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Integer programming solution methods     J E Beasley 
 
Introduction 
 
Suppose that we have some problem instance of a combinatorial optimisation problem and 
further suppose that it is a minimisation problem. If, as in Figure 1, we draw a vertical line 
representing value (the higher up this line the higher the value) then somewhere on this line 
is the optimal solution to the problem we are considering. 
 
Exactly where on this line this optimal solution lies we do not know, but it must be 
somewhere! 
 
Conceptually therefore this optimal solution value divides our value line into two: 

• above the optimal solution value are upper bounds, values which are above the 
(unknown) optimal solution value 

• below the optimal solution value are lower bounds, values which are below the 
(unknown) optimal solution value. 

 

 
Figure 1 

 
In order to discover the optimal solution value then any algorithm that we develop must 
address both these issues i.e. it must concern itself both with upper bounds and with lower 
bounds. 
 
In particular the quality of these bounds is important to the computational success of any 
algorithm: 

• we like upper bounds that are as close as possible to the optimal solution, i.e. as small 
as possible 

• we like lower bounds that are as close as possible to the optimal solution, i.e. as large 
as possible. 
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Upper bounds 
 
Techniques for generating upper bounds are essentially beyond the scope of this course. 
Suffice to say here that typically upper bounds are found by searching for feasible solutions 
to the problem, that is solutions which satisfy the constraints of the problem. 
 
A number of well-known general techniques are available to find feasible solutions to 
combinatorial optimisation problems, for example: 

• interchange  
• metaheuristics: 

o tabu search 
o simulated annealing 
o variable neighbourhood search 
o genetic algorithms (population heuristics). 

 
In addition, for any particular problem, we may well have techniques which are specific to 
the problem being solved. 
 
 
Lower bounds 
 
One well-known general technique which is available to find lower bounds is linear 
programming relaxation. In linear programming (LP) relaxation we take an integer (or 
mixed-integer) programming formulation of the problem and relax the integrality 
requirement on the variables. 
 
This gives a linear program which can be: 

• solved optimally using a standard algorithm (simplex or interior point); or 
• solved heuristically (dual ascent). 

The solution value obtained for this linear program gives a lower bound on the optimal 
solution to the original problem. We shall illustrate both of these approaches in this course. 
 
Another well-known (and well-used) technique which is available to find lower bounds is 
lagrangean relaxation. This technique will be expounded upon at much greater length in this 
course. Suffice to say for the moment that lagrangean relaxation involves: 
(a)  taking an integer (or mixed-integer) programming formulation of the problem 
(b)  attaching lagrange multipliers to some of the constraints in this formulation and 

relaxing these constraints into the objective function 
(c)  solving (optimally) the resulting integer (or mixed-integer) program. 
The solution value obtained from step (c) above gives a lower bound on the optimal solution 
to the original problem. 
 
At first sight this might not appear to be a useful approach since at step (a) above we have an 
integer (or mixed-integer) programming formulation of the problem and we propose to 
generate a lower bound for it by solving another integer (or mixed-integer) program (step (c) 
above). 
 
There are two basic reasons why this approach is well-known (and well-used): 
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• many combinatorial optimisation problems consist of an easy problem (in the NP-

complete sense, i.e. solvable by a polynomially bounded algorithm) complicated by 
the addition of extra constraints. By absorbing these complicating constraints into the 
objective function (step (b) above) we are left with an easy problem to solve and 
attention can then be turned to choosing numeric values for the lagrange multipliers. 

• practical experience with lagrangean relaxation has indicated that it gives very good 
lower bounds at reasonable computational cost. 

 
Choosing values for the lagrange multipliers is of key importance in terms of the quality of 
the lower bound generated (we much prefer lower bounds which are close to the optimal 
solution). Two general techniques are available here: 

• subgradient optimisation; and 
• multiplier adjustment. 

 
 
Preliminaries 
 
Consider the following general zero-one problem (written in matrix notation): 
 
Problem (P) 
 
minimise  cx 
subject to Ax ≥ b 
  Bx ≥ d 
  x∈(0,1) 
 
Note here that although we deal in this course purely with zero-one integer programs the 
material presented is equally applicable both to pure (general) integer programs and to 
mixed-integer programs. 
 
As mentioned above one way to generate a lower bound on the optimal solution to problem 
(P) is via the linear programming relaxation. This entails replacing the integrality constraint 
[x∈(0,1)] by its linear relaxation [0≤x≤1] to give the following linear program: 
 
minimise  cx 
subject to Ax ≥ b 
  Bx ≥ d 
  0 ≤ x ≤1 
 
This linear program can be solved optimally using a standard algorithm (e.g. simplex or 
interior point) and the solution value obtained gives a lower bound on the optimal solution to 
the original problem (problem P). 
 
