253

An algorithm for the two-dimensional

assortment problem

J.E. BEASLEY
Department of Management Science, Imperial Col-
lege, London SW7 2BX, England

Abstract. In this paper we consider the two-dimen-
sional assortment problem. This is the problem of
choosing from a set of stock rectangles a subset
which can be used for cutting into a number of
smaller rectangular pieces. Constraints are im-
posed upon the number of such pieces which result
from the cutting.

A heuristic algorithm for the guillotine cutting
version of the problem is developed based on a
greedy procedure for generating two-dimensional
cutting patterns, a linear program for choosing the
cutting patterns to use and an interchange proce-
dure to decide the best subset of stock rectangles
to cut.

Computational results are presented for a num-
ber of test problems which indicate that the algo-
rithm developed produces good quality results both
for assortment problems and for two-dimensional
cutting problems.

Keywords: Heuristics, assortment, two-dimensional
cutting

Received February 1983; revised February 1984

1. Introduction

The two-dimensional assortment problem is the
problem that occurs when we are cutting a number
of small rectangular pieces from large stock rect-
angles. Given the sizes of the various types of
stock rectangles that we have available and details
of the requirements for the small rectangular pieces
the problem is one of deciding

(a) the appropriate types of stock rectangles to

use (and how many of each type); and

(b) the two-dimensional cutting pattern for each

North-Holland
European Journal of Operational Research 19 (1985) 253-261

stock rectangle that is cut into small rectan-
gular pieces,
where there is a constraint upon the number of
different types of stock rectangle that we can use.
This problem is encountered in industries con-
cerned with the cutting of large (flat) rectangular
items (typically the metal, glass and wood (e.g.
furniture) industries) as they face the problem of
choosing the best stock rectangles to cut in order
to meet customer requirements.
In the next section we develop a mathematical
formulation of the problem as a large integer
program.

2. Problem formulation

In order to formulate the two-dimensional as-
sortment problem we need to define a large num-
ber of factors relating to:

(1) the stock rectangles;

(2) the pieces to be cut; and

(3) the cutting patterns we can use.

We deal with these factors separately below.

(1) Stock rectangles
Let
n be the number of different types (sizes) of
stock rectangles available,
L, be the length of a stock rectangle of type i

(i=1,...,n),
W, be the width of a stock rectangle of type i
(i=1,...,n),

fi be the fixed cost associated with the use of a
stock rectangle of type i for cutting (i =
1,...,n),

k be the maximum number of different types
of stock rectangle that we can use to produce
the rectangular pieces, and

¢ be the cost per unit area of stock rectangle
waste (i.e. each unit of area from a stock
rectangle that is cut, but which is not part of
some rectangular piece, incurs a cost c,,).

Informally we have n different types (sizes) of

stock rectangles, costs associated with the use of

0377-2217/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

254 J.E Beasley / An algorithm for the two - dimensional assortment problem

any stock rectangle and with any wasted stock
rectangle area and a maximum number (k) of
different types of stock rectangles that we can use.

(2) Pieces
Let
m be the number of different types (sizes) of
rectangular pieces which we want cut from
the stock rectangles,

l; be the length of a rectangular piece of type j
(j=1,...,m),

w; be the width of a rectangular piece of type j
(j=1,...,m),

v, be the value associated with a rectangular
piece of type j (j=1,...,m),

a, be the lower limit on the number of rectan-

gular pieces of type j that we cut (a;>0,
j=1,...,m), and
b, be the upper limit on the number of rectan-
gular pieces of typej that we cut (b, > a,; > 0,
j=1,...,m).
Informally we have m different types (sizes) of
rectangular pieces with a value associated with the
production (cutting) of each rectangular piece. For
the rectangular piece of type j the factor a; repre-
sents the total demand for pieces of this type and
(b, —a;)> 0 represents the number of pieces of
this type that we are prepared to see cut for stock
to meet future demand. Note here that enforcing
b,=a; (j=1,...,m) may result in wasted stock
rectangle area which could be better used in pro-
ducing pieces for stock.

