on the index 

The table below shows some results for this objective, solved using a 
metaheuristic algorithm. Here we consider the S&P Global 1200 
index (over the period 1999-2006), where we are choosing a portfolio 
of 100 stocks and holding that portfolio for a specified period before 
rebalancing. 
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Holding period  
in weeks 

Out-of-sample return (% per year) 
in excess of the index 

4 10.5 
12 12.3 
24 11.2 
36 12.0 
48 9.5 

 
My experience has been that (subject to certain qualifications) it is 
not difficult to develop decision models based on optimisation which 
can find portfolios that (out-of-sample) outperform an index.  
 
Typically what you cannot do (or at least I cannot do) is to have 
precise control over the level of outperformance. 
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Absolute return/market neutral portfolios 
Purpose: portfolios which do well irrespective of how a 
benchmark market index performs 
 
The terms “absolute return portfolio” and “market neutral portfolio” 
tend to be used fairly interchangeably in finance. Here we adopt an 
academic perspective and distinguish between absolute return/market 
neutral in the sense that: 
• we regard an absolute return portfolio as one that (ideally) gives a 

constant return per period 
• we regard a market neutral portfolio as one that (ideally) has zero 

correlation between portfolio return and index return 
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Absolute return portfolio 
Suppose we perform a linear regression of the return from the 
portfolio against time, i.e. the regression rt = α+βt. What intercept α 
and slope β would you like if you are seeking an absolute return 
portfolio that (ideally) gives a constant return per period? 
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Absolute return portfolio 
Suppose we perform a linear regression of the return from the 
portfolio against time, i.e. the regression rt = α+βt. What intercept α 
and slope β would you like if you are seeking an absolute return 
portfolio that (ideally) gives a constant return per period? 
 
 
Answer:          slope β = 0 
              intercept α as large as possible 
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Absolute return portfolio 
Suppose we perform a linear regression of the return from the 
portfolio against time, i.e. the regression rt = α+βt. What intercept α 
and slope β would you like if you are seeking an absolute return 
portfolio that (ideally) gives a constant return per period? 
 
 
Answer:          slope β = 0 
              intercept α as large as possible 
 
Optimisation model:  minimise |β - 0|  

        maximise α 
 
This can be expressed as a (mixed-integer) linear optimisation model  
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The figure below shows some out-of-sample results for this 
approach, for the S&P Global 1200 index. Here (over the period 
1999-2006) we are choosing a portfolio of 250 stocks and holding 
that portfolio for 26 weeks before rebalancing. 

 

 48 



Market neutral portfolio 
Suppose that we calculate the correlation coefficient Γ between 
portfolio return rt and index return Rt. What value for the correlation 
coefficient would you like if you are seeking a market neutral 
portfolio? 
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Market neutral portfolio 
Suppose that we calculate the correlation coefficient Γ between 
portfolio return rt and index return Rt. What value for the correlation 
coefficient would you like if you are seeking a market neutral 
portfolio? 
 
 
Answer:          Γ = 0 
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Market neutral portfolio 
Suppose that we calculate the correlation coefficient Γ between 
portfolio return rt and index return Rt. What value for the correlation 
coefficient would you like if you are seeking a market neutral 
portfolio? 
 
 
Answer:          Γ = 0 
 
Optimisation model:  minimise |Γ|  
 
This is a mixed-integer nonlinear program  
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The table below shows out-of-sample statistics for market neutral 
portfolios (derived using the model above) with respect to a number 
of benchmark indices.  
 
In that table we show results for Long Only portfolios and for 
portfolios with a fixed mix of Long/Short positions (so for 130/30 we 
have 30% of the investment in short positions, 130% in long 
positions).  
 
The table shows the out-of-sample values (based on a holding period 
of 13 weeks) for correlation and portfolio excess return (return over 
and above the index) over 30 rebalances for three indices. 
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 Out of sample 
Long Only Correlation Excess return (% p.a.) 
S&P Europe 350 0.448 20.5 
S&P US 500 0.494 11.5 
S&P Global 1200 0.330 32.0 
130/30   
S&P Europe 350 0.263 10.2 
S&P US 500 0.319 17.1 
S&P Global 1200 0.264 -9.5 
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Key concepts 
 
Different types of portfolios require different mathematical 
models  
 
Even for portfolios intended for the same purpose the model to 
use is not uniquely defined 
 
Adopt an optimisation mindset in building/choosing a model 
 
Nonlinear models are more difficult to solve numerically than 
linear models 
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Thank you for your attention 
 
 

Any questions? 
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