In many cases however solving the linear programming relaxation of P is impracticable, 
typically because P involves a large (often extremely large) number of variables and/or 
constraints. We therefore need alternative techniques for generating lower bounds. 
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Lagrangean relaxation 
 
Lagrangean relaxation was developed in the early 1970's with the pioneering work of Held 
and Karp on the travelling salesman problem and is today an indispensable technique for 
generating lower bounds for use in algorithms to solve combinatorial optimisation problems. 
 
We define the lagrangean relaxation of problem P with respect to the constraint set Ax ≥ b by 
introducing a lagrange multiplier vector λ ≥ 0 which is attached to this constraint set and 
brought into the objective function to give: 
 
minimise  cx + λ(b - Ax) 
subject to Bx ≥ d 
  x∈(0,1) 
 
i.e. what we have done here is: 

• to have chosen some set of constraints in the problem for relaxation; and 
• attached lagrange multipliers to these constraints in order to bring them into the 

objective function. 
The key point is that the program we are left with after lagrangean relaxation, for any λ ≥ 0, 
gives a lower bound on the optimal solution to the original problem P. This can be seen as 
follows: 

The value of minimise  cx 
   subject to Ax ≥ b 
     Bx ≥ d 
     x∈(0,1) 
 
is greater than the value of 
   minimise  cx + λ(b - Ax) 
   subject to Ax ≥ b 
     Bx ≥ d 
     x∈(0,1) 

(since as λ≥0 and (b-Ax)≤0 we are merely adding a term which is ≤0 to the objective 
function) 
 

is greater than the value of  
   minimise  cx + λ(b - Ax) 
   subject to Bx ≥ d 
     x∈(0,1) 

since removing a set of constraints from a minimisation problem can only reduce the 
objective function value. 
 
The program after lagrangean relaxation, namely: 
 
minimise  cx + λ(b - Ax) = (c - λA)x + λb 
subject to Bx ≥ d 
  x∈(0,1) 
 
can be called the lagrangean lower bound program (LLBP) since, as shown above, it 
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provides a lower bound on the optimal solution to the original problem P for any λ ≥ 0. 
 
Note here that the above proof that lagrangean relaxation generates lower bounds is quite 
general, i.e. the constraints/objective function need not be linear functions. 
 
There are two key issues highlighted by the above lagrangean relaxation: 
 

• a strategic issue, namely why did we choose to relax the set of constraints Ax ≥ b 
when we could equally well have chosen to relax Bx ≥ d. 

• a tactical issue, namely how can we find numerical values for the multipliers.  
 
In particular note here that we are interested in finding the values for the multipliers that give 
the maximum lower bound, i.e. the lower bound that is as close as possible to the value of the 
optimal integer solution. This involves finding multipliers which correspond to: 

max ⎧ minimise cx + λ(b - Ax)  ⎫ 
λ≥0 ⎨ subject to Bx ≥ d     ⎬ 
 ⎩  x∈(0,1)  ⎭ 

This program is called the lagrangean dual program. 
 
Ideally the optimal value of the lagrangean dual program (a maximisation program) is equal 
to the optimal value of the original zero-one integer program (a minimisation problem). If the 
two programs do not have optimal values which are equal then a duality gap is said to exist, 
the size of which is measured by the (relative) difference between the two optimal values. 
 
In order to illustrate lagrangean relaxation we shall consider one of the simplest NP-complete 
combinatorial optimisation problems, namely the set covering problem. 
 
 
Set covering problem 
 
The set covering problem (SCP) is the problem of covering the rows of a m row, n column, 
zero-one matrix (aij) by a subset of the columns at minimum cost. 
 
Defining: 
 
xj = 1 if column j (cost cj > 0) is in the solution 
 = 0 otherwise 
 
the SCP is: 
 

minimise cjxj 
n

j=1
∑

subject to aijxj ≥ 1 i=1,...,m 
n

j=1
∑

  xj∈(0,1) j=1,...,n 
 
The first constraint in this program ensures that each row is covered by at least one column 
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and the second constraint is the integrality constraint. 
 
An example SCP (with 3 rows and 4 columns) is:  
(cj) = (  2,3,4,5 ) 
(aij) = ⏐ 1 0 1 0 ⏐ 
 ⏐ 1 0 0 1 ⏐ 
 ⏐ 0 1 1 1 ⏐ 
 
Here column 1, of cost 2, covers rows 1 and 2; column 2 of cost 3 covers row 3; column 3 of 
cost 4 covers rows 1 and 3; column 4 of cost 5 covers rows 2 and 3. 
 