(3) Cutting patterns
Let

P(i) be the set of all two-dimensional cutting
patterns for a stock rectangle of type i
(i=1,...,n), and

d,,; be the number of pieces of type j (j=
1,...,m) that occur in cutting pattern
PEPU)(i=1,...,n).

We can now formulate the two-dimensional as-
sortment problem as an integer program.
Let

x,; be the number of times pattern p € P(i) is
used for cutting a stock rectangle of type i
(i=1,...,n), and

u; be the number of rectangular pieces of type j
(j=1,...,m) cut to meet the demand for
pieces of this type.

Define
y;=1 if any stock rectangles of type i
are used (i=1,...,n),
=0 otherwise.
Then the program is:

min i Z (fi+chiVVi)xpi

i=1 peP(i)
m
-2 (v +c,w)u,, (1)
j=1
st. a;<u;<b, j=1,....m, (2)
u;<), d,x,, j=1,....m, (3)
i=1 peP(i)
Z)’isk’ (4)
i=1
Y X, <My, i=1,...,n, (5)
PEP>)
y,€(0,1), i=1,...,n, (6)
xp,.>0, integeri=1,...,n,
VpeP(i), (7)
u;>0, integerj=1,...,m. (8)

Equation (1) is the objective function, the first
term in that equation representing the fixed cost of
the stock rectangles used together with their asso-
ciated area cost whilst the second term reduces this
cost according to the value of the rectangular
pieces cut and their corresponding area.

Equation (2) ensures that the demand for any
piece is met. In equation (3) the right-hand side is
the total number of pieces of type j produced by
the cutting patterns adopted and the left-hand side
of (3) is the number of pieces of type j used to
meet the demand for pieces of this type. If (3) is
not satisfied with equality then this implies that
the cutting patterns adopted are producing more
(> b;) pieces of type j than can be used and the
formulation of the objective function (1) ensures
that such spare pieces are counted as waste area.

Equation (4) ensures that at most k stock rect-
angle sizes are used. Note here that we will have
this equation satisfied with equality in the optimal
solution of the program (equations (1)-(8)) given
above (since if not we can artificially set some y, to
one to ensure that (4) is satisfied with equality
without affecting the optimal solution).

In equation (5) M is a large positive constant
and the equation ensures that no cutting patterns

J.E Beasley / An algorithm for the two - dimensional assortment problem 255

for a particular stock rectangle are used unless the
stock rectangle is one of the k sizes we are going to
use. Equations (6), (7) and (8) are the integrality
constraints. We have assumed here that there are
no constraints upon the number of stock rectan-
gles of each size available. Such constraints can, in
fact, be easily incorporated into the formulation of
the problem given above.

Note here that the objective function (1) can be
simplified by defining

F=f+c,LW, i=1,...n,)

Vi=v+ec,dlw, j=1,...,m, (10)

wijitr?

whereupon the objective function becomes

Z Z E‘xpi_ Z Vj“, (11)
j=1

i=1 peP(i)

It is well known that the number of possible
two-dimensional cutting patterns |P(i)| for any
stock rectangle i can be very large and so the
two-dimensional assortment problem as for-
mulated above is a very large integer program.
Hence it is clear that it would not be possible to
optimally solve this program except for trivially
small problems.

Note here that when the set of stock rectangles
to be used are known (y, known i =1,...,n) then
the problem formulated above reduces to a two-di-
mensional cutting problem— the problem of decid-
ing the appropriate cutting patterns to use, out of
those available, to produce the small rectangular
pieces at minimum total cost. It is common with
problems of this kind to restrict the cuts that can
be made to be guillotine cuts (a guillotine cut on a
rectangle being a cut from one edge of the rectan-
gle to the opposite edge which is parallel to the
two remaining edges so that the cut divides (or
guillotines) the rectangle into two).

