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Scheduling aircraft landings at London Heathrow
using a population heuristic
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With increasing levels of air traf®c, making effective use of limited airport capacity is obviously important. This paper
reports on an investigation undertaken by National Air Traf®c Services in the UK into improving runway utilisation at
London Heathrow. This investigation centred on developing an algorithm for improving the scheduling of aircraft waiting
to land. The heuristic algorithm developed (a population heuristic) is discussed and results presented using actual
operational data relating to aircraft landings at London Heathrow. This data indicates that our algorithm could have
improved on air traf®c control decisions in such cases by between 2±5 % in terms of reducing the timespan required to
land all of the aircraft considered.
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Introduction

It is well known that throughout the world air traf®c is

increasing. With these increases in traf®c there is an

increasing demand for decision support tools to make

effective use of the limited capacity (airspace, runways,

etc) available. The UK is no exception to this world growth

in air traf®c, and within the UK, National Air Traf®c

Services (NATS) are responsible for effective management

of a number of aspects of the UK air traf®c control system.

This paper discusses how a modern heuristic technique (a

population heuristic) can be used in a decision support

tool to enable more effective decisions to be made with

respect to one aspect of the air traf®c control system, the

scheduling of aircraft waiting to land.

The UK's busiest airport is London Heathrow. Most, if

not all, of the readers of this paper will have ¯own in or out

of Heathrow. At Heathrow one runway is typically used

solely for takeoffs and the other runway solely for landings.

This mode of operation is known as segregated mode and

has obvious advantages in terms of controlling the move-

ment of aircraft. Mixed-mode operation (where the same

runway is used both for takeoffs and landings) is rarely

used at Heathrow.

This paper reports on an investigation undertaken by

NATS into improving runway utilisation at London

Heathrow. This investigation centred on developing an

algorithm for improving the scheduling of aircraft waiting

to land. In the short term, improved scheduling would mean

less delays for passengers as aircraft would land quicker

than they otherwise would have done. In the long term,

improved scheduling would give potential for increasing

the number of ¯ights scheduled in=out of Heathrow. The

algorithm developed, a population heuristic, is described

in this paper and computational results presented for

operational data relating to landings at London Heathrow.

Aircraft landing

The decision problem

At the simplest conceptual level one can imagine a set of

aircraft circling Heathrow waiting to land and a single air

traf®c controller. This air traf®c controller has a simple

decision problem to solveÐwhich aircraft should land

next? This decision problem is one that has to be solved

repeatedly over the course of a working day. If a decision

support tool could be developed to assist (not replace)

the controller in making this decision then perhaps more

effective use of runway capacity could be made.

A controller actually has to do more than decide which

aircraft lands next. They have to think ahead and (implicitly

or explicitly) form the set of aircraft waiting to land into a

landing sequence, namely decide the order in which the

aircraft will land. But deciding the sequence in which

aircraft will land is not suf®cient. A controller must go
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further and (implicitly or explicitly) form a schedule, namely

decide a landing time for each aircraft. This time schedule is

necessary because the controller has to ensure that:

(a) an aircraft has time to safely ¯y from its current position

to the runway so as to land at the appropriate position in

the sequence; and

(b) aircraft do not run low on fuel whilst waiting to land;

and

(c) aircraft do not land too close together.

These ®rst two conditions (a) and (b) imply that for each

aircraft there is a window of time within which it must land,

whilst the third condition (c) means that a reasonable

amount of time must elapse between successive landings.

Note here that throughout this paper we use the phrase

`scheduled landing time' to mean the time at which an

aircraft is scheduled to land by a controller, not the time at

which an airline advertised a ¯ight as being scheduled to

land in its timetable.

Constraints

In the aircraft landing problem the constraints of the

problem are that each aircraft must land within a prede-

termined time window; and that the time between

a particular aircraft landing, and the landing of any succes-

sive aircraft, must be greater than a speci®ed minimum (the

separation time) which is dependent upon the aircraft

involved.

Separation times are bounded below by aerodynamic

considerations. Aircraft in ¯ight generate wake vortices as

an unwanted product of lift. Lift is generated by the pressure

difference between the upper and lower surfaces of the wing,

the pressure at the lower surface being greater than the

pressure at the upper surface. At the wing tips this difference

in pressure between the upper and lower wing surfaces

generates a rotating mass of airÐan effect known as wake

vortex. The strength of the wake vortices caused by an

aircraft is proportional to its mass. Wake vortices can cause

turbulent conditions for an aircraft following too close, with

associated passenger discomfort and possible damage to the

following aircraft. Indeed a number of aircraft accidents are

believed to have been caused by this phenomena.1

For safety reasons therefore landing a large aircraft

necessitates a (relatively) large time delay before other

aircraft can land. A light aircraft, by contrast, generates

little air turbulence and therefore landing such an aircraft

necessitates only a (relatively) small time delay before

other aircraft can land.