In order to generate a lagrangean relaxation of this SCP we need: 
(a) to choose some set of constraints in the problem for relaxation; and 
(b) to attach lagrange multipliers to these constraints in order to bring them into the 

objective function. 
 
Step (a) above is not usually an easy step. As commented above the choice of which set of 
constraints to relax is a strategic issue. However, for the SCP we simply have one distinct set 

of constraints ( aijxj ≥ 1 i=1,...,m) and so: 
n

j=1
∑

(a) we choose this set of constraints for relaxation; and 
(b) attach lagrange multipliers λi ≥ 0 i=1,...,m to these constraints. 
 
If we do this we find that LLBP is: 
 

minimise cjxj + λi(1 - aijxj) 
n

j=1
∑

m

i=1
∑

n

j=1
∑

subject to xj∈(0,1) j=1,...,n 
 
i.e. 
 

minimise  [cj - λiaij]xj + 
n

j=1
∑

m

i=1
∑

m

i=1
∑ λi 

subject to xj∈(0,1) j=1,...,n 
 

Defining Cj = [cj - λiaij] j=1,...,n 
m

i=1
∑

 
i.e. Cj is the coefficient of xj in the objective function of LLBP we have that LLBP becomes: 
 

minimise Cjxj + λi 
n

j=1
∑

m

i=1
∑

subject to xj∈(0,1) j=1,...,n 
 
Now the solution (Xj) to LLBP can be found by inspection, namely: 
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Xj  = 1 if Cj ≤ 0 
 = 0 otherwise 
 
with the solution value (ZLB) of LLBP being given by: 
 

ZLB = CjXj + λi 
n

j=1
∑

m

i=1
∑

 
where ZLB is a lower bound on the optimal solution to the original SCP. 
 
Figure 2 summarises the situation. In that figure we have a point on the value line (a lower 
bound) associated with the solution (ZLB, (Xj)) to LLBP. 
 

 
Figure 2 

 
To illustrate the lagrangean relaxation of the SCP given above consider our example SCP:  
 
(cj) = (  2,3,4,5 ) 
(aij) = ⏐ 1 0 1 0 ⏐ 
 ⏐ 1 0 0 1 ⏐ 
 ⏐ 0 1 1 1 ⏐ 
 
Mathematically this example SCP is: 
 
minimise 2x1 + 3x2 + 4x3 + 5x4 
subject to x1 + x3 ≥ 1 
  x1 + x4 ≥ 1 
  x2 + x3 + x4 ≥ 1 
  xj∈(0,1) j=1,...,4 
 
Note here that the optimal solution to this SCP is of value 5 with x1=x2=1 and x3=x4=0. 
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To generate the lagrangean lower bound program we attach lagrange multipliers λi ≥ 0 
i=1,2,3 to the three constraints in this SCP to get: 
 
minimise 2x1 + 3x2 + 4x3 + 5x4 + λ1(1 - x1 - x3) + λ2(1 - x1 - x4) 
      + λ3(1 - x2 - x3 - x4) 
 
subject to xj∈(0,1) j=1,...,4 
 
i.e. LLBP is 
 
minimise (2 - λ1 - λ2)x1 + (3 - λ3)x2 + (4 - λ1 - λ3)x3 + (5 - λ2 - λ3)x4  
  + λ1 + λ2 + λ3 
 
subject to xj∈(0,1) j=1,...,4 
 
Hence 
C1 = (2 - λ1 - λ2) 
C2 = (3 - λ3) 
C3 = (4 - λ1 - λ3) 
C4 = (5 - λ2 - λ3) 
 
and LLBP is: 
 
minimise C1x1 + C2x2 + C3x3 + C4x4 + λ1 + λ2 + λ3 
 
subject to xj∈(0,1) j=1,...,4 
 
As before, (Xj), the solution values of the (xj), are given by 
 
Xj = 1 if Cj≤0 
 = 0 otherwise 
 
with the solution value for LLBP (ZLB) [a valid lower bound on the optimal solution to the 
original SCP] being given by 
 
ZLB = C1X1 + C2X2 + C3X3 + C4X4 + λ1 + λ2 + λ3 
 
 
Example lagrange multiplier values 
 
As commented above the choice of numerical values for the lagrange multipliers is a tactical 
issue. For the moment consider the (arbitrarily decided) set of values for the lagrange 
multipliers of: 
 
λ1 = 1.5 
λ2 = 1.6 
λ3 = 2.2 
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then 
 
