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PORTFOLIO OPTIMISATION 
 
We are going to be dealing with quadratic 
programs. The archetypical example of 
such a program is the portfolio 
optimisation problem, as originally 
proposed by Markowitz, in a mean-
variance framework. 
 
Colloquially we have a universe of 
potential assets in which we can invest and 
the decision problem is: 

How can we split our investment 
between these assets in an appropriate 
way? 



To proceed with Markowitz mean-
variance portfolio optimisation we need 
some notation, let: 
N  be the number of assets (e.g. 

stocks) available 
μi  be the expected return of asset i 
ρij   be the correlation between the 

returns for assets i and j  
  (-1≤ρij≤+1) 
si   be the standard deviation in return 

for asset i 
 
Then the decision variables are: 
 
wi the proportion of the total investment 

associated with (invested in) asset i 
(0≤wi≤1)  

 
Reflect for a moment – are you surprised 
that correlation makes an appearance here?  
 



Note here that we have used the word 
“asset” above. The framework we use is 
completely general – provided we have a 
price history for an asset it can be 
included, so we could consider making up 
a portfolio from stocks, commodities (e.g. 
oil, metals), and bonds. 
 



SIMPLE EXAMPLE 
 
I will confess here that I do not always 
do this myself, but you may want to 
consider just taking a very small 
example of the problem under 
consideration and play around with it. 
This may give you insight that you did 
not have before. 
 
Suppose N=2, so we have two assets 
available in which we can invest. Then the 
Markowitz approach says that the return 
we get from investing a proportion w1 of 
our wealth in asset 1 and a proportion w2 
of our wealth in asset 2 is 

  wiμi = w1μ1 + w2μ2 ∑
N

i 1=

 
where it must be true that    

  wi = w1 + w2 =1 ∑
N

i 1=

 
which states that we invest all of the 
money we have available. 



The risk (variance) associated with this 
investment is given by  

   wiwjρijsisj  ∑
N

i 1=
∑

N

j 1=

=  w1w1ρ11s1s1 + w1w2ρ12s1s2 + 
 w2w1ρ21s2s1 + w2w2ρ22s2s2  
=  w1w1s1s1 + 2w1w2ρ12s1s2 + w2w2s2s2 

=  (w1)2(s1)2 + 2w1w2ρ12s1s2 + (w2)2(s2)2 
 
so here all the terms are quadratic in the 
decision variables. 
 
Suppose I take some data for two assets 
and vary w1 and w2 and plot the return that 
I get from my portfolio (y-axis) against the 
risk (variance) associated with that 
portfolio (x-axis) what do you think the 
plot will look like? 
 
The standard presentation in terms of risk 
and return in portfolio optimisation is that 
return is plotted on the vertical axis and 
risk on the horizontal axis. 



Below we show the spreadsheet 
considered in class. 
 

 
 
Note that some points on the trade-off 
curve between risk (variance) and return 
above are efficient, some are not. Points 
on this curve which are inefficient are 
dominated by other points.



OPTIMISATION 
 
If we had just N=2 assets as above then it 
is a simple matter to consider possible 
investment portfolios simply by 
enumerating choices for w1 and w2 (where 
w2=w1-1 in the two asset case).  
 
Of course we almost always have many 
more than two assets in which we could 
invest and so the approach considered 
above becomes infeasible. We need to 
move from enumerating choices to making 
a choice via optimisation. 
 
Let: 
R  be the desired expected return from 

the portfolio chosen 
 
Using the standard Markowitz 
mean-variance approach we have that 
the unconstrained portfolio optimisation 
problem is: 
 



minimise   wiwjρijsisj (1) ∑
N

i 1=
∑

N

j 1=

subject to 

  wiμi = R (2) ∑
N

i 1=

  wi = 1 (3) ∑
N

i 1=

 wi ≥ 0 i=1,...,N (4) 
 
Equation (1) minimises the total variance 
(risk) associated with the portfolio whilst 
equation (2) ensures that the portfolio has 
an expected return of R. Equation (3) 
ensures that the proportions add to one and 
equation (4) is the non-negativity 
constraint. 
 
Some formulations replace the equality in 
equation (2) by an inequality (≥). 
  
This formulation (equations (1)-(4)) is a 
simple nonlinear programming problem. 
 
Shorting can be accommodated by 
allowing wi to be negative 



Usually nonlinear problems are difficult to 
solve but in this case because the objective 
is quadratic (and the constraints are 
linear), computationally effective 
algorithms exist so that there is (in 
practice) little difficulty in calculating the 
optimal solution for any particular data set.
  