Within the UK aircraft are classi®ed into ®ve types:

Heavy, Upper-Medium, Lower-Medium, Small and Light

for separation purposes at London Heathrow. These types

are essentially related to aircraft sizes (as measured by

maximum takeoff weight). Separation distances on landing

are de®ned to be:

All separation distances not explicitly shown above (eg

leading aircraft Lower-Medium, following aircraft Heavy)

are 3 nautical miles.

Separation is de®ned here in terms of distance. The usual

approach for converting these separation distances into

separation times is to assume a standard landing speed

for each class of aircraft. For the purposes of the results

reported in this paper this standard landing speed has been

taken as 160 knots (nautical miles per h) for all aircraft

types. This implies that the time between the successive

landing of two Heavies, for example, must be at least 3600

(4=160)� 90 s. We note in passing here that there were

no Light aircraft in any of the Heathrow data sets we

considered.

The separation distances given above are crucial factors

in terms of runway (and hence airport) capacity:

(a) The minimum separation distance is 3 nautical miles,

which implies a separation time of 3600(3=160)�
67.5 s. This implies that, at most, 3600=67.5� 53.3

aircraft can be landed per h per runway. Irrespective

of airspace restrictions, runway capacity is a severe

bottleneck upon the amount of traf®c that an airport

can deal with.

(b) As the separation distances vary between classes there is

scope, given a set of aircraft of different classes, for

more effective decisions.

With regard to this second point suppose that there is a set

of three aircraft, two Heavies (Hs) and an Upper-Medium

(UM), waiting to land, There are three possible distinct

landing sequences: H±H±UM, H±UM±H and UM±H±H.

The separation distances involved are 4 � 5� 9, 5 � 3� 8

and 3 � 4� 7, respectively. It is clear that the last of these

sequences (UM±H±H) involves the least separation

distance and hence the least time, ie deciding to adopt

this sequence would land the entire set of aircraft in the

shortest possible time.

Whilst for a three-aircraft example all possible landing

sequences can be easily enumerated, in general the number

of distinct landing sequences grows combinatorially with

the number of aircraft waiting to land. For this reason an

enumeration approach would not be practicable for larger

problems.

Leading
aircraft

Following
aircraft

Separation distance
(nautical miles)

Heavy Heavy 4
Medium (Upper or Lower) 5
Small 6
Light 7

Upper-Medium Lower-Medium or Small 4
Light 6

Lower-Medium Light 5
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Objective

In our three-aircraft example above we chose a sequence so

as to land the entire set of aircraft in the shortest possible

time. Previous work on the aircraft landing problem2±4 has

taken into consideration a target landing time for each

aircraft and considered deviations from this target time

as important. All of that work considered linear (or

linearisable) objective functions.

Considering deviations from target landing time was also

the approach adopted in this investigation. Computational

experience though indicated that, in the view of NATS

personnel, a nonlinear objective would in many cases be

necessary in order to achieve acceptable results (landing

sequences with desirable characteristics).

In order to try and arrive at an appropriate objective

function we considered two questions:

(1) which factors should be included in the objective func-

tion; and

(2) for the factors that we do decide to include, how should

they be combined together in a mathematical formula

for the objective function.

With regard to the ®rst of these questions consideration was

given to factors such as deviation from target time (as

mentioned above) and the origin of the ¯ight (European or

non-European). It might seem natural to also consider the

number of passengers on each aircraft, so that for example

we expedite the landing of an aircraft with many passen-

gers, whilst delaying the landing of an aircraft with few

passengers. There are a number of problems with including

this factor in the objective function:

(a) The data relating to separation distances on landing is

such that, from the viewpoint of runway utilisation, the

`natural order' is to land smaller aircraft ®rst (eg in the

example given above the sequence that landed all

aircraft as quickly as possible was UM±H±H). As such

we may have to be prepared to delay larger aircraft

(irrespective of their passenger load) in order to gain

better runway utilisation.

(b) Airlines regard passenger numbers as commercially

sensitive data and there would be dif®culties in obtain-

ing such data from them: indeed, data on aircraft

capacity (maximum number of passengers) would prob-

ably have to be used instead.

(c) If we include passenger numbers in deciding the sche-

duling of aircraft landings then we will probably be

biasing the solution in favour of airlines operating larger

aircraft, which may not be desirable in the interests of

competition.

With regard to the mathematical formula for the objective

function we have, as will become apparent below, adopted

an objective involving squared deviations from target time.