C1 = (2 - λ1 - λ2) = -1.1 
C2 = (3 - λ3) = 0.8 
C3 = (4 - λ1 - λ3) = 0.3 
C4 = (5 - λ2 - λ3) = 1.2 
 
The solution to LLBP is 
 
X1=1, X2=X3=X4=0 
 
and 
 
ZLB  = C1X1 + C2X2 + C3X3 + C4X4 + λ1 + λ2 + λ3 
 
 = -1.1 + 0 + 0 + 0 + 1.5 + 1.6 + 2.2 
 
 = 4.2 
 
Note here that this value of 4.2 is indeed a lower bound on the optimal solution (which we 
know is of value 5) to the original SCP. 
 
 
Advanced lagrangean relaxation 
 
(1)  If we relax equality constraints then λ is unrestricted in sign (i.e. λ can be positive or 

negative). 
 
(2)  A common fallacy in lagrangean relaxation is to believe that, if the solution to LLBP 

is feasible for the original problem, then it is also optimal for the original problem. 
This is incorrect. 

 
For example consider the SCP with 3 rows and 4 columns that we dealt with above. Set 
λ1=λ2=λ3=10 and solve LLBP. The solution is X1=X2=X3=X4=1. This is certainly a feasible 
solution for the original problem (the SCP) but by no means the optimal solution! 
 

Under what circumstances therefore does the solution to LLBP being feasible for the 
original problem also imply that it is optimal for the original problem? 

 
The answer to this question is simple. Consider LLBP: 
 
minimise  cx + λ(b - Ax) 
subject to Bx ≥ d 
  x∈(0,1) 
 
Suppose that the lagrange multipliers λ ≥ 0 are such that the solution X to LLBP is feasible 
for the original problem (i.e. X satisfies AX ≥ b, BX ≥ d and X∈(0,1)). This feasible solution 
is of value cX whereas the lower bound obtained from LLBP is of value [cX + λ(b - AX)]. 
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Then if these two values coincide, i.e. the upper bound cX is equal to the lower bound [cX + 
λ(b - AX)], X is optimal. 
 
In other words a solution X to a lagrangean lower bound program is only optimal for the 
original problem if: 
(a) X is feasible for the original problem; and 
(b) cX = [cX + λ(b - AX)] i.e. λ(b - AX) = 0 
 
The reason why the fallacy referred to above has appeared is clear. If we are relaxing equality 
constraints (Ax=b) then any solution to the lagrangean lower bound program which is 
feasible for the original problem automatically satisfies both (a) and (b) above and so is 
optimal. 
 
(3)  If the solution to LLBP (for all possible multiplier (λ) values) is unchanged by 

replacing the integrality constraint [x∈(0,1)] in LLBP by its linear relaxation [0≤x≤1] 
then the lagrangean relaxation/lagrangean lower bound program is said to have the 
integrality property. 

 
To illustrate this consider the lagrangean relaxation of the SCP given above, which was: 
 

minimise Cjxj + λi 
n

j=1
∑

m

i=1
∑

subject to xj∈(0,1) j=1,...,n 
 
with solution 
 
Xj  = 1 if Cj ≤ 0 
 = 0 otherwise 
 
It is clear that replacing xj∈(0,1) j=1,...,n by 0≤xj≤1 j=1,...,n leaves the solution unchanged. 
 
Hence the lagrangean relaxation of the SCP given above does have the integrality property. 
 
(4)  If the lagrangean relaxation has the integrality property then the maximum lower 

bound attainable from LLBP is equal to the value of the linear programming 
relaxation of the original problem. 

 
Hence for the lagrangean relaxation of the SCP considered above the maximum lower bound 
attainable from LLBP, i.e. the value of the lagrangean dual program, is equal to the value of 
the linear programming relaxation of the original problem. 
 
(5)  If the lagrangean relaxation does not have the integrality property then the maximum 

lower bound attainable from LLBP is greater than (or equal to) the value of the linear 
programming relaxation of the original problem. 
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Lagrangean heuristic 
 
In a lagrangean heuristic we take the solution to LLBP and attempt to convert (transform) it 
into a feasible solution for the original problem by suitable adjustment (if necessary). This 
feasible solution constitutes an upper bound on the optimal solution to the problem (c.f. 
Figure 2).  
 
Note that the key feature of a lagrangean heuristic is that we are building upon the current 
solution to LLBP. The essential idea here is that just as the solution value for LLBP gives us 
useful information (a lower bound on the optimal integer solution value) so the structure of 
the solution to LLBP (i.e. the value of the variables) may well be giving us useful 
information about the structure of the optimal integer solution. 
 