Note here that the above formulation 
(equations (1)-(4)) can be expressed in 
terms of σij the covariance between the 
returns associated with assets i and j since 
σij=ρijsisj. 



The point of the above optimisation 
problem is to construct an efficient 
frontier, (unconstrained efficient 
frontier, UEF) a smooth non-decreasing 
curve that gives the best possible tradeoff 
of risk against return, i.e. the curve 
represents the set of Pareto-optimal 
(non-dominated) portfolios. 
 
One such efficient frontier is shown below 
for assets (shares) drawn from the UK 
FTSE (Financial Times Stock Exchange) 
index of 100 top companies. 
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SOLUTION 
 
So far we have considered an example 
quadratic program, as a motivation as to 
why we might be interested (at all) in such 
problems.  
 
Obviously, in practice, we might just take 
the problem and “MIP it” throw the 
problem to a standard mathematical 
programming package (perhaps using 
AMPL to ease the interface with the 
package). 
 
Here we shall proceed, by taking one 
example, to illustrate how we can solve a 
quadratic program (QP). The example 
used is taken, with acknowledgment, from 
Hillier and Lieberman (Introduction to 
Operations Research, Chapter 13). 



Consider the following example QP: 
 
maximise  
 15x1 + 30x2 + 4x1x2 - 2(x1)2 - 4(x2)2  
subject to 
 x1 + 2x2 ≤ 30 
 x1 ≥ 0  
 x2 ≥ 0 
 
First let us investigate this QP. The 
feasible region is shown below. This is 
clearly a convex region (the line segment 
joining any two points within (or on) the 
boundary of the region always lies within 
the region). 
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Now if we had a linear objective the 
maximum value of the objective would be 
achieved on the boundary of the feasible 
region, indeed at a vertex (a standard result 
from linear programming).  
 
But we actually had a quadratic objective. 
So does this make a difference? 



The plot below shows the feasible region, 
but where now we have included the value 
of the objective at four points, the three 
vertices of the feasible region, plus one 
point (x1=5,x2=8) inside the feasible 
region. 
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So the situation is distinctly different from 
the linear objective case. Clearly here the 
optimal solution (where we maximise the 
objective) cannot be at a vertex of the 
feasible region – since we have a point 
inside the feasible region which has a 
better objective function value than any of 
the vertices. 



For QPs it is helpful to have a standard 
notation and representation. If we use 
matrix notation the standard representation 
of a QP is: 
 
maximise  cx - ½xTQx 
subject to Ax ≤ b  
   x ≥ 0 
 
Here symbols in italics are 
vectors/matrices, so c is a row vector, x 
and b are column vectors, Q and A are 
matrices, and the superscript T denotes the 
transpose of a vector/matrix. 
 
The elements of Q (qij) are given constants 
such that qij=qji (so the matrix Q is 
symmetric, which is the reason for the 
involvement of the ½ factor in the 
objective function).  
 



To illustrate this notation, consider our 
example QP: 
 
maximise  
 15x1 + 30x2 + 4x1x2 - 2(x1)2 - 4(x2)2  
subject to 
 x1 + 2x2 ≤ 30 
 x1 ≥ 0  
 x2 ≥ 0 
 
To put the constraints in our standard form 
of Ax ≤ b we have 
 
 A = [1, 2] 
 
 x = | x1 | 
  | x2 | 
 
 b = [30] 
 
so    [1, 2]  | x1 | ≤ [30] 
   | x2 | 
 



To put the objective  
 15x1 + 30x2 + 4x1x2 - 2(x1)2 - 4(x2)2  
 
in our standard form of cx - ½xTQx we 
have: 
 
 c = [15, 30] 
 
 Q = | 4  -4 | 
   | -4   8 | 
 
Here to get Q we double the coefficients 
on the nonlinear terms and change the 
signs (note the - ½ in  - ½xTQx). 
 
xTQx = [x1, x2] | 4  -4 || x1 | 
    | -4   8 || x2 |   
 
= [x1, x2]  | 4x1 - 4x2   | 
   | -4x1 + 8x2 | 
 
= 4(x1)2 - 4x1x2 - 4x1x2 + 8(x2)2 

 
= 4(x1)2 - 8x1x2 + 8(x2)2 

 



so cx - ½xTQx = 
 
 [15, 30] | x1 | - ½(4(x1)2 - 8x1x2 + 8(x2)2) 
   | x2 | 
   
= 15x1 + 30x2 - ½(4(x1)2 - 8x1x2 + 8(x2)2) 
 
= 15x1 + 30x2 + 4x1x2 - 2(x1)2 - 4(x2)2  
 
as required 
 
So we have the problem expressed in 
standard form, where note that Q is 
symmetric. 