Other formulae, eg adopting higher powers, utilising an

exponential function, weighting together normalised

factors, are all possible. We would make two points:

(a) One of the advantages of the solution methodology

adopted (a population heuristic) is that the nature of

the objective function (linear or nonlinear) is irrelevant

in terms of the solvability of the problem (although

naturally different objective functions lead to different

results). Moreover, varying the objective function can be

accomplished relatively easily. This ability to adopt

differing objective functions was, in the view of

NATS personnel, a desirable feature of the algorithm

developed.

(b) We believe that the practical air traf®c control bene®ts

of adopting an algorithmic approach (such as given in

this paper) to the problem of scheduling aircraft land-

ings will be due to a consistent application of a

systematic approach, rather than due to the precise

details of the objective function formula adopted.

Control

The population heuristic presented in this paper solves a

decision problem. That is, it solves the problem of deciding

landing times which lie in aircraft time windows and which

satisfy the separation criteria, whilst optimising an appro-

priate objective. This decision problem leaves to one side

the associated control problem, namely can the aircraft be

¯own (controlled) in such a manner as to enable the solution

to the decision problem to be safely implemented (eg

separation must be maintained not only at landing but

throughout aircraft descent onto the runway).

Plainly the decision problem and the control problem are

linked. However, as in many Operations Research models,

we believe that there are bene®ts to be gained in separating

out these two aspects of the problem. We would also

comment here that, across the world, the common3,5,6

practice of scheduling aircraft to land in a ®rst-come,

®rst-served, manner also effectively utilises a (trivial)

decision problem, whilst leaving the control problem for

later resolution.

Population heuristics

Population heuristics started with the development of

genetic algorithms by Holland.7 A population heuristic

(PH) can be described as an `intelligent' probabilistic

search algorithm and is based on the evolutionary process

of biological organisms in nature. During the course of

evolution, natural populations evolve according to the

principles of natural selection and `survival of the ®ttest'.

Individuals who are more successful in adapting to their

environment will have a better chance of surviving and

reproducing, whilst individuals who are less ®t will be

eliminated. This means that the genes from highly ®t

JE Beasley et alÐScheduling aircraft landings at London Heathrow 485



individuals will spread to an increasing number of individuals

in each successive generation. The combination of good

characteristics from highly adapted parents may produce

even more ®t offspring. In this way, species evolve to

become increasingly better adapted to their environment.

A PH simulates these processes in a computer by taking

an initial population of individuals and applying genetic

operators in each reproduction. In optimisation terms, each

individual in the population is encoded into a string or

chromosome which represents a possible solution to a given

problem. The ®tness of an individual is evaluated with

respect to a given objective function. Highly ®t individuals

or solutions are given opportunities to reproduce by exchan-

ging pieces of their genetic information, in a crossover

procedure, with other highly ®t individuals. This produces

new `offspring' solutions (ie children), who share some

characteristics taken from both parents. Mutation is often

applied after crossover by altering some genes in the strings.

The offspring can either replace the whole population

(generational approach) or replace less ®t individuals

(steady-state approach). This evaluation±selection±repro-

duction cycle is repeated until a satisfactory solution is

found. The basic steps of a simple PH are:

Generate an initial population

Evaluate ®tness of individuals in the population

repeat

± Select individuals from the population to be parents

± Combine (mate) parents to produce children

± Mutate the children

± Evaluate ®tness of the children

± Replace some or all of the population by the children

until

± you decide to stop whereupon report the best solution

encountered

Readers wishing to learn more about population heuristics

are referred to references 8±12.

For readers who have some familiarity with PHs we

would comment here that one of the dif®culties of working

with PHs is that there are many schemes for doing the basic

operations that you need:

± parent selection: binary tournament, K tournament,

ranking, ®tness proportionate, etc.;

± having children: uniform, one-point, restricted one-

point, fusion, two-point, etc.;

± mutation: constant, adaptive;

± population replacement: steady-state, generational

(with=without elitism), island models.

In order to avoid exhaustive examination of a large number

of combinations of possible operations we have limited

ourselves to those operations outlined in the following

sections. Those choices have been made in the light of our

experience13±19 in developing computationally successful

PHs and limited computational experimentation with

different choices for various operations.

A population heuristic for aircraft landing

In this section we will outline the PH that we have

developed for the aircraft landing problem. For reasons

relating to commercial con®dentiality however, we have

had to omit from our discussion a number of the computa-

tional devices we adopted to speed the convergence of our

population heuristic.