 
To illustrate the concept of a lagrangean heuristic we will develop a lagrangean heuristic for 
the SCP. 
 
In the set covering problem all feasible solutions consider of a set of columns (xj) which 
cover each row at least once. 
 
In the solution to LLBP for the SCP we have some Xj one and some Xj zero. This may result 
in some rows not being covered, plainly these rows need to be covered to constitute a feasible 
solution for the SCP. 
 
Hence one possible (very simple) lagrangean heuristic is to construct a feasible solution S to 
the original SCP in the following way: 
 

• set S=[ j | Xj=1 j=1,...,n] 
• for each row i which is uncovered (i.e. 

j S∈
∑ aijXj=0) add the column corresponding to 

min[cj | aij=1 j=1,...,n] to S 
• S will now be a feasible solution to the original SCP of cost 

j S∈
∑ cj 

 
To illustrate the lagrangean heuristic given above consider the example LLBP solution of 
X1=1, X2=X3=X4=0 that we had before. 
 
Applying this lagrangean heuristic to our example LLBP solution of X1=1, X2=X3=X4=0 we 
get: 
 

• S=[1] 
• row 3 is the only uncovered row and the minimum cost column covering this row is 

column 2 so add column 2 to S 
• S=[1,2] is now a feasible solution to the original SCP of cost c1 + c2 = 2 + 3 = 5 

 
Fortuitously here we have, via our lagrangean heuristic, actually found the optimal solution 
to the original problem. Obviously this may not happen in all cases. However each time we 
solve LLBP the lagrangean heuristic has an opportunity to transform the solution to LLBP 
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into a feasible solution for the original problem. If, as is common in practice (see below), we 
solve LLBP many times then the lagrangean heuristic has many opportunities to transform 
the solution to LLBP into a feasible solution for the original problem. 
 
Designing a lagrangean heuristic for a particular LLBP is an art, the success of which is 
judged solely by computational performance i.e. whether a particular lagrangean heuristic 
gives good quality (near-optimal or optimal) solutions in a reasonable computation time. 
 
Our experience, based upon applying lagrangean heuristics to a number of different 
problems, has been that relatively simple lagrangean heuristics can give good quality results. 
 
 
Deciding lagrange multipliers 
 
In the previous section we have seen how to apply lagrangean relaxation to: 

• generate a lower bound; 
• generate a upper bound (corresponding to a feasible solution) 

 
In this section we deal with the tactical issue, namely given a particular relaxation (i.e. the 
strategic choice has been made), how can we find numerical values for the multipliers. 
 
There are two basic approaches to deciding values for the lagrange multipliers (λi): 

• subgradient optimisation; and 
• multiplier adjustment. 

We deal with each in turn. 
 
Subgradient optimisation 
 
Recall the original problem that we are attempting to solve: 
 
minimise cx 
subject to Ax ≥ b 
  Bx ≥ d 
  x∈(0,1) 
 
The lagrangean lower bound program (LLBP) for this problem was: 
 
minimise  cx + λ(b - Ax) 
subject to Bx ≥ d 
  x∈(0,1) 
 
the solution to which, for any λ≥0, gives a lower bound on the optimal solution to the original 
(integer) problem. 
 
Subgradient optimisation is an iterative procedure which, from a initial set of multipliers, 
involves generating further lagrange multipliers in a systematic fashion.  It can be viewed as 
a procedure which attempts to maximise the lower bound value obtained from LLBP (i.e. to 
solve the lagrangean dual program - see above) by suitable choice of multipliers. 
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Switching from matrix notation to summation notation, so that the relaxed constraints are 

aijxj ≥ bi (i=1,...,m), the basic subgradient optimisation iterative procedure is as follows: 
n

j=1
∑
 
(1) Let π be a user decided parameter satisfying 0 < π ≤ 2. Initialise ZUB (e.g. from some 

heuristic for the problem). Decide upon an initial set (λi) of multipliers. 
 
(2) Solve LLBP with the current set (λi) of multipliers, to get a solution (Xj) of value ZLB. 
 
(3) Define subgradients Gi for the relaxed constraints, evaluated at the current solution, 

by: 

  Gi = bi - aijXj  i=1,...,m 
n

j=1
∑

 
(4) Define a (scalar) step size T by 
 

  T = π(ZUB - ZLB)/ (Gi)2 
m

i=1
∑

 
 This step size depends upon the gap between the current lower bound (ZLB) and the 

upper bound (ZUB) and the user defined parameter π (more of which below) with the 

(Gi)2 factor being a scaling factor. 
m

i=1
∑

 
(5) Update λi using 
  λi = max(0, λi + TGi) i=1,...,m 
 and go to (2) to resolve LLBP with this new set of multipliers. 
 
