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Abstract: In this note we present enhancements to a previously published algorithm for the optimal
solution of set covering problems. These enhancements relate to the use of a Lagrangean heuristic,
feasible solution exclusion constraints, Gomory f-cuts and an improved branching strategy. Computa-
tional results, for problems involving up to 400 rows and 4000 columns, indicate that the enhanced
algorithm gives better computational results than the original algorithm.
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1. Introduction

In this note we consider the set covering prob-
lem (SCP) which is the problem of covering the
rows of an m-row, n-column, zero—one matrix
(a,;) by a subset of the columns at minimum cost.
Defining

1 if column j (cost ¢; > 0) is in the
X;= solution,
0 otherwise,

the SCP is:

min icjxj (1)
j=1

s.t. iaijxj>1, i=1,...,m, (2)
j=1
x;€(0,1), j=1,...,n. 3)

Equation (2) ensures that each row is covered by
at least one column and (3) is the integrality
constraint.

The SCP, and variants of the SCP (such as the
set partitioning problem (SPP) obtained by re-

placing the inequality in (2) by an equality), are
important practical problems. They have applica-
tions in crew scheduling [2,3,8,21,31,32,35,38,39,
44.46], location of emergency facilities [36,43,47,
51], steel production [48-50], vehicle routing
[7,27], ship scheduling [17,26], network attack or
defence [13,14], assembly line balancing [28,41],
traffic assignment in satellite communication sys-
tems [37], simplifying boolean expressions [16],
the calculation of bounds in integer programs
[18], information retrieval [20] and political dis-
tricting [29].

In a previous paper [9] we presented an algo-
rithm for the optimal solution of the SCP and in
a recent paper [11] a Lagrangean heuristic for the
heuristic solution of SCP’s. In order to save space,
therefore, we only survey here relevant work ad-
ditional to that surveyed in [9] and [11].

1.1. Literature survey
Feo and Resende [24] presented a probabilistic

heuristic for solving the SCP’s that arise from
Steiner triple systems.
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Balas and Ng [5] presented a paper character-
ising all the facets of the set covering polytope
defined by inequalities of the form ¥7_,a;x; > 2
where «; €{0, 1, 2}, j=1,...,n. In a further pa-
per Balas and Ng [6] showed that such facets can
be obtained by the lifting of certain inequalities
containing only three non-zero coefficients. No
computational results were given in either [5] or
[6].

Cornuejols and Sassano [19] and Sassano [42]
presented papers characterising the facets of the
set covering polytope defined by inequalities of
the form Y7_,a;x;>pB where a;€{0,1}; j=
1,...,n, and B is a positive integer. Their ap-
proach is based on regarding (a,-j) as the adja-
cency matrix of a bipartite graph. No computa-
tional results were given in [19] and only two
problems (based on Steiner triple systems) were
solved in [42].

El-Darzi and Mitra [23] presented a paper
detailing a variety of SCP’s and SPP’s that are
publically available. Beasley [12] presented a pa-
per detailing a variety of SCP’s that are publically
available via electronic mail.

Fisher and Kedia [25] presented an optimal
algorithm based on dual heuristics for the mixed
SCP /SPP problem (some constraints (cf. (2)) in-
equalities, some equalities). Computational re-
sults were given for the SCP for a number of test
problems taken from the literature.

1.2. Algorithm overview

As noted above, in a previous paper [9] we
presented an algorithm for the optimal solution
of the SCP and in a recent paper [11] a La-
grangean heuristic for the heuristic solution of
SCP’s. In this note we enhance the -algorithm
given in [9] for the optimal solution of the SCP
by:

(a) incorporating into it the Lagrangean
heuristic for SCP’s presented in [11];

(b) adding feasible solution exclusion con-
straints;

(¢) using Gomory f-cuts; and

(d) using an improved branching strategy.

By solving test problems taken from the litera-
ture we are able to compare the algorithm given
in this paper with algorithms [4,9,25] given by
other authors.

In order to save space we need to assume
throughout this note some familiarity with both
[9] and [11]. However to aid the reader we give
below a brief overview of [9] and [11]. Essentially
the algorithm given in [9] consists of:

(a) A dual ascent procedure for the linear
programming (LP) relaxation of the SCP (replace
(3) by x; > 0).

(b) A Lagrangean relaxation of (2). If s, >0,
i=1,...,m, are Lagrange multipliers for (2), the
associated Lagrangean relaxation is easily solved
to give a solution (X)) together with a lower
bound Z, on the optimal solution to the origi-
nal SCP.