Notation

In order to explain our PH we introduce the following

notation. Let:

P be the number of aircraft

Ei be the earliest landing time for aircraft i (i� 1; . . . ;P)

Li be the latest landing time for aircraft i (i� 1; . . . ;P)

Ti be the target (preferred) landing time for aircraft i

(i� 1; . . . ;P)

Sij be the required separation time (50) between aircraft i

landing and aircraft j landing (where aircraft i lands

before aircraft j), i� 1; . . . ;P; j� 1; . . . ;P; i 6� j.

All of the above have known values in any given situation

and typically all times are expressed in seconds. Our

decision variables (what we are trying to decide) are:

xi the scheduled landing time for aircraft i

The problem therefore is to decide values for the xi which

lie in the time windows [Ei, Lj] and satisfy the separation

criteria, whilst attempting to ensure that aircraft land at (or

before) their target time. Below we discuss the elements of

our PH relating to:

± representation, how we represent a solution to the

problem in our PH;

± ®tness, assessing the value of a solution;

± parent selection, choosing who shall have a child;

± crossover, having a child from parents;

± dealing with the separation constraints;

± population replacement, placing the child in the popu-

lation.

Each of these elements is discussed separately below.

Representation

The ®rst decision in any PH is how to represent a solution

to the problem. For the problem of scheduling aircraft

landings we used a real-numbered representation compris-

ing of P real numbers, which we will call yi, satisfying

0 4 yi 4 1. The value of yi for aircraft i represents the

proportion of the interval [Ei, Li] that elapses before aircraft

i lands, ie the scheduled landing time xi is given by
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xi � Ei � yi�Li ÿ Ei�. For example, if �Ei; Li� is [100, 300]

(expressed in terms of seconds from a given base time) and

yi � 0:45 then xi � 100� 0:45�300ÿ 100� � 190.

Hence each individual in our PH world for scheduling

aircraft landings has the representation:

� y1; y2; . . . ; yP�
Such a representation has the property that we automatically

ensure that the computed scheduled landing time xi lies

within the required time window �Ei; Li�.
For example, suppose that P � 3 with time windows [100,

300], [200, 1700] and [50, 200] for aircraft 1, 2 and 3,

respectively. If a PH individual is [0.45, 0.21, 0.71] then the

computed landing times are x1 � 100� 0:45�300ÿ 100� �
190; x2 � 200 � 0:21�1700ÿ 200� � 515 and x3 � 50 �
0:71�200ÿ 50� � 156:5 (rounded to 157).

Fitness

Fitness in PHs relates to assessing the value (worth) of an

individual. This issue relates to the overall objective,

namely what are we trying to achieve when we schedule

a set of aircraft to land. After discussion and consideration

of initial results with NATS personnel a number of differ-

ent ®tness functions were identi®ed. All of these functions

were based on the difference between the scheduled land-

ing time and the target landing time. For the purposes of

brevity in this paper, and in order to preserve commercial

con®dentiality, we shall only present detailed discussion

relating to some of these functions.

Let Di � �xi ÿ Ti� be the difference (deviation) between

the scheduled landing time xi and the target (preferred)

landing time Ti for aircraft i. Note in particular that, if

Di < 0, then an aircraft lands before its target (preferred)

time and if Di > 0 then an aircraft lands after its target

(preferred) time, ie it is delayed. Then our ®tness function

is

fitness �PP
i�1

zi where zi � ÿ�Di�2 if Di 5 0

��Di�2 otherwise

�
This ®tness function is nonlinear: large deviations receive a

disproportionately larger weighting. Since we seek to maxi-

mise ®tness this function implies that we would prefer to

land aircraft before their target time and dislike landing

aircraft after their target time. As mentioned previously

computational experience indicated that, in the view of

NATS personnel, a nonlinear objective such as the one

shown here would in many cases be necessary in order to

achieve acceptable results (landing sequences with desirable

characteristics).

Parent selection

In our PH we have two parents coming together to have a

single child. In order to choose which individuals can

become parents we used binary tournament selection.

This works as follows:

(a) from the population select two individuals at random. Of

the two that have been selected the one with the best

(maximum) ®tness will be the ®rst parent.

(b) repeat the process described in (a) above to obtain a

second parent.

This procedure can result in the two parents being the same

individual, but this occurs infrequently if the population is

large.

Crossover

We used uniform crossover. In uniform crossover two

parents have a single child. In our PH each of the P

values in the child are taken from one or other parent

chosen at random. For example, assuming P � 3, if the

parents are

�0:45; 0:21; 0:71�
and

�0:93; 0:31; 0:75�
and our random choice of parents for the 3 values (aircraft)

is

aircraft 1ÿparent 1

aircraft 2ÿparent 2

aircraft 3ÿparent 2

then the child is

�0:45; 0:31; 0:75�
Although we experimented with mutating each child our

experience was that this did not have a signi®cant impact

upon the results obtained.

