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In this paper we consider route first—cluster second methods for the vehicle routing problem.
Extensions to the basic method both to improve its effectiveness and to enable it to cope with practical

constraints are described. Computational results are
routing problems drawn from the literature.

INTRODUCTION

THE VEHICLE routing problem can be defined
as the problem of designing routes for delivery
vehicles of known capacities, operating from a
single depot, to supply a set of customers with
known locations and known demand for a
certain commodity. Routes for the vehicles are
designed to minimise some objective such as the
total distance travelled.

Recent surveys [5,17,20] list many ap-
proaches (both heuristic and optimal) to the
problem. In this paper we evaluate one ap-
proach to the problem based upon a route
first—cluster second heuristic. A similar ap-
proach has been successfully applied to bus
routing problems [3, 18], the routing of electric
meter readers [19], the routing of street sweepers
[2,4] and vehicle fleet size and mix problems
[16]. However, as far as we are aware, no
evaluation of the approach on standard vehicle
routing problems (which would enable it to be
compared with other methods) has been pub-
lished. This paper attempts to remedy this.

We also give a number of extensions to the
basic method that illustrate that it can be easily
adapted to deal with many of the practical
constraints encountered in vehicle routing. We
first describe the basic method.

BASIC METHOD

The basic route first—cluster second method
is best illustrated by a diagram. Consider Fig. 1
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given for the method applied to standard vehicle

where we have a central depot surrounded by a
number of customers. We first form a ‘giant
tour’ from the depot around all the customers
and back to the depot (i.e. a travelling salesman
tour around all the customers including the
depot). This tour can be formed in a number of
different ways, as discussed later.

Customer

Customer

Customer

Customer

Customer

Customer

FiG. 1. Giant tour.

The key to the approach is that it is very easy
to optimally partition such a tour into a set of
feasible vehicle routes. Arbitrarily assign a di-
rection to the giant tour and (without loss of
generality) let 1 be the first customer on the
directed tour after the depot (which we denote
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by 0), 2 be the second customer on the tour after
the depot, ..., n be the last customer on the
tour after the depot. Let (d;) be the inter-
customer distance matrix and define a matrix
(cij) by
c; = the distance travelled by a vehicle in
supplying  the customers (i +1,
i+2,...,J) in that order if the vehicle
route (0, i+ 1,i+2,...,J,0)is feasible
(i <))
= o0 otherwise;
ie.
j—1
ci/-=d0(i+l)+k Z Idk(k+l)+dj0 or ¢, = oo.
=i+
Note that we assume here that all vehicles are
identical. If we then find the least cost path from
0 to n in the directed graph with arc costs (cy)
we will have an optimal partition of the (di-
rected) giant tour into feasible vehicle routes.
(Note that if no path from 0 to n exists then the
problem is infeasible.)

For example, suppose that the least cost path
from 0 to n is 0—s—t—n of total cost ¢y, + ¢, + ¢,
then from the way that ¢; is defined we must
have s <t <n. The first part O—s of this least
cost path involves a vehicle supplying customers
I, 2,..., s in that order (from the definition of
¢os)- The second part s—¢ of this least cost path
involves a vehicle supplying customers s + 1,
s +2,...,tin that order (from the definition of
¢,). The final part 1—n of this least cost path
involves a vehicle supplying customers ¢ + 1,
t+2,..., n (from the definition of c,).

We know that each of these three vehicle
routes is feasible (from the definition of the (c;))
and together they supply all the customers.
Hence we have a solution to the vehicle routing
problem. Note that this partition of the giant
tour into three feasible vehicle routes is optimal
since we found the least cost path from 0 to n
in the directed graph with arc costs (c;). (Any
path from 0 to » corresponds to a partition of
the giant tour into feasible vehicle routes and
the least cost path from 0 to » corresponds to
an optimal partition.)

Note that, in general, if the least cost path
from 0 to n involves m arcs then m vehicles are
used.

OVERVIEW

We can see from the above description why
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the method is called route first—cluster second.
We first decide the order in which the customers
are to be visited (the routing part of the process)
and then partition the customers (cluster the
customers) into sets that constitute feasible
vehicle routes.

On paper this route first—cluster second heu-
ristic appears to be attractive for a number of
reasons:

(1) The use of a giant tour ensures that custom-
ers who are near to each other are close
together on the giant tour and hence likely
to be together on the vehicle routes consid-
ered in the formation of the matrix (cy.

(2) Via the partitioning approach we are able
implicitly to consider a large number of
feasible vehicle routes and from them pick
an optimal set of routes.