So how are we to solve our QP? Recall we 
saw above that the solution is not at a 
vertex of the feasible region.  
 
Well the answer is that if Q has a certain 
property we have theory/algorithms 
available that will guarantee to find the 
optimal solution to the QP.  
 
This property is that: 
 
 xTQx ≥ 0 ∀x 
 
which states that Q is a positive 
semidefinite matrix. 
 
This property is equivalent to saying that 
all the eigenvalues of our symmetric 
matrix Q are real and nonnegative. 



For our example problem we can show 
that Q is positive semidefinite by checking 
xTQx directly. 
 
We have from the algebra above that 
xTQx = 4(x1)2 - 8x1x2 + 8(x2)2 

 
so we need to show that  
 
 4(x1)2 - 8x1x2 + 8(x2)2 ≥ 0  ∀x1,x2

 

 
i.e. (x1)2 - 2x1x2 + 2(x2)2 ≥ 0  ∀x1,x2 
 

i.e. (x1 - x2)2 + (x2)2 ≥ 0   ∀x1,x2 

 
which must be true as it is the sum of two 
nonnegative terms 



To solve our QP we have the Karush-
Kuhn-Tucker (KKT) conditions. If f(x) is 
our objective in standard form (with Q 
being positive semidefinite) with g1(x)≤b1, 
g2(x)≤b2, …, gm(x)≤bm being linear 
constraints then a solution X=[Xj] is 
optimal if and only if there exist m 
numbers u1, u2, …, um such that: 
 

[∂f/∂xj - 
=1

m

i
∑ ui(∂gi/∂xj)] ≤ 0  at xj=Xj ∀j 

Xj[∂f/∂xj - ui(∂gi/∂xj)] = 0 at xj=Xj ∀j 
=1

m

i
∑

[gi(X) - bi] ≤ 0   ∀i 
ui[gi(X) - bi] = 0  ∀i 

Xj ≥ 0    ∀j 
ui ≥ 0     ∀i 

 
Two of these conditions relate to the 
product of two terms always being zero, 
i.e. either one of these terms is zero, or the 
other, or both. 



For our QP we have 
f = 15x1 + 30x2 + 4x1x2 - 2(x1)2 - 4(x2)2 

with just one constraint (so m=1), namely 
 g1 = x1 + 2x2 ≤ b1 = 30 
 

∂f/∂xj - ui(∂gi/∂xj) ≤ 0 at xj=Xj ∀j 
=1

m

i
∑

becomes  
for j=1  15 + 4X2 - 4X1 - u1 ≤ 0 
for j=2  30 + 4X1 - 8X2 - 2u1 ≤ 0 
 

Xj[∂f/∂xj - ui(∂gi/∂xj)] = 0 at xj=Xj ∀j 
=1

m

i
∑

becomes 
for j=1  X1[15 + 4X2 - 4X1 - u1] = 0 
for j=2   X2[30 + 4X1 - 8X2 - 2u1] = 0 
 
gi(X) - bi ≤ 0 ∀i becomes 
 X1 + 2X2 - 30 ≤ 0 
 
ui[gi(X) - bi] = 0 ∀i becomes 
 u1(X1 + 2X2 - 30) = 0 
 
where X1,X2,u1≥ 0 



To get a clearer picture of these constraints 
move any constant terms to the right-hand 
side and for the three inequality constraints 
above add nonnegative slack variables (y1, 
y2 and v1) so that for these equations we get 
 
4X2 - 4X1 - u1 + y1 = -15 
4X1 - 8X2 - 2u1 + y2 = -30 
X1 + 2X2 + v1 = 30 
 
Now consider the three constraints that 
require a product to be zero, these are 

X1[15 + 4X2 - 4X1 - u1] = 0 
X2[30 + 4X1 - 8X2 - 2u1] = 0 
u1(X1 + 2X2 - 30) = 0 

 
which using the above becomes 

X1[-y1] = 0 
X2[-y2] = 0 
u1(-v1) = 0 

 



or equivalently 
 X1y1 + X2y2 + u1v1 = 0 
(since all variables are ≥0) 
 
Here we have the sum of three product 
terms has to be zero. Each of these 
variable pairs (X1,y1), (X2,y2) and (u1,v1) 
are called complementary variables (since 
only one of the two variables can be 
nonzero, equivalently at least one of the 
two variables must be zero).  
 