Dealing with the separation constraints

Probably the most fundamental dif®culty in applying PHs

to the problem of scheduling aircraft landings is to try and

ensure that the PH generates solutions that are feasible

(satisfy the constraints). As discussed above the representa-

tion we have adopted automatically means that the time

window constraints are satis®ed. This therefore leaves the

separation constraints. In our PH for scheduling aircraft

landings we dealt with the problem of attempting to ensure

that the separation constraints are satis®ed by separating

the evaluation of ®tness and infeasibility. We associate

with each individual in our PH for scheduling aircraft

landings two numbers, (un®tness, ®tness), where ®tness

is our adopted objective function value (which we are

trying to maximise) and un®tness is a measure of constraint

violation.
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In scheduling aircraft landings the separation constraints

may be conveniently expressed mathematically as

xj ÿ xi 5 Sij if xi 4 xj; i � 1; . . . ;P; j � 1; . . . ;P; j 6� i

ie that the difference in the scheduled landing times is at

least Sij if i lands before j�xi 4 xj�. Given a PH solution

�y1; y2; . . . ; yP� we can compute the scheduled landing

times xi�i � 1; . . . ;P� as indicated previously. These may,

or may not, satisfy the separation constraints. The quantityPP
i�1

PP
j�1

j 6�i; xi 4 xj

max�0; Sij ÿ �xj ÿ xi��

will be zero if the scheduled landing times satisfy the

separation constraints and nonzero (strictly positive) if the

scheduled landing times do not satisfy the separation

constraints. This quantity is the un®tness associated with

any PH solution and is a measure of constraint infeasibility.

Informally the higher the un®tness value the more infeasible

a solution.

For example, suppose P � 3 and a PH solution has

associated with it scheduled landing times x1 � 10;
x2 � 200 and x3 � 250. If the required separation times

are S12 � 180; S13 � 200; and S23 � 80 then plainly:

(a) the time that elapses between the landing of the ®rst and

second aircraft �x2 ÿ x1 � 190� satis®es the required

separation �S12 � 180�; and

(b) the time that elapses between the landing of the ®rst and

third aircraft �x3 ÿ x1 � 240� satis®es the required

separation �S13 � 200�; but

(c) the time that elapses between the landing of the second

and third aircraft �x3 ÿ x2 � 50� does not satisfy the

required separation �S23 � 80�.
For this PH solution the un®tness isPP

i�1

PP
j�1

j 6�i; xi 4 xj

max�0; Sij ÿ �xj ÿ xi��

�max�0; S12 ÿ �x2 ÿ x1�� �max�0; S13 ÿ �x3 ÿ x1��
�max�0; S23 ÿ �x3 ÿ x2��
�max�0; 180ÿ �200ÿ 10���max�0; 200ÿ �250ÿ 10��
�max�0; 80ÿ �250ÿ 200��
�max�0; ÿ10� �max�0; ÿ40� �max�0; 30�
� 0� 0� 30 � 30

where the ®rst two zeros in this sum indicate that separation

was satis®ed both for aircraft 1 and 2 and for aircraft 1 and 3,

but the 30 indicates that separation was violated (by 30 time

units) for aircraft 2 and 3. It is clear from the above that any

PH solution with un®tness zero is feasible.

Informally this use of (un®tness, ®tness) allows us to

design our PH to evolve feasible solutions (ie solutions

with un®tness zero) through an appropriate population

replacement scheme. Note here, however, that we did not

consider un®tness in parent selection. We have found

computationally that it is suf®cient to consider just ®tness

in parent selection, provided that the population replace-

ment scheme adopted considers both ®tness and un®tness

in the manner detailed below.

Population replacement

We used a steady-state population replacement scheme that

makes use of the two numbers (un®tness, ®tness) associated

with each PH solution. Suppose that we have produced a

child in our PH. This child will have certain (un®tness,

®tness) values. For the purposes of illustration we shall

assume that this child has un®tness > 0, ie is not feasible.

In order to explain our population replacement scheme

suppose we draw a graph with ®tness as the vertical axis

and un®tness as the horizontal axis, as in Figure 1. Now

plot on this graph:

(a) the PH child; and

(b) each member of the population, as each population

member will also have (un®tness, ®tness) values. For

the purposes of illustration these population members

are shown as X's in Figure 1, scattered around the child.

Considering Figure 1 it is clear that the presence of the child

has naturally divided the population into four groups corre-

sponding to each of the four quadrants created by drawing

horizonal and vertical lines through the child. These four

groups are labelled G1±G4 in Figure 1. Informally it is clear

that:

(a) Our child is superior to any member of the population

that is in group G1, as all members of that group are

more infeasible (have a higher un®tness) and are worse

in objective function terms (have a lower ®tness).