A further simplification that is often made is to
take the objective to be the minimisation of trim
loss (wasted stock rectangle area). In terms of our
objective (equation (1)) this is ¢, =1, /;=0, i=
1,...,n,and v;=0, j=1,...,m. See [1] and [7] for
a discussion of the various approaches to two-di-
mensional cutting problems.

The formulation of the two-dimensional assort-
ment problem given above can be regarded as a
“classical” formulation involving, as it does, ex-
plicit consideration of all possible two-dimensional
cutting patterns for the stock rectangles under

consideration. Recently Dyckhoff [4] has consid-
ered the one-dimensional cutting stock problem
and shown how the classical formulation of that
problem (also involving explicit consideration of
all possible cutting patterns) can be improved upon
by adopting a different approach to the problem.
As noted in [4] his approach can be generalised
(quite easily) to the two-dimensional (guillotine)
cutting problem.

We will not (for reasons of space) give here the
formulation of the two-dimensional (guillotine cut-
ting) assortment problem as derived by his ap-
proach but simply note that it is also a large
integer program which it would not be possible to
solve optimally except for relatively small prob-
lems.

In the next section we consider previous work
on the two-dimensional assortment problem.

3. Previous work

The general two-dimensional assortment prob-
lem has been considered by relatively few authors
in the literature. Hinxman [7), in his survey, identi-
fied only two pieces of previous work.

Page [8] considered the problem of cutting steel
bars where only one small rectangular piece could
be cut from each stock rectangle and the problem
was to decide the types of stock rectangles to use.
A dynamic programming relaxation of the prob-
lem was used to provide a basis for a heuristic
procedure to find the types of stock rectangles to
use. A cost expression incorporating the purchase
and delivery cost of stock rectangles, together with
an inventory holding cost, was developed to decide
the optimum number of stock rectangles of a
particular type.

Chambers and Dyson [3] presented a heuristic
procedure for a special case of the two-dimen-
sional assortment problem. They used a procedure
of Gilmore and Gomory [6] for calculating the
minimum trim-loss to decide the width of all stock
rectangles (all stock rectangles having the same
width) assuming all possible stock rectangle lengths
were available. Once the width was decided by this
process the best set of lengths for k stock rectan-
gles were picked from all significantly utilised
lengths—an incremental procedure being used to
slowly reduce the set of all significantly utilised
lengths down to just k stock rectangle lengths.

256 J.E Beasley / An algorithm for the two - dimensional assortment problem

They also presented a tree search procedure for
selecting the best k stock rectangle lengths. Lower
bounds to curtail the tree search were calculated
from consideration of the available lengths at any
tree node.

We note here that the one-dimensional assort-
ment problem has been considered by a number of
authors and significant savings in trim-loss have
been found with appropriate stock sizes (see [5],
[9]). We would expect that for the two-dimensional
assortment problem significant savings could also
be made by an appropriate choice of stock rectan-
gle sizes.

In the next section we outline the algorithm we
have developed for the two-dimensional assort-
ment problem.

4. Algorithm outline

We noted before that as the integer program-
ming formulation of the problem is very large (due
to the large number of possible cutting patterns)
we felt that we would not be able to optimally
solve that program except for very small problems.
Accordingly we adopted a heuristic approach to
the problem.

As mentioned previously equation (4), limiting
the number of different types of stock rectangles
chosen, will be satisfied with equality in the opti-
mal solution of the two-dimensional assortment
program (equations (1)—(8)) i.e. exactly k different
types (sizes) of stock rectangle will be used in the
optimal solution. Hence we can regard the two-di-
mensional assortment problem as dividing fairly
naturally into two separate problems:

(1) Cutting pattern selection

For a given set of k stock rectangle sizes decide
the minimum cost cutting patterns to be used to
produce the small rectangular pieces (/;, w;), j =
1,...,m (and hence the number used of each type
of stock rectangle).