(3) The partitioning of the giant tour is rela-
tively fast computationally (e.g. using the
algorithm of Dijkstra [13] involves only
0(n*) operations).

(4) Because the partitioning procedure is fast
(and the other parts of the method are also
not particularly time consuming) one can
start from a number of different giant tours
and produce a feasible set of vehicle routes
from each tour. This overcomes the problem
that any single giant tour might lead to a bad
set of vehicle routes.

Note here that since it is easily shown that an
optimal travelling salesman (giant) tour fol-
lowed by an optimal partitioning does not nec-
essarily lead to an optimal set of vehicle routes,
one would expect that a heuristic, rather than
optimal, approach to the formation of the giant
tour would be sufficient (e.g. an initial random
tour followed by a 2—optimal [7] procedure or
see [9] for other heuristic approaches to the
travelling salesman problem). Levy et al. [16]
make a number of similar points in their dis-
cussion of the use of the approach for vehicle
fleet size and mix problems.

Finally we note that the fact that other au-
thors have reported success with the approach
applied to problems similar to the vehicle rou-
ting problem [2, 3, 4, 16, 18, 19] would also lead
one to suppose that it would be an effective
method for the vehicle routing problem.
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EXTENSIONS

There are a number of extensions that we can

make to the basic method described above both
to improve its effectiveness and to enable it to

cope with the practical constraints associated
with vehicle routing problems. We first extend
the definition of the (c;) to be

¢; = the total cost of supplying the customers
Gi+1,i+2,...,j)in any order if the
route supplying them is feasible (i <j)

= oo otherwise;

i.e. we have extended the definition of (c;) to
represent the total cost of supplying a set of
customers (whereas before we merely took into
account the mileage travelled) and have
dropped the constraint that we can only supply
them in the order (i + 1, i +2,..., j).

Then the modifications we can make to the
basic method are as follows:

(1) We can add any fixed cost associated with
the vehicle used to supply ( +1,i+2,...,
J) to ¢; and hence develop a set of routes that
balance fixed and running costs. In particu-
lar a large fixed cost will produce a partition
of the giant tour into a set of routes using as
few vehicles as possible.

(2) Reorder the customers (i +1, i +2,..., )
for the purpose of calculating the mileage of
a route through all of them (e.g. use a
2-optimal [7] procedure or an optimal trav-
elling salesman procedure—see [9] for a sur-
vey).

(3) We can exclude the depot from the giant
tour (i.e. form a travelling salesman tour
around the customers alone). This gives us
more flexibility in partitioning the giant
tour. Previously the two customers next to
the depot on the giant tour were at the
beginning and end of a vehicle route—if we
eliminate the depot from the giant tour these
two customers can now go anywhere on a
route. (Note that this extension requires the
use of Floyd’s [15] algorithm involving 0(n°)
operations to calculate least cost paths in

(¢y))

(4) If the customers have time windows (periods
of time during the day when they will accept
delivery) associated with them then if the
route order is fixed (i.e. (0,i+1,i4+2,...,
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Jj, 0) for each ¢;) it is a simple task to check
whether the route is feasible with respect to
the time windows (see Christofides [8]). If we
are interested in reordering the customers
then we have a travelling salesman problem
with additional constraints which can be
tackled heuristically (e.g. by a modified
2-optimal procedure) or optimally (see
[10, 11]).

(5) If we have different types of vehicle (and a
constraint on the number of each type) then
there may well be more than one type of
vehicle that can supply a set of customers—
in this case we must expand c; to have a third
subscript dealing with the type of vehicle
used (the definition being the obvious one)
and the least cost path problem now be-
comes a constrained least cost path
problem—the constraint on the least cost
path relating to the number of vehicles of
each type that can be used. Large problems
of this type can be solved optimally rela-
tively quickly (see [1]).

(6) Customers who object to certain types of
vehicles can also be incorporated into the
method (as in (5) above).

(7) The multi-depot problem (where the cus-
tomers are to be supplied from one of a
number of depots) can also be incorporated
into the method by associating different
vehicle types with each depot (as in (5)
above).

Note that many of the extensions discussed
above relate to the use of the method for dealing
with problems involving practical constraints
(such as customer time windows, limited num-
bers of vehicles of different types etc.).