Figure 1 Population replacement.
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(b) Our child is inferior to any member of the population

that is in group G4, as all members of that group are less

infeasible (have a lower un®tness) and are better in

objective function terms (have a higher ®tness).

(c) Our child is superior with respect to one measure

(un®tness or ®tness), but inferior with respect to the

other, when compared to members of groups G2 or G3.

Now as we have a child we need to add this child to the

population. To keep the population size constant (the

standard PH assumption) we need to choose a member

from the population to kill (ie to replace the chosen

member by the child).

We use our four groups (G1±G4) in order to establish in

which `area' of the population we look to ®nd a member to

kill. In our population replacement scheme we:

(a) First look in group G1. As stated above, any population

member in this group is worse than the child on both

measures (®tness and un®tness). Hence we should

plainly choose a member of the population from this

group to kill if we can do so.

(b) It may be, however, that G1 is empty (ie contains no

population members). If this is the case we look in G2,

members of this group are inferior to the child in terms

of un®tness.

(c) If both G1 and G2 are empty we look in G3, members of

this group are inferior to the child in terms of ®tness.

(d) Finally if G1, G2 and G3 are all empty we look in G4.

Members of this group are, as mentioned above, super-

ior to the child on both measures (®tness and un®tness).

It might appear strange therefore to choose a member of

this group to kill. However, computational experience

with this population replacement scheme has been that

unless we perturb the population by placing the child in

the population the PH fails to make progress.

Once the appropriate group (G1, G2, G3 or G4) has been

identi®ed as outlined above we kill a randomly selected

member of the group. In the computational results presented

below we used a population of size 100 with the initial

population being randomly generated.

Computational results

Data sets

In the investigation undertaken by NATS a number of

different data sets relating to landings at London Heathrow

were considered. In the interests of brevity in this paper,

however, we will present results for just a single data set.

This data set is based on a `snapshot', taken at 0815 on

Friday 11 September 1998 by the London Air Traf®c

Control Centre at West Drayton. This snapshot considered

all aircraft within 100 nautical miles of Heathrow which

were scheduled to land at London Heathrow and contained

20 aircraft. This particular day=time was chosen for a

snapshot as it was considered to be a very busy period.

For all aircraft in the snapshot NATS personnel gener-

ated earliest and latest landing times based upon aircraft

positions and standard speeds. We took as the target land-

ing time for each aircraft the actual landing time as

recorded in the Heathrow runway logs. This enables us to

compare the performance of the PH against the actual

performance achieved on the day in question. With

regard to computation time all of the PH results presented

here are produced in approximately two seconds on a

333 MHz Pentium PC.

Results

In order to compare the results achieved by our PH with

controller sequencing decisions the case where aircraft land

in the same order as they did on the day in question, but

respecting time windows and with the minimum possible

separation time, we refer to as the ACTUAL case. By using

the minimum possible separation time here we are able to

compare the controller sequencing decisions against the PH

sequencing decisions with any effects due to aircraft not

landing with the minimum possible separation time removed

from the comparison.

Figure 2 shows a pictorial representation of the results of

our PH for the nonlinear objective function (®tness func-

tion) given previously. In that Figure we have along the

vertical axis the scheduled landing time as decided by the

PH. Aircraft are numbered in that Figure in the order in

which they landed in the ACTUAL case. It can be seen that

the third aircraft to land is designated by `2-UMED:e'. This

means that it was the second aircraft to land in the

ACTUAL sequence, is category Upper-Medium and the

`:e' means that it is a European ¯ight (ie originated within

Europe). The second aircraft to land is designated by `3-

HEAVY'. This designation means that it was the third

aircraft to land in the ACTUAL sequence, is category

HEAVY and the lack of `:e' means that it is not a European

¯ight (ie did not originate within Europe). We would

comment here that ®gures of the type shown, which have

a natural interpretation as aircraft descending onto the

runway, have been found to be very helpful in commu-

nicating our PH results to others within NATS.

Considering Figure 2 it is clear that the PH has arrived

at a substantially different landing sequence than the

controller-decided ACTUAL sequence (which was ®rst

1-HEAVY, then 2-UMED:e, then 3-HEAVY, then

4-HEAVY:e, etc). It is perhaps worth stressing here that

our PH has no knowledge of the controller sequence when

arriving at a solution.

In order to get a numeric evaluation of the results of our

PH as compared with the ACTUAL case we consider:

(a) timespanÐthe time to land all the aircraft,

max[xi j i� 1; . . . ;P]
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(b) average delayÐ
PP

i�1Di=P

(c) maximum delayÐmax[Di j i � 1; . . . ;P]

Timespan was felt to be of importance as it gives some

insight into the possibility of gaining extra capacity in the

long term. Average delay and maximum delay give

insight into the immediate effects of improved sequencing

decisions.