(2) Stock rectangle selection

Choose from all possible sets of k stock rectan-
gles the best set of k stock rectangles (there being
n!/(n— k)k! possible sets of stock rectangles).

We consider these two problems in turn and
outline the solution approach adopted.

4.1. Cutting pattern selection

We decided to restrict attention to guillotine
cutting patterns for two principal reasons:

(1) The vast majority of two-dimensional cut-
ting problems met with in practise are guillotine
cutting problems (e.g. see Abel et al. [1]). This is
due to the nature of the cutting machines em-
ployed.

(2) Very little work has been done on generat-
ing non-guillotine cutting patterns (see [2]) but an
efficient dynamic programming procedure (due to
Gilmore and Gomory [6]) can be used to generate
optimal unconstrained two-dimensional guillotine
cutting patterns.

Hence for a given set of k stock rectangle sizes
to decide the cutting patterns to be used we gener-
ated a number of different cutting patterns involv-
ing the m rectangular pieces which have to be cut
and the k stock rectangle sizes we are considering.
The linear programming (LP) relaxation of the
two-dimensional assortment program ((1)—(8)) in-
volving just (a) the k stock rectangle sizes we are
considering; and (b) the cutting patterns generated
above, was then solved with a heuristic rounding
procedure being used to generate a feasible integer
solution if the LP solution was fractional. At the
end of this procedure we will have selected a set of
cutting patterns which can be used to produce the
small rectangular pieces (/;, w;),j=1,...,m.

The reasoning behind the above procedure is
that by using LP to consider explicitly a (rela-
tively) large number of (intelligently generated)
possible cutting patterns we will be able to choose
a good set of cutting patterns.

4.2. Stock rectangle selection

We considered that with n!/(n — k)'k! possible
sets of k stock rectangles it would not be practica-
ble to examine all possible stock rectangle sets
(except for k and n small). Accordingly we decided
to select a subset of the n types of stock rectangles
to examine in more detail. To do this we solved
the cutting pattern selection problem, (as dis-
cussed above), with all n stock rectangle sizes
available. The stock rectangles were then ranked in
decreasing order of their utilisation and two sets K
and S formed—where X is (essentially) the set of
the k most utilised stock rectangles and S, is
(essentially) the set of the (k+ 1), (k+2),...,(k
+ T) most utilised stock rectangles (some 7). We
then considered the interchange of stock rectangles
from the set K with stock rectangles from the set
Sy to see if an interchange led to an improved

J.E Beasley / An algorithm for the two - dimensional assortment problem 257

solution. Such interchanges were evaluated using
the heuristic for the cutting pattern selection prob-
lem discussed previously.

The algorithm terminates when no interchanges
can be found which lead to an improved solution
(or alternatively when a limit on computation time
is reached).

The details of the algorithms for cutting pattern
selection and stock rectangle selection are given in
the next section.

5. Algorithm details
5.1. Cutting pattern selection

Let K be the set of stock rectangles available for
cutting then the algorithm for cutting pattern
selection is as follows:

(a) Initial pattern generation

For each piece j (j=1,...,m) and each stock
rectangle i (i € K) solve the unconstrained two-di-
mensional guillotine cutting problem consisting of:

(1) the stock rectangle i;

(2) piecej with value V; (equation (10));

(3) pieceq (g +j,q=1,...,m) with value V,/M
where M is a large positive constant.

This unconstrained two-dimensional guillotine
cutting problem consists of finding a guillotine
cutting pattern for the stock rectangle i that maxi-
mises the value of the pieces cut from it. Adjusting
the value of all pieces g (¢ # /) as at step (3) above
essentially means that we find the guillotine cut-
ting pattern for / that contains as many pieces of
type j as possible.