COMPUTATIONAL RESULTS

As mentioned previously, although the route
first—cluster second approach has been fairly
widely discussed and used in the literature we
know of no evaluation of the method on stan-
dard vehicle routing problems (such as the
problems of Eilon ez al. [14]). Accordingly we
programmed the method and solved some test
problems from the literature. The details of our
implementation of the method were as follows:

(1) We generated an initial giant tour (excluding
the depot) randomly and then used a
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TABLE 1. COMPUTATIONAL RESULTS

Time per
Problem Number of Savings 3-optimal  Route first—cluster second solution  Best solution iteration
number  customers solution' solution? 1 5 10 25 at iteration CDC 7600 sec
1 6 119/2 114/2 114/2 114/2 114/2 114/2 1 0.02
2 12 290/4 290/4 296/4 290/4 290/4 290/4 3 0.03
3 21 598/4 585/4 608/4 585/4 585/4 585/4 4 0.05
4 22 955/5 949/5  1017/6 994/6 968/5 956/5 13 0.04
5 29 963/5 875/4 879/4 876/4 875/4 875/4 6 0.10
6 30 1427/8  1414/8  1524/9  1462/8  1444/8  1444/8 9 0.06
7 32 839/5 810/4 848/5 815/5 814/5 822/4 20 0.11
8 50 585/6 556/5 564/5 564/5 564/5 552/5 19 0.34
9 75 900/10  876/10  906/11  895/11  895/11  884/11 15 0.76
10 100 887/8 863/8 902/8 880/8 878/8 873/8 20 2.18

'Solution value given as distance travelled/vehicles used, distance travelled is sum of true route distances rounded to

nearest integer.
?Best of three trials (problems 3, 5 best of ten trials).

2-optimal interchange procedure to improve
the tour until no further improvements
could be made.

(2) The matrix (c;) was then calculated with the
2-optimal interchange procedure being used
to reorder the customers (i + 1,i +2,...,)
for the purposes of calculating a value for Cje
We also added a large positive constant to
each ¢; so that the set of routes produced by
partitioning the giant tour involved as few
vehicles as possible.

(3) We used Floyd’s [15] algorithm to calculate
the least cost paths in the directed graph
with cost matrix (c;) and thereby obtained
an optimal partitioning of the giant tour.

(4) The routes in the optimal partition of the
giant tour were individually 3-optimised
[7]—with a small number of customers on
the route this means we are almost sure of
having an optimal travelling salesman tour
of the customers.

We programmed the algorithm in FOR-
TRAN and ran it on a CDC 7600 using the
FTN compiler with maximum optimisation.
Table 1 gives details of the problems solved, all
of which were taken from Eilon et al. [14]. For
each problem we generated 25 giant tours and
the table shows the best result obtained after
1/5/10/25 giant tours had been generated and
partitioned. We also give in that table the
number of giant tours (iterations) needed to
produce the best result. The computation time
given is the average time to generate and par-

tition one giant tour in CDC 7600 sec. Note here
that the computationally most expensive
part of our implementation of the route
first—cluster second method is the use of
Floyd’s [15] algorithm to calculate the least cost
paths in the directed graph with cost matrix (¢y)
which enable us to optimally partition the giant
tour. This implies that computation times are
proportional to the cube of problem size (num-
ber of customers).

The author is grateful to one of the referees
for pointing out that for problem 6 the original
Clarke and Wright [12] data for the problem
involves an out and back trip for a fully loaded
vehicle for customer number 19. This fact is not
made clear in the data given for that problem by
Eilon et al. [14].

Also in Table 1 we give the savings [12] and
3-optimal [6] solution values taken from Eilon
et al. [14).

DISCUSSION

Examining the results obtained after 25 giant
tours had been generated and partitioned, we
see that in five of the ten problems the route
first—cluster second approach gives a result at
least as good as the 3—optimal solution, in two
of the ten problems it gives a result between the
savings and 3—optimal values and in three of the
ten problems it gives a result worse than the
savings solution.

These results are fairly encouraging—the
method appears to give results that are, on
balance, at least as good as the savings method
and often as good as the 3-optimal method for
a reasonable computation time per iteration.
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TABLE 2. GIANT TOUR COMPARISONS

Best giant tour Best vehicle routes

Problem Giant tour Giant tour
number length Routes length Routes
1 66 114/2 66 114/2
2 132 290/4 132 290/4
3 273 585/4 273 585/4
4 470 1008/6 479 956/5
5 382 875/4 382 875/4
6 260 1524/9 281 1444/8
7 391 814/5 397 822/4
8 441 552/5 441 552/5
9 561 895/11 585 884/11
10 673 877/8 693 873/8

In the four problems with route distance
constraints (problems 3, 4, 5 and 7) the method
does not appear to be less effective than in
problems with no route distance constraints and
certainly the efficiency of the method is not
adversely affected by the presence of such
constraints.