As currently set out the above iterative procedure would never terminate. In fact we introduce 
a termination rule based upon either: 

• limiting the number of iterations that can be done; or 
• the value of π (reducing π during the course of the procedure and terminating when π 

is small, see below). 
 
We illustrate below one iteration of the subgradient optimisation procedure for our example 
SCP. 
 
(1) Let π=2. 
 Let ZUB = 6 (e.g. suppose we have applied some heuristic for the SCP and have found 

a feasible solution x1=x3=1, x2=x4=0 of value 6). 
 Let λ1=1.5, λ2=1.6, λ3=2.2 (as before). 
 
(2) The solution to LLBP is X1=1, X2=X3=X4=0 with ZLB=4.2 (as before). 
 
(3) The equations for the subgradients are: 
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 G1 = (1 - X1 - X3) = 1 - 1 - 0 = 0 
 G2 = (1 - X1 - X4) = 1 - 1 - 0 = 0 
 G3 = (1 - X2 - X3 - X4) = 1 - 0 - 0 - 0 = 1 
 
(4) The step size T is given by: 
 
 T = 2(6 - 4.2)/(02 + 02 + 12) = 3.6 
 
(5) Updating λi using λi = max(0, λi + TGi) gives: 
 

λ1 = max(0, 1.5 + 3.6(0)) = 1.5 
λ2 = max(0, 1.6 + 3.6(0)) = 1.6 
λ3 = max(0, 2.2 + 3.6(1)) = 5.8 

 
 
Resolving LLBP with this new set of multipliers gives X1=X2=X3=X4=1 with a new lower 
bound of ZLB = -0.7. 
 
Note here that, in this case, changing the multipliers has made the lower bound worse than 
before (previously it was 4.2, much closer to the optimal solution of 5 than the new value of -
0.7). This behaviour is common in subgradient optimisation i.e. we cannot expect, and do not 
observe, a continual improvement in the lower bound at each iteration. Indeed, as seen above, 
the lower bound can even go negative. 
 
However, suppose that we let Zmax be the maximum lower bound found over all subgradient 
iterations (where initially Zmax=-∞ and we update Zmax at each subgradient iteration using 
Zmax=max(Zmax, ZLB)). What been observed computationally, by many workers in the field, is 
that Zmax increases quite rapidly during the initial subgradient iterations with the rate of 
increase slowing as many iterations are performed.  
 
However it is common for Zmax to approach very close to (or even attain) the maximum lower 
bound possible from the lagrangean lower bound program, i.e. for Zmax to approach very 
close to (or even attain) the value of the lagrangean dual program. 
 
Figure 3 illustrates the situation as we perform subgradient iterations. As shown in that figure 
we plot the lower bound found at each subgradient iteration on the value line. The best 
(maximum) of these lower bounds is Zmax. This is the lower bound closest to the optimal 
solution. 
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Figure 3 

 
 
Multiplier adjustment 
 
Multiplier adjustment is simply a heuristic that: 
(a) given a starting set of lagrange multipliers; 
(b) attempts to improve them in some systematic way so as to generate an improved lower 

bound; and 
(c) if an improvement is made repeats (b) above. 
Often we simply change a single multiplier at each iteration, c.f. subgradient optimisation 
where we (potentially) change all multipliers at each iteration. 
 
The advantages of multiplier adjustment are: 

• usually computationally cheap; and 
• usually get an increase (or at least no decrease) in the lower bound at each iteration. 

 
The price we pay for this advantage is: 

• the final lower bound obtained can be poor (i.e. worse than that obtained from 
subgradient optimisation); and 

• different problems require different multiplier adjustment algorithms (unlike 
subgradient optimisation which is capable of being applied directly to many different 
problems). 

 
Multiplier adjustment is sometimes called lagrangean dual ascent as it can be viewed as an 
ascent procedure (i.e. a procedure with a monotonic improvement in the lower bound at each 
iteration) for the lagrangean dual program. 
 
To illustrate multiplier adjustment we shall develop a multiplier adjustment algorithm for the 
SCP. 
 
As in developing lagrangean heuristics developing multiplier adjustment algorithms is an art. 
However, exactly as for subgradient optimisation above, where the equation for updating 
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multipliers was: 
 λi = max(0, λi + TGi) i=1,...,m 
the direction in which we would like to change multipliers is clear: 
(i) if Gi<0 we would like to reduce λi 
(ii)  if Gi=0 we leave λi unchanged 
(iii)  if Gi>0 we would like to increase λi 
c.f. the above subgradient optimisation equation for multiplier update. 
 