Note here that this unconstrained two-dimen-
sional guillotine cutting problem can be solved by
the dynamic programming algorithm of Gilmore
and Gomory [6] and we shall not repeat the details
of that algorithm here. _

Computationally the calculation of the optimal
cutting patterns for the k stock rectangles in K can
be combined into a single calculation for the opti-
mal cutting of a stock rectangle of length
max(L,|i€ K) and width max(W,|i€ K). Note
also that we need not repeat this initial pattern
generation step for each set K of stock rectangles
but need only carry it out once with K=
[1, 2,...,n] and then simply recall any of the cut-
ting patterns generated when necessary.

(b) Greedy procedure

Aside from the initial cutting patterns for any
stock rectangle set K (generated as described above)
we adopted a greedy procedure to generate some
further cutting patterns. This procedure was as
follows:

(1) Divide the m rectangular pieces to be cut
from the stock rectangles in K into two sets Q,
and Q, defined by

0,=[jla;=1,j=1,...,m], (12)
Q2=[j|aj=0,j=1,...,m]. (13)

Intuitively Q; contains pieces which must be cut
and Q, contains pieces that need only be cut if
they avoid creating stock rectangle waste.

(2) If O, =0 then stop since we have no need
to do any cutting else go to step (3).

(3) For each stock rectangle i € K solve the
unconstrained two-dimensional guillotine cutting
problem consisting of:

(i) the stock rectangle i;

(ii) piece j (j € Q;) with value V};

(iii) piecej (j € Q,) with value V./M.
As before these k unconstrained guillotine cutting
problems can be combined into a single un-
constrained guillotine cutting problem and can be
solved by the dynamic programming algorithm of
Gilmore and Gomory [6]. Intuitively we are gener-
ating guillotine cutting patterns that contain the
pieces we need (Q; pieces) with the other pieces
(Q, pieces) only being included in the cutting
pattern if they avoid creating stock rectangle waste.

(4) Let A, represent the value of the optimal
unconstrained guillotine cutting pattern for stock
rectangle i € K (as calculated above) and let e, ; be
the number of times piece j (j =1,...,m) appears
in that optimal cutting pattern.

(5) Choose the stock rectangle ¢ where

F,—A,=min(F—4,|i€K, e,;>1
for some j € Q) (14)

(ties broken arbitrarily). Intuitively we are choos-
ing the stock rectangle r whose current cutting
pattern of value A4, (containing at least one piece
J € Q; which we need to cut) most nearly covers
the fixed cost F, associated with the stock rectan-
gle. We shall assume here that F, — 4, > 0 (as will
be the case in most practical situations) implying
that the fixed cost of the rectangle outweighs the
value of the pieces cut from it.

258 J.E Beasley / An algorithm for the two - dimensional assortment problem

(6) We will use the optimal cutting pattern for
stock rectangle ¢ to exhaustion (a greedy proce-
dure). The number of times s that we use this
cutting pattern is given by

s=min(|a;/e,||e,;>1,j€0Q,) (15)

where | x| is the smallest integer greater than or
equal to x. Intuitively we use the cutting pattern as
little as possible consistent with exhausting the
requirements for one of the pieces j € Q,.

(7) Update the problem by

a;=a;,—min(a,,se;), j€ Q. (16)

Note that the min(a, se,;) term is needed in the
event that se, ; exceeds the number (a;) of pieces of
typej that we need cut.

(8) Go to step (1) to resolve the problem. Note
here that the definition of s (equation (15)) ensures
that when we go to step (1) |Q,| will be reduced by
at least one and hence that the entire procedure
will terminate (step (2)) after at most m iterations.

