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Integer programming solution methods - introduction   J E Beasley 
 
Capital budgeting 

There are four possible projects, which each run for 3 years and have the following 
characteristics. 
                            Capital requirements (£m) 
Project   Return (£m)     Year    1      2      3 
1           0.2                    0.5    0.3    0.2 
2           0.3                    1.0    0.8    0.2 
3           0.5                    1.5    1.5    0.3 
4           0.1                    0.1    0.4    0.1 
Available capital (£m)   3.1    2.5    0.4 
 

We have a decision problem here: Which projects would you choose in order to 
maximise the total return?  

 

Capital budgeting solution 

We follow the formulation approach below:  

• variables  

• constraints  

• objective.  

 

Variables 

Here we are trying to decide whether to undertake a project or not (a "go/no-go" decision). 
One "trick" in formulating IP's is to introduce variables which take the integer values 0 or 1 
and represent binary decisions (e.g. do a project or not do a project) with typically: 

• the positive decision (do something) being represented by the value 1; and  

• the negative decision (do nothing) being represented by the value 0.  

Such variables are often called zero-one or binary variables  

To define the variables we use the verbal description of 
xj  = 1 if we decide to do project j (j=1,...,4) 
    = 0 otherwise, i.e. not do project j (j=1,...,4) 
Note here that, by definition, the xj are integer variables which must take one of two possible 
values (zero or one).  
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Constraints 

The constraints relating to the availability of capital funds each year are  

 0.5x1 + 1.0x2 + 1.5x3 + 0.1x4 ≤ 3.1  (year 1)  
 0.3x1 + 0.8x2 + 1.5x3 + 0.4x4 ≤ 2.5  (year 2)  
 0.2x1 + 0.2x2 + 0.3x3 + 0.1x4 ≤ 0.4  (year 3)  

Objective 

To maximise the total return - hence we have  

maximise  0.2x1 + 0.3x2 + 0.5x3 + 0.1x4  

This gives us the complete IP which we write as  

maximise  0.2x1 + 0.3x2 + 0.5x3 + 0.1x4  

subject to  

  0.5x1 + 1.0x2 + 1.5x3 + 0.1x4 ≤ 3.1  
  0.3x1 + 0.8x2 + 1.5x3 + 0.4x4 ≤ 2.5  
  0.2x1 + 0.2x2 + 0.3x3 + 0.1x4 ≤ 0.4  
  xj = 0 or 1   j=1,...,4 

Note:  

• in writing down the complete IP we include the information that xj = 0 or 1 (j=1,...,4) 
as a reminder that the variables are integers  

• you see the usefulness of defining the variables to take zero/one values - e.g. in the 
objective the term 0.2x1 is zero if x1=0 (as we want since no return from project 1 if 
we do not do it) and 0.2 if x1=1 (again as we want since get a return of 0.2 if we do 
project 1). Hence effectively the zero-one nature of the decision variable means that 
we always capture in the single term 0.2x1 what happens both when we do the project 
and when we do not do the project.  

• you will note that the objective and constraints are linear (i.e. any term in the 
constraints/objective is either a constant or a constant multiplied by an unknown). In 
this course we deal only with linear integer programs (IP's with a linear objective and 
linear constraints). It is plain though that there do exist non-linear integer programs - 
these are, however, outside the scope of this course.  

Extensions to this basic problem include:  

• projects of different lengths  

• projects with different start/end dates  

• adding capital inflows from completed projects  

• projects with staged returns  
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• carrying unused capital forward from year to year  

• mutually exclusive projects (can have one or the other but not both)  

• projects with a time window for the start time.  

In fact note here that integer programming/quantitative modelling techniques are increasingly 
being used for financial problems.  

 
Solving IP's 

Solution methods for IP's can be categorised as: 

• optimal  

• heuristic  

An optimal algorithm is one which (mathematically) guarantees to find the optimal solution.  

It may be that we are not interested in the optimal solution:  

• because the size of problem that we want to solve is beyond the computational limit 
of known optimal algorithms within the computer time we have available; or  

• we could solve optimally but feel that this is not worth the effort (time, money, etc) 
we would expend in finding the optimal solution.  

In such cases we can use a heuristic algorithm - that is an algorithm that should hopefully 
find a feasible solution which, in objective function terms, is close to the optimal solution. In 
fact it is often the case that a well-designed heuristic algorithm can give good quality (near-
optimal) results.  

Note here that the methods presented below are suitable for solving both IP's (all variables 
integer) and MIP's (mixed-integer programs - some variables integer, some variables allowed 
to take fractional values).  

 
General purpose optimal solution algorithms 

We shall deal with just two general purpose (able to deal with any IP) optimal solution 
algorithms for IP's:  

• enumeration (sometimes called complete enumeration)  

• branch and bound (tree search).  

We consider each of these in turn below. Note here that there exists another general purpose 
solution algorithm based upon cutting planes.  
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Enumeration 

Unlike LP (where variables take continuous values (≥0)) in IP's (where all variables are 
integers) each variable can only take a finite number of discrete (integer) values. 