Hence one possible (very simple) multiplier adjustment algorithm for the SCP is: 
(a)  solve LLBP with the current set of multipliers (λi) 
(b)  choose any row i for which Gi>0 (i.e. row i is uncovered in the current LLBP 

solution) 
(c) if row i is uncovered then it is easy to see from the relevant mathematics of LLBP 

that: 
• increasing λi will increase the lower bound obtained from LLBP; and 
• the maximum amount (δ) by which we can increase λi before the solution to 

LLBP changes is given by: 
   δ=min(Cj | aij=1 j=1,...,n) 
  i.e. δ=min(Cj | column j covers row i) 
(d)  increase λi by δ and go to (a). 
 
The above multiplier adjustment algorithm terminates when all rows are covered (i.e. Gi ≤ 0 
∀i). 
 
To illustrate this multiplier adjustment algorithm we shall apply it to our example SCP, 
starting from the multiplier values of λ1=1.5, λ2=1.6 and λ3=2.2 that we had before, which 
were associated with a lower bound of 4.2. 
 
(a)  the solution to LLBP is X1=1, X2=X3=X4=0, ZLB=4.2 with C1=-1.1, C2=0.8, C3=0.3, 

C4=1.2 and G1=0, G2=0, G3=1 
(b)  row 3 is uncovered as G3>0 
(c)  columns 2, 3 and 4 cover row 3 so 
  δ=min(C2, C3, C4) = min(0.8, 0.3, 1.2) = 0.3 
(d)  so we increase λ3 by 0.3 to give a new set of multipliers of 
  λ1=1.5, λ2=1.6, λ3=2.5 
 
Resolving LLBP with this new set of multipliers gives X1=X3=1, X2=X4=0 with a new lower 
bound of ZLB = 4.5, an improvement over the original lower bound of 4.2, as we expect (from 
the manner in which we designed our multiplier adjustment algorithm to improve the lower 
bound).  
 
As all rows are now covered (Gi ≤ 0 ∀i in the LLBP solution associated with ZLB=4.5) the 
algorithm terminates. 
 
Plainly we could have designed a better multiplier adjustment algorithm, for example 
investigating not just increasing λi as above, but also investigating reducing λi. Discovering 
whether a particular multiplier adjustment algorithm gives good quality lower bounds at 
reasonable computational cost is a matter for computational experimentation. 
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Note here that, as remarked above, unlike subgradient optimisation where we simply apply a 
sequence of general formulae for subgradients, step size and lagrange multiplier update, we 
have that multiplier adjustment algorithm design is a much more creative (difficult!) process.  
 
Dual ascent 
 
Dual ascent came to prominence with work on the uncapacitated warehouse (facility) 
location problem which, computationally, was very successful. 
 
Consider the linear programming (LP) relaxation of any combinatorial optimisation problem 
P (which is a minimisation problem). As P is a minimisation problem the LP relaxation is 
also a minimisation problem. The dual linear program associated with the LP relaxation is 
therefore a maximisation problem. Hence: 
 
 optimal P (integer) solution 
 ≥ 
 LP relaxation solution 
 = 
 dual LP solution 
 ≥ 
 any feasible solution for the dual LP 
 
Therefore any heuristic for the dual LP provides a way of generating a lower bound on the 
optimal integer solution of the original problem, since any dual feasible solution gives a 
lower bound on the optimal integer solution to the original problem. 
 
Figure 4 illustrates the situation. In that figure we essentially have three regions: 

• upper bounds, the region above the optimal (integer) solution; 
• dual LP feasible solutions, the region below the LP relaxation solution; and 
• the gap, the region between the LP relaxation solution and the optimal (integer) 

solution. 
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Figure 4 

 
Dual ascent consists therefore of simply thinking up some heuristic for generating feasible 
solutions to the dual of the LP relaxation of a problem. 
 
We shall illustrate dual ascent with reference to the set covering problem. For the SCP the LP 
relaxation is: 
 

minimise cjxj 
n

j=1
∑

subject to aijxj ≥ 1 i=1,...,m 
n

j=1
∑

  0 ≤ xj ≤ 1 j=1,...,n 
 
As we have assumed (see above) that all costs cj are strictly greater than zero this LP 
relaxation can be written as: 
 

minimise cjxj 
n

j=1
∑

subject to aijxj ≥ 1 i=1,...,m 
n

j=1
∑

  0 ≤ xj  j=1,...,n 
 
and the dual LP is: 
 

maximise ui 
m

i=1
∑

subject to uiaij ≤ cj j=1,...,n 
m

i=1
∑

  ui ≥ 0  i=1,...,m 
 
In order to illustrate dual ascent we will develop a dual ascent algorithm for our example 
SCP. 
 