(c) Linear program
As mentioned previously we solve the LP re-
laxation of the two-dimensional assortment prob-
lem ((1)—(8)) involving just
(i) the k stock rectangle sizes in K,
(i) the cutting patterns associated with the stock
rectangles in K as found by
(a) the initial pattern generation procedure;
and
(b) the greedy procedure.
Formally let P(i) be the set of all two-dimensional
cutting patterns for a stock rectangle of type i
(i € K) as found by
(1) applying the initial pattern generation pro-
cedure for all pieces j (j=1,...,m) to the stock
rectangle i; and
(2) step (3) of the greedy procedure (one cut-
ting pattern for each iteration of the greedy proce-
dure).
Note here that | P(i)| < 2m when defined as at (1)
and (2) above. Then the LP relaxation of the
two-dimensional assortment problem (given the
stock rectangle set K) is

m

mn ¥ X Fx,— X Vu, (17)
ieK peP(i) Jj=1

st. a;<u;<b;, j=1,...,m, (18)

<) Y dyx,, j=1,..,m, (19)
ieK peP(i)

x,, >0, VieK,VpeP(i), (20)
w0, j=1,...,m. (21)

This is a relatively small LP involving (at most) 3m
constraints and m(2k + 1) variables and can be
easily solved for quite large problems by a primal
simplex procedure. Examination of early computa-
tional results showed that (almost always) the opti-
mal solution of the above LP was non-integer

(fractional). We adopted the following rounding

scheme to cope with such cases.

(1) Let (X,;) be the values of (x,,) in the
optimal solution of the LP.

(2) Round up every fractional X, value.

(3) At the end of step (2) it may be possible to
reduce down certain X,,; values— thereby reducing
the value of the objective function (equation (17))
whilst still meeting the requirements (equation (18))
for the m rectangular pieces. This can be done as
follows:

(2) consider the X, in decreasing value order

and for each X, > 1;

(b) decrease X, by as much as possible con-

sistent with maintaining

Y ¥ d,X,>a, and X, >0.
ieK peP(i)

(4) At the end of step (3) we will have a feasi-
ble integer solution to the two-dimensional assort-
ment problem (given the stock set K).

Examination of computational results showed
that often the value of the objective function (17)
for the (rounded) integer solution was significantly
higher than the value of the objective function at
the LP optimum. Accordingly, we implemented
the more sophisticated rounding scheme described
below based upon cutting planes.

(d) Cutting plane rounding

As before solve the LP relaxation of the two-di-
mensional assortment problem. In order to move
the LP solution towards an optimal integer solu-
tion we introduce a number of Gomory f-cuts (e.g.
see [11]). This use of f-cuts was inspired by their
use by Scarborough [9] in her work on the one-di-
mensional cutting problem. The procedure we
adopted was as follows:

(1) Generate an f-cut for the integer variable
whose fractional part is closest to 0.5.

(2) Resolve the LP using a dual simplex proce-
dure.

J.E Beasley / An algorithm for the two - dimensional assortment problem

In the computational results reported later we
introduced up to 25 f-cuts and in the event that
this procedure did not terminate with the optimal
integer solution we adopted the following cutting
plane rounding procedure:

(1) Choose the integer pattern use variable (e.g.
x,;) with the largest fractional part and add to the
LP the cutting plane
X, 2| X, (22)

(2) Resolve the LP using a dual simplex proce-
dure and repeat until an integer solution is ob-
tained.

At the end of this rounding procedure it may
again be possible to reduce down certain X,; val-
ues (as mentioned in the last section) and we
adopted the same approach as given previously to
do this.

Examination of computational results showed
that although (in general) cutting plane rounding
produced a better integer solution than the simple
rounding scheme, occasionally it was much worse,
and so we implemented both rounding schemes
and chose the best integer solution produced.

5.2. Stock rectangle selection

We present an interchange procedure for stock
rectangle selection.

(1) Solve the cutting pattern selection problem
with K=[1, 2,...,n], i.e. all stock rectangles avail-
able.

259

(2) Let U, be the number of times a stock
rectangle of type i is used in the solution to the
cutting pattern selection problem. Without loss of
generality renumber the stock rectangles such that
UzU,>U > --- = U, (ties broken arbitrarily).