(c) A subgradient ascent procedure. At each
subgradient iteration, if Z_, is the maximum
lower bound found and Z g the best feasible
solution found:

1) Solve the Lagrangean relaxation with the
current set of multipliers (s;) to get the solution
Z.g, (X). Update Z_,, by Z,,=max(Z,,,
Zp)

2) Calculate the subgradients (G;) using

Gi=1- Y a;X;, i=1,...,m. (4
i=1
3) Define a step size T by
T— f(l-OSZUB“ZLB)

S (G

i=1

(%)

where f =2 initially. In the computational results
reported below, if Z_,. had not increased in the
last 50 iterations with the current value of f, then
f was halved.

4) Update the Lagrange multipliers using

s; =max(0, s;,+ TG;), i=1,...,m. (6)

d) Optimally solving the LP relaxation of the
SCP.

e) Resolving the SCP by a tree search proce-
dure with bounds being calculated by Lagrangean
relaxation and the subgradient ascent procedure.

A comprehensive set of problem reduction
tests are also applied at various stages in the
algorithm. The details can be found in [9].

The Lagrangean heuristic given in [11] essen-
tially, at each subgradient iteration, adjusts (X,-)
into a feasible solution for the SCP and updates
Z g accordingly. The details can be found in [11].
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2. Algorithm enhancements

2.1. Lagrangean heuristic

For the algorithm given in [9] we used the
heuristic of Balas and Ho [4] in order to generate
feasible solutions for the SCP (upper bounds
upon the optimal solution of the SCP). Computa-
tional results given in [11] indicate that, for non-
unicost SCP’s (c; #c, for some j# k), the La-
grangean heuristic given in that paper is a better
heuristic for the SCP than the Balas and Ho
heuristic. Hence our first enhancement to the
algorithm presented in [9] is to use the La-
grangean heuristic in place of the Balas and Ho
heuristic for non-unicost problems.

2.2. Feasible solution exclusion constraints

Let S be a set of columns corresponding to the
best feasible solution for the SCP found at the
end of the subgradient ascent procedure (just
before optimally solving the LP relaxation of the
SCP) where, without loss of generality, we as-
sume that S-[j] (j €S) is not a feasible solution
for the SCP. Then we can add to the SCP the two
feasible solution exclusion constraints:

Y ox<ISI-1, (7
jeS
Yox;=>1. (8)
JES

These constraints imply that, for an improved
feasible solution, at least one column currently in
S must be replaced by at least one column cur-
rently not in S. Adding these constraints to the
SCP excludes S from the solution to that prob-
lem ((1)-(3),(7),(8)) and so makes that problem
infeasible if § is the unique optimal solution.
Such feasible solution exclusion constraints have
previously been used by us in [1,10].

2.3. Gomory f-cuts

After solution of the LP relaxation of the SCP
with feasible solution exclusion constraints added
we used Gomory f-cuts in order to increase the
lower bound on the optimal solution to the SCP
obtained from the LP.

Limited computational experience indicated
that a good strategy was to:

(a) generate 30 Gomory f-cuts from the LP
solution and then resolve the LP using a dual
simplex algorithm;

(b) generate half these f-cuts from the x; vari-
ables with the largest fractional values in the
optimal solution to the LP; and

(c) generate the remaining f-cuts from the
slack variables (for the constraints (2),(7),(8)) with
the largest fractional values in the optimal solu-
tion to the LP.

Details of how to calculate Gomory f-cuts
from an optimal LP simplex tableau can be found
in most integer programming textbooks (e.g. [45]).

Note here that the 30 Gomory f-cuts and the
two feasible solution exclusion constraints can be
regarded as being of the form

n

Z a;x;> 1, %9
j=1

i.e. similar to the SCP constraints (2), where the
a;; are now fractional (and positive or negative).
They can therefore be incorporated into the La-
grangean relaxation and subgradient ascent pro-
cedure in virtually the same manner as the SCP
constraints.

The details of this we leave to the reader but
note here that initial Lagrange multipliers for
these constraints at the start of the tree search
are provided by the dual variables associated with
these constraints in the LP solution found after
addition of the feasible solution exclusion con-
straints and the 30 Gomory f-cuts.

We would comment here that the use of cuts
in solution algorithms for the SCP has been a
frequent theme in the literature (e.g. see
[4,15,30,33,34,40] as well as the more recent theo-
retical work [5,6,19,42] on facets of the set cover-
ing polytope).

2.4. Branching strategy

In forward branching from each tree node we:

(a) apply the first pass of the dual ascent pro-
cedure given in [9] to the current set of Lagrange
multipliers;

(b) choose the (uncovered) row i with the
maximum value of |s,G,|;
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(c) branch by choosing the column j (from
those which cover row i and for which X;=1)
with the maximum value in the LP solution ob-
tained after addition of the Gomory f-cuts (ties
broken arbitrarily).

3. Computational results

The algorithm presented in this note was pro-
grammed in FORTRAN and run on a Cray X-
MP /28 using the CFT compiler (with maximum
optimisation) for the same set of test problems as
were solved in [9]. Details of this set of test
problems are given in Table 1. Note here that all
of these test problems are now publically avail-
able via electronic mail from OR-Library [12].