Comparing the PH solution shown in Figure 2 with the

ACTUAL case timespan decreased from 1894 to 1853 s (ie

41 s were saved), average delay decreased by 40 s, but the

maximum delay increased by 187 s.

The signi®cance of these results depends upon your

viewpoint. From the viewpoint of an aircraft passenger a

reduction in average delay of 40 s is hardly signi®-

cant=noticeable. However, from the viewpoint of London

Heathrow, and of NATS, reducing the timespan by 41 s

equates to a percentage time saving of 100(41=1894)�
2.16 %, since in the ACTUAL case the last aircraft

landed 1894 s after the start of the time period. Were

this to be repeated across time such a saving would have

the potential for Heathrow to cope with (approximately)

one extra landing per h. This would be a signi®cant

improvement.

The results quoted above (reduced timespan and

reduced average delay, but increased maximum delay) are

indicative of the tradeoffs that occur in deciding a landing

schedule. Indeed, across the data sets we considered in

our investigation, we commonly found that timespan and

average delay could be reduced, provided we were prepared

to see an increase in the maximum delay.

As an indication of the effectiveness of the PH presented

in this paper we have also solved the problem shown in

Figure 2, but using the classical improvement heuristic

outlined in Algorithm 1. The best solution obtained by that

heuristic had a ®tness value only 59 % of the ®nal ®tness

value achieved by the PH. This is a clear indication that the

extra complexity, over and above a classical heuristic,

involved in our PH is contributing signi®cantly to the

®nal solution obtained.

The reason for presenting the ¯ight origin (European or

not) in Figure 2 is that some of the objective functions

NATS considered treated European and non-European

¯ights differently. NATS were experimenting to see how

the objective function could be adapted to take into account

Algorithm 1 Improvement heuristic

(1) Generate three different initial landing sequences for aircraft
in terms of their earliest, target and latest times.

(2) Improve each of these sequences in turn by:
(a) for a single aircraft moving it to any position in the

landing sequence that improves the solution; and
(b) for pairs of aircraft swapping their positions in the

landing sequence if that improves the solution; and
(c) repeating all such moves until no further improvement

can be achieved.
(3) Return the best solution found after examining and improving

all three initial sequences.

Figure 2 PH landing schedule.
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the fact that a ten minute delay (say) to a particular group of

¯ights results in more disruption (missed passenger connec-

tions, later ¯ights by the same aircraft=crew being delayed)

than the equivalent delay to other ¯ights. The PH solution

for the case where European ¯ights are regarded as three

times more important than non-European ¯ights is given in

Table 1. In that table we show for each aircraft its position

in the landing sequence in Figure 2, and its position in the

landing sequence when this European weighting is applied.

It can be seen that aircraft 3 for example, a non-European

¯ight, is moved signi®cantly later in the landing sequence

(from 2nd to 11th). Compared with the solution shown in

Figure 2 the timespan is exactly the same: average delay is

7 s less but the maximum delay is increased by 368 s.

Solution characteristics for the landing sequences consid-

ered here can be seen in Table 2.

Although we have considered numeric time measures

(timespan, average delay, maximum delay) above, the PH

itself, when attempting to maximise its ®tness function,

does not directly consider such delays. Instead, when the

PH looks for a solution, it single-mindedly focuses solely on

the objective function it is given. It takes no account of other

measures (such as average delay) which we have considered

here. In fact, we can take our PH and use it to directly

minimise average delay (say). The solution produced by our

PH for this case is shown in Table 1. Comparing that PH

solution with the ACTUAL case timespan decreased by 98 s,

average delay decreased by 66 s, but the maximum delay

increased by 164 s. This PH solution equates to a percentage

time saving of 100(98=1894)� 5.17 %. Were this to be

repeated across time such a saving would have the potential

for Heathrow to cope with between two and three

extra landings per h. This would be a very signi®cant

improvement.