(3) Define K=11, 2, 3,...,k—1, g] where U,
=max(U;|i>k and each piece (I, w), j=
1,...,m, can be cut from at least one of (L, W),
(L, Wa),oos(Ly vy Wily), (L, W) — we as-
sume that g exists, if not the problem is infeasible.
This definition ensures that the set K can feasibly
cut all pieces (I, w)), j=1,...,m, and note here
that if g=k and U, ,, = 0 we are finished.

(4) Define S, =[i|U; one of the T highest U
values, i € K] (some T < n — k).

(5) We now consider all interchanges of some
stock rectangle from K with some stock rectangle
from S;:

(a) For all pairs (i3, i,), i, €K, i, € S;:

(b) If K—[i;]+[i,] is a better (as evaluated by
the heuristic for cutting pattern selection) stock
rectangle set than K then put K=K —[i,]+[i,]
and S;=Sr—[i,]+[;]

(c) The procedure terminates when no pair
(i, i), i, €K, i, € S; can be found whose inter-
change leads to an improved solution (or when
some limit on computation time is reached).

6. Computational results

The algorithm was programmed in FORTRAN
and run on a CDC 7600 using the FTN compiler

Table 1
Computational results
Problem Number of k T (Lo, Wy) Number Number Waste area Total time
number pieces m of inter- of pair percentage CDC 7600
changes examinations (seconds)
1 10 2 2 (100, 100) 1 4 7.69 14.8
2 20 1 4 417 41.1
3 30 2 5 5.87 91.4
4 10 3 3 (100, 100) 2 11 6.63 26.5
5 20 2 13 495 116.7
6 30 1 9 7.62 3133
7 10 2 2 (250, 250) 0 3 16.84 12.5
8 20 0 3 5.48 58.9
9 30 2 6 9.07 116.9
10 10 3 3 (250, 250) 1 9 13.80 244
11 20 4 22 6.65 204.3
12 30 1 10 5.89 182.3

260

with maximum optimisation for a number of ran-
domly generated problems.

These problems were produced by choosing two
values L,, W, representing the maximum length
and width of any stock rectangle. We then ran-
domly generated n stock rectangles by sampling
integers from the uniform distribution [L,/2, L]
for stock rectangle lengths and by sampling in-
tegers from the uniform distribution [W,/2, W]
for stock rectangle widths. The m pieces to be cut
from these stock rectangles were generated by
sampling integers from the uniform distribution
[Lo/4, L,/2] for piece lengths and by sampling
integers from the wuniform distribution
[W,/4, W, /2] for piece widths.

The limits (a;, b;) on the number of pieces that
we cut were produced by setting a;,=20 (j=
1,...,m) with the b, (j=1,...,m) being generated
by sampling integers from the uniform distribution
[20,40]. All the problems were trim-loss minimisa-
tion problems with » (the number of stock rectan-
gles) being equal to 10.

Table 1 gives the results for the problems solved.
In that table we give for each problem, the number
of interchanges and the number of stock rectangle
pair examinations in the stock rectangle selection
procedure, the total stock rectangle waste area as a
percentage of the total stock rectangle area used
and the total computation time in CDC 7600
seconds. Note here that the linear program was
solved by in-core primal simplex and dual simplex

J.E Beasley / An algorithm for the two - dimensional assortment problem

procedures and also that (approximately) eighty
per cent of the computation time shown was con-
sumed in solving unconstrained two-dimensional
guillotine cutting problems.

Looking at the waste area percentage we can
see that (in general) the algorithm produces a
relatively low amount of waste area although (as is
common with heuristic procedures) because we do
not know what the optimal solution is we cannot
be sure how far from optimal the results obtained
are. In order that our algorithm can be compared
with those of other workers we present in Table 2
the details of problem 12 (the largest problem that
we solved).