Example dual ascent algorithm 
 
Considering the dual LP given above one possible (very simple) dual ascent algorithm is: 
(a) set ui=0 ∀i (this is a feasible solution for the dual LP) 
(b) take each ui (i=1,...,m) in turn and increase it by as much as possible consistent with 

retaining feasibility. 
 
A key point to note here is that often in a dual ascent algorithm we start from some dual 
feasible point and always retain dual feasibility throughout the algorithm. 
 
To illustrate the dual ascent algorithm given above we shall apply it to our example SCP. For 
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our example SCP the dual LP is: 
 
maximise u1 + u2 + u3 
subject to u1 + u2 ≤ 2 
  u3 ≤ 3 
  u1 + u3 ≤ 4 
  u2 + u3 ≤ 5 
  u1, u2, u3 ≥ 0 
 
Our simple dual ascent algorithm given above, as applied to this example, is therefore: 
(a) set u1=u2=u3=0 
(b) (1) the constraints involving u1 are: 
  u1 ≤ 2 
  u1 ≤ 4 
  (after setting u2=u3=0) so that u1 can be increased to 2 
 (2) the constraints involving u2 are: 
  u2 ≤ 0 
  u2 ≤ 5 
  (after setting u1=2 and u3=0) so u2 cannot be increased 
 (3) the constraints involving u3 are: 
  u3 ≤ 3 
  u3 ≤ 2 
  u3 ≤ 5 
  (after setting u1=2 and u2=0) so u3 can be increased to 2. 
 
Hence we have a final solution of u1=2, u2=0 and u3=2 which is a dual feasible solution and 
gives a lower bound of u1+u2+u3=4. 
 
Plainly we could have designed a better dual ascent algorithm, for example investigating not 
just increasing ui as above, but also investigating reducing ui (thereby enabling us to increase 
other uj's). Discovering whether a particular dual ascent algorithm gives good quality lower 
bounds at reasonable computational cost is a matter for computational experimentation. 
 
Connections 
 
Consider the two techniques for generating lower bounds that we have given above, namely: 

• lagrangean relaxation (with the multipliers being decided by subgradient optimisation 
or multiplier adjustment); and 

• dual ascent, i.e. heuristically solve the dual of the LP relaxation of the problem. 
Can we establish any connection between these two techniques? In fact we can by 
considering the question: 
 

Is there any relationship between dual variables and lagrange multipliers? 
 
Recall here that we mentioned before that if a lagrangean lower bound program (LLBP) had 
the integrality property then: 
 

• the maximum lower bound attainable from LLBP is equal to the value of the LP 
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relaxation of the original problem. 

 
However it can also be shown that: 
 

• the values of the lagrange multipliers that maximise the lower bound obtained from 
LLBP are given by the optimal values for the dual variables in the solution of the LP 
relaxation of the original problem. 

 
In other words if the lagrangean relaxation has the integrality property then the optimal 
lagrange multipliers and the optimal dual variables are the same. This immediately implies 
that the maximum lower bound attainable from any lagrangean relaxation with the integrality 
property is equal to the maximum lower bound attainable from any dual ascent algorithm for 
the problem. 
 
Subgradient optimisation or multiplier adjustment or dual ascent? 
 
Which of these three techniques should we use for obtaining lower bounds? 
 
I have to confess that my personal experience has been that subgradient optimisation has 
always appeared to give me very good lower bounds, in particular lower bounds often close 
to the optimal integer solution (so presumably also close to the maximum theoretically 
obtainable from the lagrangean relaxation). 
 
Hence I have never been very keen on multiplier adjustment methods although they appear 
useful for some problems, e.g. the generalised assignment problem. 
 
The only time I have tried dual ascent (for the p-median problem) it was a miserable failure! 
 
There is a deeper point here. Some techniques (such as subgradient optimisation, multiplier 
adjustment and dual ascent) are potentially of wide applicability, i.e. they can be applied to a 
wide range of problems. 
 
However these techniques may fail computationally when applied across a wide range of 
problems, instead only being successful (possibly outstandingly successful) on one or two 
problems. 
 
Based on this point then, if you have to choose between these three lower bound techniques, 
my advice would be: 
 
 
 Subgradient optimisation will nearly always work 
  
 Multiplier adjustment may work 
  
 Dual ascent will probably not work 
 
 