Table 2 gives the results for problem sets 4-6
and Table 3 the results for problem sets A-E. In
Table 4 we give a comparison between the en-
hanced algorithm presented in this note, the orig-
inal algorithm [9], the algorithm of Fisher and
Kedia [25] and the algorithm of Balas and Ho [4].

Comparing the algorithm presented in this note
with the algorithm presented by Fisher and Kedia
[25] on problem sets 4—6 (comprising 25 problems
in all) we have, from Tables 2—-4 and the corre-
sponding tables in [25], that the algorithm pre-
sented in this note:

(a) solves 18 problems without branching be-
ing necessary, as opposed to only 7 problems for
the algorithm presented in [25];

(b) solves all 25 problems in fewer (or the
same number of) tree nodes than the algorithm
presented in [25];

Table 1

Test problem details

Problem Number Number Density 2 Number of

set of rows of columns problems in
(m) (n) problem set

4 200 1000 2% 10

5 200 2000 2% 10

6 200 1000 5% 5

A 300 3000 2% 5

B 300 3000 5% 5

C 400 4000 2% 5

D 400 4000 5% 5

E 50 500 20% (unicost) 5

2 The density of an SCP is the percentage of ones in the (a,-l-)
matrix.

(c) requires (in total) 84% fewer tree nodes
than the algorithm presented in [25]; and

(d) is computationally inferior to the algo-
rithm presented in [25] if the Cray X-MP /28 is
faster than the DEC 10 by a factor of [(10*33.7
+10%77.1 + 5%1098.5) /(10% 1.4 + 10%2.4 + 5+
6.4)] = 94.3.

Figures given in Dongarra [22] suggest that the
Cray X-MP /28 is faster than the DEC 10 by this
factor so we can conclude that the algorithm
given in this note is computationally inferior to
the algorithm of Fisher and Kedia [25].

Whether the Fisher and Kedia [25] algorithm
retains its computational advantage for the much
larger problems (problem sets A-D) solved in
this note is currently an open question.

Comparing the enhanced algorithm presented
here with the original algorithm [9] on problem
sets 4—6 and A-E (comprising 50 problems in all)
we have, from Tables 2—4 and the corresponding
tables in [9], that the algorithm presented in this
note:

(a) solves 18 problems without branching be-
ing necessary, as opposed to only 13 problems for
the algorithm presented in [9];

(b) solves all but six problems in fewer (or the
same number of) tree nodes than the algorithm
presented in [9];

(c) requires (in total) 41% fewer tree nodes
than the algorithm presented in [9]; and

(d) is computationally inferior to the algo-
rithm presented in [9] if the Cray X-MP /28 is
faster than the Cray-1S by a factor of [(10%3.7 +
10%6.8 +5%21.2 +5%70.6 + 5%256.6 + 5%519.3
+5%1327.7+ 5%44.8) /(10 1.4 + 10%2.4 + 5% 6.4
+5%18.2+5%57.3 +5%105.3 + 5%255.0 +
5%22.2)] =4.8.

Figures given in Dongarra [22] suggest that the
Cray X-MP /28 is not faster than the Cray-1S by
this factor so we can conclude that the enhanced
algorithm presented in this note is computation-
ally superior to the original algorithm [9].

4. Conclusions

In this note we have presented enhancements
to an algorithm for the optimal solution of set
covering problems. Computational results indi-
cated that the enhanced algorithm gave better-
quality results than the original algorithm.
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Table 4
Algorithm comparison

Problem Enhanced Beasley [9] Fisher and Balas and Ho [4] ?
set algorithm algorithm Kedia [25] algorithm
algorithm
Number of problems solved to 4 10 10 10 10
optimality 5 10 10 10 9
6 5 5 5 2
A-E 5 5
Number solved to optimality 4 10 7 5 6
without tree search 5 8 6 2 4
6 0 0 0 0
A-E 0 0
Average number of tree nodes 4 0 2.2 10.3 9.1
(excluding initial tree node) 5 1.4 13.8 25.6 17.4
6 54.0 130.0 284.2 131.2
A 226.8 463.6
B 1194.0 2020.8
C 1727.2 3632.0
D 5478.8 8474.0
E 92.0 147.2
Average computer time 4 1.4 3.7 33.7 111.3
(seconds) 5 2.4 6.8 771 207.6
6 6.4 21.2 1098.5 1428.4
A 18.2 70.6
B 57.3 256.6
C 105.3 519.3
D 255.0 1327.7
E 22.2 44.8
Computer used Cray X-MP /28 Cray-1S DEC 10 DEC 20/50

a For the Balas and Ho [4] algorithm the figures given for the average number of tree nodes and for the average computer time
include problems not solved to optimality due to time limit restrictions.
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