It is clear that, as part of our overall algorithm
for the two-dimensional guillotine cutting assort-
ment problem, we have developed a quite
sophisticated cutting pattern selection algorithm.
In order to test this part of the overall algorithm
we solved the two-dimensional guillotine cutting
problem given by Wang [12] taken from Skalbech
and Schultz [10]. Our algorithm produced a solu-
tion requiring 327 312 square inches of stock of
which 2.05% was waste in 8.3 seconds on a CDC
7600. This compares well with the result obtained
by Wang [12] which required 326 736 square in-
ches of stock of which 1.9% was waste obtained in
approximately 13 minutes on a UNIVAC 1100/81
and the result of Skalbeck and Schultz [10] requir-
ing 331 344 square inches of stock of which 3.2%
was waste.

Table 2
Problem details
Stock Length Width Piece Length Width b; Piece Length Width b;
rectangle
1 132 165 1 118 92 29 16 67 124 38
2 132 246 2 75 90 37 17 91 75 34
3 151 164 3 123 103 22 18 106 86 33
4 136 215 4 73 108 39 19 102 78 28
5 141 184 5 86 63 39 20 115 122 32
6 196 144 6 93 68 27 21 80 87 35
7 187 159 « 17 82 111 35 22 111 82 35
8 131 161 8 74 92 35 23 124 71 21
9 236 193 9 85 70 25 24 71 82 29
10 207 203 10 96 80 29 25 88 94 33
11 120 105 33 26 74 102 37
12 119 75 33 27 105 89 20
13 73 103 20 28 82 121 30
14 80 121 39 29 110 80 34
15 78 105 24 30 82 115 23

Note: orientations of all pieces fixed (no rotations allowed), final objective function value 342 108, stock set [2,9,10].

J.E Beasley / An algorithm for the two - dimensional assortment problem 261

7. Conclusions

In this paper we have presented a heuristic
algorithm for the two-dimensional guillotine cut-
ting assortment problem based upon a sophisti-
cated cutting pattern generation procedure, a lin-
ear program and an interchange procedure. Com-
putational results indicated that the algorithm de-
veloped is capable of dealing with moderate sized
two-dimensional guillotine cutting assortment
problems and producing good quality results. In
addition the algorithm appears able to produce
good results for the two-dimensional guillotine
cutting problem.

References

[1] Abel, D., Dyckhoff, H., Gal, T. and Kruse, H.J., “Classifi-
cation of real cutting stock problems”, Discussion Paper
66a, Fernuniversitat, 5800 Hagen, 1983.

[2] Beasley, J.E., “An exact two-dimensional non-guillotine
cutting tree search procedure”, to appear in Operations
Research.

[3] Chambers, M.L. and Dyson, R.G., “The cutting stock

problem in the flat glass industry—selection of stock
sizes”, Operational Research Quarterly 27 (1976) 949-957.

[4] Dyckhoff, H., “A new linear programming approach to
the cutting stock problem”, Operations Research 29 (1981)
1092-1104.

[5] Gilmore, P.C. and Gomory, R.E., “A linear programming
approach to the cutting-stock problem”, Operations Re-
search 11 (1963) 863-888.

[6] Gilmore, P.C. and Gomory, R.E., “The theory and com-
putation of knapsack functions”, Operations Research 14
(1966) 1045-1074.

[7] Hinxman, A.L, “The trim-loss and assortment problems:
A survey”, European Journal of Operational Research 5
(1980) 8-18.

[8] Page. E., “A note on a two-dimensional dynamic program-
ming problem”, Operational Research Quarterly 26 (1975)
321-324.

[9] Scarborough, S.G., “The single dimensional cutting prob-
lem”, M.Sc. Thesis, Department of Management Science,
Imperial College, London, SW7 2BX, England, 1982.

[10] Skalbeck, B.A. and Schultz, H.K., “Reducing trim waste
in panel cutting using integer and linear programming”,
Proceedings of the Western AIDS Conference, March 1976.

[11] Taha, H.A., “Integer programming: Theory, Applications
and Computations”, Academic Press, New York-London,
1975.

[12] Wang, P.Y., “Two algorithms for constrained two-dimen-
sional cutting stock problems”, Operations Research 31
(1983) 573-586.