Since the number of vehicles used is often a
more important criterion of solution quality
the distance travelled it is interesting to consider
the results from this viewpoint. Overall the total
number of vehicles used for the route
first—cluster second method is 58 after only one
iteration, 57 after five iterations, 56 after ten
interations and 55 after 25 iterations. This com-
pares with 57 for the savings method and 54 for
the 3—optimal method.

An interesting question is whether a better
(lower cost) giant tour leads to a better par-
titioning and hence to a better set of vehicle
routes. To get some insight into this question we
compare in Table 2 the solution for the best
giant tour (giant tour length and corresponding
routing solution) and the solution for the best
vehicle routes (corresponding giant tour length
and routing solution).

The results of this comparison are very inter-
esting. For most problems the routes for the
best giant tour are close (if not equal) to the best
vehicle routes. In a few problems there are
significant differences (problems 4, 6 and 7) and
these seem to be associated with problems where
a slightly longer giant tour can be partitioned
into fewer vehicle routes.

Table 2 would seem to indicate that fewer
iterations than we have used, with more com-
putational effort put into the construction of the
giant tour, would lead to better quality results.

oME 11/4—c
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CONCLUSIONS

In this paper we have examined the route
first—cluster second approach to vehicle rou-
ting and have discussed the basic method and
the extensions to the method that are possible to
deal with practical constraints. Computational
results for one implementation of the method on
standard vehicle routing problems drawn from
the literature have been given. We feel that these
results, together with the extensions to the
method that are possible, lead one to conclude
that the basic method has promise as a founda-
tion for an effective procedure for practical
vehicle routing problems.
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APPENDIX

In this appendix we give, for each of the problems in

Table 1, the routes corresponding to the best solution found.
Further details of the problems are in Eilon et al. [14]. In
all cases the depot is denoted by 0.

Problem 1

Routes:

0—1—2—3—0
0—4—5—6—0

Problem 2

Routes:

0—1—2—3—4—0
0—5—0
0—6—8—9—0
0—11—12—10—7—0

Problem 3

Routes:

0—9—7—5—2—1—6—0
0—10—8—3—4—11—13—0
0—14—21—19—16—0
0—17—20—18—15—12—0

Problem 4

Routes:

0—7—8—4—5—-9—11—12—0
0—10—13—0
0—6—1—2—3—15—16—0
0—14—17—22—20—0
0—18—19—21—0

Problem 5

Routes:

0—22—2—5—4—1—6—3—20—0
0—21—14—8—9—17—7—13—16—15—0
0—18—23—12—11—10—19—0
0—26—28—27—25—24—29—0

Problem 6
Routes:

Problem 7
Routes:

Problem 8
Routes:

Problem 9
Routes:

Problem 10

Routes:

0—19—0 (see note about problem 6 in main

text)
0—2—1—20—12—17—0
0—21—30—0

0—18—8—25—0

0—19—10—26—0
0—3—4—6—5—11—16—15—27—23—0
0—22—28—24—0
0—29—13—7—9—14—0

0—14—13—10—9—8—32—11—12—2—1—0

0—6—7—5—4—3—30—31—0

0—29—28—16—27—26—0

0—18—19—21—20—22—23—24—25—17
—15—0

0—5—49—10—45—33—39—30—34—50—9
-0

0—12—17—37—15—44—42—19—40—41—4
—47—0

0—18—13—25—14—24—43—6—0

0—27—48—23—7—26—8—31—28—22—1
—32—46—0

0—11—2—3—36—35—20—29—21—16—38
—0

0—45—29—27—13—54—52—34—0
0—46—8—19—59—14—35—7—0
0—53—11—66—65—38—0
0—58—10—31—55—25—9—39—72—0
0—50—18—24—49—16—33—0
0—63—23—56—41—64—42—43—1—73—0
0—6—22—62—2—68—75—0
0—51—3—44—32—40—12—17—0
0—26—67—4—0
0—30—48—21—69—61—28—74—0
0—5—47—36—71—60—70—20—37—15—57
0

0—2—57—42—100—85—91—44—38—14
—43—15—41—22—73—21—40—0
0—89—18—60—83—8—45—17—86—16—61
—84—5—99—96—6—0
0—94—95—59—93—98—37—92—97—87
—13—58—0
0—53—28—26—12—76—50—1—69—27—0
0—52—T7—82—48—47—46—36—49—64—11
—19—62—88—0
0—31—10—63—90—32—66—65—71—20
—30—70—0
0—77—3—79—33—81—51—9—35—34—78
—29—24—80—68—0
0—54—4—55—25—39—67—23—56—75—74
—72—0