The single constraint 
 X1y1 + X2y2 + u1v1 = 0 
is known as a complementarity 
constraint. 
 
Our complete set of KKT constraints now 
is: 

4X2 - 4X1 - u1 + y1 = -15 
4X1 - 8X2 - 2u1 + y2 = -30 
X1 + 2X2 + v1 = 30 
X1y1 + X2y2 + u1v1 = 0 

 all variables ≥ 0 
 



Multiplying the first two equations by -1 
to get a positive right-hand side we have 

-4X2 + 4X1 + u1 - y1 = 15 
-4X1 + 8X2 + 2u1 - y2 = 30 
X1 + 2X2 + v1 = 30 
X1y1 + X2y2 + u1v1 = 0 

 all variables ≥ 0 
 
If we did not have the complementarity 
constraint present then we would have a 
set of linear equations. It is the (nonlinear) 
complementarity constraint that makes 
arriving at variables values that satisfy 
these constraints difficult.  
 
Note here that these equations define a 
feasibility problem, we need a feasible 
solution. The key point is that the KKT 
conditions tell us that if we solve this 
feasibility problem we also solve the 
optimisation problem we originally started 
out with (and which was our focus of 
attention). 
 



For simplicity above we have developed 
the KKT conditions using a specific 
example. As you might suspect the KKT 
constraints can be written in a general 
form, and hence applied for any QP 
problem.  
 
For our standard QP 
 

maximise  cx - ½xTQx 
subject to Ax ≤ b  
   x ≥ 0 

 
the general form of the KKT constraints is: 
 

Qx + ATu - y = cT 
Ax + v = b 
xTy + uTv = 0 
x,y,u,v ≥ 0 
 
 



Returning to our KKT constraints we have 
-4X2 + 4X1 + u1 - y1 = 15 
-4X1 + 8X2 + 2u1 - y2 = 30 
X1 + 2X2 + v1 = 30 
X1y1 + X2y2 + u1v1 = 0 

 all variables ≥ 0 
 
These can be solved by a modification of 
the simplex method for linear 
programming. Paradoxically we now return 
to an optimisation problem (albeit a linear 
optimisation problem, whereas we 
originally started with a quadratic 
optimisation problem). 
 
First see if taking three variables from our  
complementarity constraint (one from each 
product pair) and setting them equal to 
zero yields a feasible solution to all the 
constraints (if it does we are done). 
 
Setting X1=X2=u1=0 leads to y1=-15,  
y2=-30 and v1=30. Here the values for y1 
and y2 violate the constraint that all 
variables have to be ≥0. 



 
As we have violated constraints associated 
with y1 and y2 for the constraints involving 
y1 and y2 introduce artificial variables z1 
and z2 (both ≥0) to get 

-4X2 + 4X1 + u1 - y1 + z1 = 15 
-4X1 + 8X2 + 2u1 - y2 + z2 = 30 

so now the solution X1=X2=u1=0 and 
v1=30 (as before) plus: 
• y1=0, z1=15  
• y2=0, z2=30  

satisfies all of our constraints. 
 



If we could somehow find a solution 
satisfying all of our constraints, but with 
z1=z2=0 then we would have solved our 
original feasibility problem. This can be 
achieved via the linear optimisation 
problem: 
 
minimise  z1 + z2 
subject to 

-4X2 + 4X1 + u1 - y1 + z1 = 15 
-4X1 + 8X2 + 2u1 - y2 + z2 = 30 
X1 + 2X2 + v1 = 30 
X1y1 + X2y2 + u1v1 = 0 

 all variables ≥ 0 
 
This is a linear program (LP) except for 
the complementarity constraint.  
 



To solve this problem we use the simplex 
method but with a restricted-entry rule: 

When you are choosing an entering 
basic variable, exclude from 
consideration any nonbasic variable 
whose complementary variable is 
already a basic variable; the choice 
should be made from the other 
nonbasic variables according to the 
usual criterion for the simplex method. 
This rule keeps the complementarity 
constraint satisfied throughout the 
course of the algorithm.  

Once a solution with an objective function 
value of zero is obtained then we have a 
solution to the original feasibility problem. 
 
Here we (to accord with the Hiller and 
Lieberman treatment) change our objective 
by substituting for z1 + z2 
using 

-4X2 + 4X1 + u1 - y1 + z1 = 15 
-4X1 + 8X2 + 2u1 - y2 + z2 = 30 

to get 
 z1 + z2 = 45 - 4X2 - 3u1 + y1 + y2 



so we want to  
 minimise  z1 + z2  
 
which is the same as  
 minimise 45 - 4X2 - 3u1 + y1 + y2 
 
To carry out the modified simplex 
algorithm we need to set up the initial 
tableau as below.  
 