Hence the obvious solution approach is simply to enumerate all these possibilities - 
calculating the value of the objective function at each one and choosing the (feasible) one 
with the optimal value.  

For example for the capital budgeting problem considered above there are 24=16 possible 
solutions. These are: 
x1  x2   x3  x4 
0   0   0   0   do no projects 
 
0   0   0   1   do one project 
0   0   1   0 
0   1   0   0 
1   0   0   0 
 
0   0   1   1   do two projects 
0   1   0   1 
1   0   0   1 
0   1   1   0 
1   0   1   0 
1   1   0   0 
 
1   1   1   0   do three projects 
1   1   0   1 
1   0   1   1 
0   1   1   1 
 
1   1   1   1   do four projects 
 
Hence for our example we merely have to examine 16 possibilities before we know precisely 
what the best possible (optimal) solution is. This example illustrates a general truth about 
integer programming: 

What makes solving the problem easy when it is small is precisely what makes it 
become very hard very quickly as the problem size increases 

This is simply illustrated: suppose we have 100 integer variables each with 2 possible integer 
values then there are 2×2×2× ... ×2 = 2100 (approximately 1030) possibilities which we have to 
enumerate (obviously many of these possibilities will be infeasible, but until we generate one 
we cannot check it against the constraints to see if it is feasible or not).  

This number is plainly too many for this approach to solving IP's to be computationally 
practicable. To see this consider the fact that the universe is around 1010 years old so we 
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would need to have considered 1020 possibilities per year, approximately 4×1012 possibilities 
per second, to have solved such a problem by now if we started at the beginning of the 
universe.  

Be clear here - conceptually there is not a problem - simply enumerate all possibilities and 
choose the best one. But computationally (numerically) this is just impossible. 

IP nowadays is often called "combinatorial optimisation" indicating that we are dealing with 
optimisation problems with an extremely large (combinatorial) increase in the number of 
possible solutions as the problem size increases.  

Branch and bound (tree search) 

The most effective general purpose optimal algorithm is LP-based tree search (tree search 
also being called branch and bound). This is a way of systematically enumerating feasible 
solutions such that the optimal integer solution is found.  

Where this method differs from the enumeration method is that not all the feasible solutions 
are enumerated but only a fraction (hopefully a small fraction) of them. However we can still 
guarantee that we will find the optimal integer solution. The method was first put forward in 
the early 1960's by Land and Doig.  

Consider our example capital budgeting problem. What made this problem difficult was the 
fact that the variables were restricted to be integers (zero or one). If the variables had been 
allowed to be fractional (e.g. allowed to take all values between zero and one) then we would 
have had an LP which we could easily solve.  

Relaxing the integrality requirement to its continuous equivalent gives us the LP relaxation of 
the problem [here replace xj = 0 or 1 j=1,...,4 by 0 ≤ xj ≤ 1 j=1,...,4].  

This LP relaxation is 

maximise  0.2x1 + 0.3x2 + 0.5x3 + 0.1x4  

subject to  

  0.5x1 + 1.0x2 + 1.5x3 + 0.1x4 ≤ 3.1  
  0.3x1 + 0.8x2 + 1.5x3 + 0.4x4 ≤ 2.5  
  0.2x1 + 0.2x2 + 0.3x3 + 0.1x4 ≤ 0.4  
  0 ≤ xj ≤ 1   j=1,...,4 

Suppose that we were to solve this LP. Then we get x2=0.5, x3=1, x1=x4=0 of value 0.65 (i.e. 
the objective function value of the optimal linear programming solution is 0.65). 

As a result of this we now know something about the optimal integer solution, namely that it 
is ≤ 0.65, i.e. this value of 0.65 is a (upper) bound on the optimal integer solution. This is 
because when we relax the integrality constraint we (as we are maximising) end up with a 
solution value at least that of the optimal integer solution (and maybe better). 
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Consider this LP relaxation solution. We have a variable x2 which is fractional when we need 
it to be integer.  

How can we rid ourselves of this troublesome fractional value? 

To remove this troublesome fractional value we can generate two new problems:  

• original LP relaxation plus x2=0  

• original LP relaxation plus x2=1  

then we will claim that the optimal integer solution to the original problem is contained in 
one of these two new problems. Why is this true? 

This process of taking a fractional variable (a variable which takes a fractional value in the 
LP relaxation) and explicitly constraining it, to in this case each of its two integer values, is 
known as branching. It can be represented diagrammatically as below (in a tree diagram, 
which is how the name tree search arises). 

 

We now have two new LP relaxations to solve. If we do this we get:  

• P1 - original LP relaxation plus x2=0, solution x1=0.5, x3=1, x2=x4=0 of value 0.6  

• P2 - original LP relaxation plus x2=1, solution x2=1, x3=0.67, x1=x4=0 of value 0.63  

This can be represented diagrammatically as below. 