The reader may be wondering as to why, if minimising

average delay leads to such potential improvement, NATS

did not just adopt a simple linear objective such as mini-

mise average delay. The reason lies in a detailed considera-

tion of the schedule produced by such an objective. If one

looks beyond simple summary statistics such as average

and maximum delay into the distribution of delays it may be

(as a matter of judgement) that it is felt that too many

aircraft are suffering unacceptable delays. For this reason a

nonlinear objective, such as the one presented before, which

Table 1 Landing sequences

Aircraft ACTUAL
sequence Classi®cation Origin

PH landing
sequence:

(as in Figure 2)

PH landing
sequence: European

weighting

PH landing sequence:
minimise average

delay

1 HEAVY 1 1 1
2 UMED European 3 2 3
3 HEAVY 2 11 2
4 HEAVY European 5 3 5
5 LMED European 7 7 7
6 HEAVY 10 10 10
7 UMED European 9 9 4
8 LMED European 8 8 9
9 LMED European 11 6 8

10 LMED European 6 5 6
11 HEAVY European 4 4 11
12 HEAVY 13 14 12
13 LMED European 12 13 13
14 UMED European 14 12 15
15 LMED European 15 15 14
16 UMED European 16 16 16
17 HEAVY 18 18 17
18 HEAVY 19 20 20
19 HEAVY European 17 17 18
20 HEAVY European 20 19 19

Table 2 Solution characteristics

ACTUAL
sequence

PH landing sequence:
(as in Figure 2)

PH landing sequence:
European weighting

PH landing sequence:
minimise average delay

Timespan (s) 1894 1853 1853 1796
Average delay (s) 26 ÿ14 ÿ21 ÿ40
Maximum delay (s) 77 264 632 241
Fitness value ÿ28 555 329 686 123 520 120 489
European weighting ®tness value ÿ167 587 3 683 454 5 385 048 1 516 337
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penalises large delays disproportionately, can produce more

acceptable results.

Remarks

As commented previously we have not reported here on all

of the objective functions examined=computational experi-

ments done. However, as a result of all the work that we did

do we believe that we can make one key remark: the PH

developed is able to quickly (in a matter of seconds) and

effectively schedule aircraft landings using a variety of

objective functions. As such it clearly has potential as a

technique to improve runway ef®ciency=utilisation. We

would also make a number of additional remarks:

(a) The speed at which decisions as to scheduled landing

times can be obtained via the PH (a few seconds) means

that it is feasible to implement our PH inside a decision

support tool to aid controllers in their task of scheduling

aircraft to land at London Heathrow. The PH could be

used to produce advisory instructions to enable a

controller to achieve a sequence dynamically in real

time. Several different solutions with differing charac-

teristics could be generated by the PH (using different

objective functions) and presented to the controller. This

would permit human judgement to be retained in the

process, keeping the controller `in the loop' and sharing

the task between human and computer.

(b) Our PH has, in a matter of seconds, sequenced a set of

20 aircraft that will, in real time, require approximately

30 min to land at Heathrow. Whilst obviously this

sequence needs dynamic updating as time passes

(aircraft land, new aircraft appear) a controller could

well work with this sequence for at least (say) 15 min

before needing to dynamically update.

(c) One concern at the start of this work was that the PH

would be unable to generate feasible solutions (ie no

solutions satisfying time windows and separation would

be found). However our computational experience has

been that feasible solutions are generated very quickly.

We believe that this is due to the fact that the time

windows used have suf®cient ¯exibility to ensure feasi-

ble solutions are easy to ®nd. In some respects this

mirrors the real-life situation: if the time windows were

such that feasible landing schedules were hard to ®nd we

would regularly have aircraft landing in violation of the

separation constraints.

(d) One key advantage of adopting an automated approach

(such as a PH) to the problem of scheduling aircraft

landings may be that consistency of performance can be

achieved. Simply put, algorithms never get tired and

typically produce fairly consistent results. Human

controllers, on the other hand, do vary in their perfor-

mance at a task such as scheduling landings, both over

time and amongst themselves.

(e) The PH we have developed can be used as a tool to

investigate strategic issues. For example, with regard to

landing capacity at London Heathrow through taking

example data sets (¯ight mixes) and seeing how long it

takes to land all aircraft. The PH we have developed can

also be used to see how changes in the separation

criteria would impact upon capacity.

(f) The investigation reported in this paper furthers NATS'

research into techniques for improving the utilisation of

limited runway capacity. Although we have concentrated

here on aircraft arrivals the algorithm developed is

applicable to problems involving departures only and

to mixed-mode operations.

The PH developed has shown that a decision support tool

for scheduling aircraft landings should enable more effec-

tive use to be made of the UK's limited runway capacity.

NATS is continuing research in this area and additional

factors may need to be taken into account in the ®nal design

of any decision support tool that is implemented in an

operational environment.

We would also comment here that, to the best of our

knowledge, the PH presented in this paper places NATS at

the forefront of world development in terms of sophisti-

cated algorithms for effective utilisation of runway capacity

though improved scheduling.

Conclusions

In this paper we have reported upon an investigation

undertaken by NATS in the UK into improving runway

utilisation at London Heathrow. The PH developed was

described and example results given. We concluded that the

PH developed was able to quickly (in a matter of seconds)

and effectively schedule aircraft landings using a variety of

objective functions.
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