Note that we use as our starting basis the 
solution z1=15, z2=30 and v1=30 (all other 
variables zero) we considered before that 
satisfies all of our constraints (including 
the complementarity constraint). 
 



The initial simplex tableau is: 
Basis X1 X2 u1 y1 y2 v1 z1 z2 RHS

z1 4 -4 1 -1   1  15 
z2 -4 8 2  -1   1 30 
v1 1 2    1   30 

Obj  -4 -3 1 1    -45 

 
Select the variable with the most negative 
objective coefficient to enter the basis, here 
X2. Note that its complementary variable 
y2 is nonbasic, so selecting X2 is allowed 
under the restricted-entry rule. 
 
The ratios for variables with positive 
coefficients in the X2 column of the tableau 
are 30/8 for z2 and 30/2 for v1. The 
minimum value is 30/8 for z2 so z2 leaves 
the basis.  
 
Summarising, the pivot row is the z2 row; 
the pivot element is 8; the pivot column is 
the X2 column. 
 



Conduct a pivot operation: 
• divide the pivot row by the pivot 

element 
• add/subtract multiples of the pivot row 

to all the other rows to get zeros in the 
pivot column 

 



The new simplex tableau is 
Basis X1 X2 u1 y1 y2 v1 z1 z2 RHS 

z1 2  2 -1 -0.5  1 0.5 30 
X2 -0.5 1 0.25  -0.125   0.125 3.75 
v1 2  -0.5  0.25 1  -0.25 22.5 

Obj -2  -2 1 0.5   0.5 -30 

 
Select the variable with the most negative 
coefficient to enter the basis, here X1 or u1.  
Note under the restricted-entry rule: 
• complementary variable (y1) for X1 is 

nonbasic, so selecting X1 is allowed 
• complementary variable (v1) for u1 is 

basic, so selecting u1 is not allowed 
 
The ratios for variables with positive 
coefficients in the X1 column of the tableau 
are 30/2 for z1 and 22.5/2 for v1. The 
minimum value is 22.5/2 for v1 so v1 leaves 
the basis. 
 



Doing the pivot operation we get (to 3 
decimal places) 

 
Basis X1 X2 u1 y1 y2 v1 z1 z2 RHS 

z1   2.5 -1 -0.75 -1 1 0.75 7.5 
X2  1 0.125  -0.063 0.25  0.063 9.375
X1 1  -0.25  0.125 0.5  -0.125 11.25
Obj   -2.5 1 0.75 1  0.25 -7.5 

 
Select the variable with the most negative 
coefficient to enter the basis, here u1.  
Note under the restricted-entry rule: 
• complementary variable (v1) for u1 is 

nonbasic, so selecting u1 is allowed 
 
The ratios for variables with positive 
coefficients in the u1 column of the tableau 
are 7.5/2.5 for z1 and 9.375/0.125 for X2. 
The minimum value is 7.5/2.5 for z1 so z1 
leaves the basis. 
 



Doing the pivot operation we get (to 3 
decimal places) 

 
Basis X1 X2 u1 y1 y2 v1 z1 z2 RHS 

u1   1 -0.4 -0.3 -0.4 0.4 0.3 3 
X2  1  0.05 -0.025 0.3 -0.05 0.025 9 
X1 1   -0.1 0.05 0.4 0.1 -0.05 12 
Obj       1 1 0 

 
Here we are done, as the objective has 
value zero. Hence we have a solution u1=3, 
X2=9 and X1=12, all other variables zero. 
 
It is easy to confirm that this solution 
satisfies: 

-4X2 + 4X1 + u1 - y1 + z1 = 15 
-4X1 + 8X2 + 2u1 - y2 + z2 = 30 
X1 + 2X2 + v1 = 30 
X1y1 + X2y2 + u1v1 = 0 

 all variables ≥ 0 
 



As we have a solution satisfying our KKT 
constraints this must be the optimal 
solution to our original QP 
 
maximise  
 15x1 + 30x2 + 4x1x2 - 2(x1)2 - 4(x2)2  
subject to 
 x1 + 2x2 ≤ 30 
 x1 ≥ 0  
 x2 ≥ 0 
 
i.e. the optimal solution to this problem is 
x1=12 and x2=9, for which the associated 
objective function value is 270. 
 