 

To find the optimal integer solution we just repeat the process, choosing one of these two 
problems, choosing one fractional variable and generating two new problems to solve.  
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Choosing problem P1 we branch on x1 to get our list of LP relaxations as:  

• P3 - original LP relaxation plus x2=0 (P1) plus x1=0, solution x3=x4=1, x1=x2=0 of 
value 0.6  

• P4 - original LP relaxation plus x2=0 (P1) plus x1=1, solution x1=1, x3=0.67, x2=x4=0 
of value 0.53  

• P2 - original LP relaxation plus x2=1, solution x2=1, x3=0.67, x1=x4=0 of value 0.63  

This can again be represented diagrammatically as below. 

 

At this stage we have identified a integer feasible solution of value 0.6 at P3. There are no 
fractional variables so no branching is necessary and P3 can be dropped from our list of LP 
relaxations.  

Hence we now have new information about our optimal (best) integer solution, namely that it 
lies between 0.6 and 0.63 (inclusive). Why is this true? 

Consider P4, it has value 0.53 and has a fractional variable (x3). However if we were to 
branch on x3 any objective function solution values we get after branching can never be 
better (higher) than 0.53. As we already have an integer feasible solution of value 0.6 P4 can 
be dropped from our list of LP relaxations since branching from it could never find an 
improved feasible solution. This is known as bounding - using a known feasible solution to 
identify that some relaxations are not of any interest and can be discarded.  

Hence we are just left with:  

• P2 - original LP relaxation plus x2=1, solution x2=1, x3=0.67, x1=x4=0 of value 0.63  

Branching on x3 we get  
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• P5 - original LP relaxation plus x2=1 (P2) plus x3=0, solution x1=x2=1, x3=x4=0 of 
value 0.5  

• P6 - original LP relaxation plus x2=1 (P2) plus x3=1, problem infeasible  

Neither of P5 or P6 lead to further branching so we are done, we have discovered the optimal 
integer solution of value 0.6 corresponding to x3=x4=1, x1=x2=0.  

The entire process we have gone through to discover this optimal solution (and to prove that 
it is optimal) is shown graphically below.  

 

You should be clear as to why 0.6 is the optimal integer solution for this problem, simply put 
if there were a better integer solution the above tree search process would (logically) have 
found it. 

Note here that this method, like complete enumeration, also involves powers of two as we 
progress down the (binary) tree. However also note that we did not enumerate all possible 
integer solutions (of which there are 16). Instead here we solved 7 LP's. This is an important 
point, and indeed why tree search works at all. We do not need to examine as many LP's as 
there are possible solutions. Whilst the computational efficiency of tree search differs for 
different problems it is this basic fact that enables us to solve problems that would be 
completely beyond us were we to try complete enumeration. 

You may have noticed that in the example above we never had more than one fractional 
variable in the LP solution at any tree node. This arises due to the fact that in constructing the 
above example I decided to make the situation as simple as possible. In general we might 
well have more than one fractional variable at a tree node and so we face a decision as to 
which variable to choose to branch on. A simple rule for deciding might be to take the 
fractional variable which is closest in value to 0.5, on the basis that the two branches (setting 
this variable to zero and one respectively) may well perturb the situation significantly.  
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Good computer packages (solvers) exist for finding optimal solutions to IP's/MIP's via LP-
based tree search. Many of the computational advances in IP optimal solution methods (e.g. 
constraint aggregation, coefficient reduction, problem reduction, automatic generation of 
valid inequalities) are included in these packages. Often the key to making successful use of 
such packages for any particular problem is to put effort into a good formulation of the 
problem in terms of the variables and constraints. By this we mean that for any particular IP 
there may be a number of valid formulations. Deciding which formulation to adopt in a 
solution algorithm is often a combination of experience and trial and error. 

Constraint logic programming (CLP), also called constraint programming, which is 
essentially branch and bound but without the bound, can be of use here if: 

• the problem cannot be easily expressed in linear mathematics  

• the gap between the LP relaxation solution and the IP optimal solution is so large as 
to render LP-based tree search impracticable.  

Other approaches 

In order to link to the talks given by other speakers I have been asked specifically to mention 
here: 

• dynamic programming – this is a technique, applicable if problems have a certain 
structure, that enables optimal solutions to be computed. It is very different in nature 
from branch and bound. Two problems you may have met that use dynamic 
programming are: 

o shortest path problem (finding the shortest path between two points in a graph)  

o longest path problem (finding the critical path in a PERT/CPM network 

• cutting planes. Cutting planes (essentially) start with the LP relaxation, as does 
branch and bound. However once that LP has been solved then, instead of branching, 
cutting plane methods attempt to add one or more constraints (cuts) to the LP. These 
constraints should be such as to: 

(a) perturb the solution (more technically be such as to make the current LP solution 
infeasible) 

(b) not eliminate the optimal integer solution (i.e. whatever constraint has been 
added it must be satisfied by the optimal integer solution) 

Once one or more constraints have been added then the LP is resolved and the process 
repeated. 

• Gomory f-cuts, also called Gomory cuts, are cuts (constraints) that can be deduced 
from the optimal LP solution which will (eventually) lead you to the optimal integer 
solution. The difficulty with using them in practice is essentially numeric – computers 
only do arithmetic to a finite number of decimal places and so errors can be 
accidentally introduced which lead to the method going astray. 


