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ABSTRACT

In this paper we consider the unconstrained binary
quadratic progranm ng problem This is the problem of
maxi m sing a quadratic objective by suitable choice of binary
(zero-one) vari abl es.

We present two heuristic algorithns based upon tabu
search and sinul ated annealing for this problem Conputational
results are presented for a nunber of publically avail able
data sets involving up to 2500 vari abl es.

An interesting feature of our results is that whilst for
nost probl ens tabu search dom nates sinul ated annealing for
the very | argest problens we consider the converse is true.

This paper typifies a "nultiple solution technique,
singl e paper"” approach, i.e. an approach that within the sane
paper presents results for a nunber of different heuristics
applied to the sane problem I|ssues relating to algorithmec

design for such papers are discussed.

Keywor ds: unconstrained binary (zero-one) quadratic

programm ng; tabu search; sinulated annealing



1. | NTRODUCT| ON

The unconstrai ned binary quadratic progranm ng problem
henceforth UBQP, the problem of maxim sing a quadratic
obj ective by suitable choice of binary (zero-one) vari abl es,

can be fornul ated as foll ows. Let:

n be the size of the problem (nunber of vari abl es)
[Qij] be a symmetric matrix of size n by n
X; = 1if variable i (i=1,...,n) is chosen

= 0 ot herw se
then the problemis:

maxi m se 'i,ilmj&xj (1)

subject to x?ﬁ[gll] i=1,...,n (2)
Equation (1) is a quadratic expression involving all pairs of
vari abl es, whilst equation (2) is the integrality constraint.

This problemis also sonetines referred to in the
literature as the unconstrai ned quadratic bival ent programm ng
problem [17]; the unconstrained quadratic zero-one progranmm ng
problem [12]; the quadratic zero-one progranm ng problem|[22];
t he unconstrai ned pseudo- Bool ean quadratic problem|[46]; the
unconstrai ned pseudo- Bool ean quadrati c zero-one progranmm ng
probl em [ 45]; the Bool ean quadratic progranmm ng problem [ 2]
and the binary quadratic program/|[15].

Note here that it is well-known (e.g. see [37]) that any
general i sed objective involving both |inear and quadratic
terns such as:

maxi m se ﬁamxi+ ﬁiﬁia”mm (3)

can be converted into the objective shown in equation (1)

above involving the symmetric matrix [q;;] by noting that



Xi=(x;)? (as x;0[0,1]) and setting q;;=p;+a;; Oi; o;;=(a;;+a;;)/2

Oi #j .

In the light of this UBQP, as defined above, can be
regarded as a general representation of all unconstrained
bi nary probl ens whose objective involves both |inear and
quadratic terns. Although a nunber of special cases of UBQP
are solvable in polynomal tine (see [3,34,41,42]), in genera
UBQP i s NP-hard.

We woul d note here that the literature does not speak
W th one voice as to the definition of UBQP. By this we nean
t hat :

(a) sone authors regard it as a nmaxi msation of a symetric
quadratic term as in equation (1) above (e.g. [15])

(b) others regard it as the maxim sation of the sumof a
linear termand a quadratic term as in equation (3)
above (e.g. [30])

(c) others regard it as a mnimsation of a symetric
quadratic term(e.g. [35])

(d) others regard it as the mnimsation of the sumof a
linear termand a quadratic term(e.g. [4]).

Al t hough all of the above are (trivially) mathemati cal

equi val ent these different definitions can pose problens for

the unwary reader.

Since the conputational focus of this paper is a
conparison with the recent work of d over, Kochenberger and
Al i daee [15] we have adopted here the sanme definition of UBQP
as in that work.

UBQP, a binary quadratic program can easily be



transforned into a binary linear programby |inearising the
quadratic termin a standard way. Defining variables y;; to

represent x;x; we have that UBQP can be fornul ated as:

maxi m se fz ﬁz qijYij (4)
subject to y:j ;in i=1,...,nj=1,...,n (5)
Yij < X i=1,...,nj=1,...,n (6)
Yij 2 X +X%x -1 i=1,...,nj=1,...,n(7)
yi;00,1] i=1,...,nj=1,...,n (8)
x;0(o,1] i=1,...,n (9)

Equations (5) and (6) ensure that y;; nust be zero if either of
Xj or Xx; are zero. Equation (7) ensures that y;; is one if both
Xj and x; are one. Equations (8) and (9) are the integrality
constraints.

The convex hull of solutions to equations (5)-(9) is
known as the Bool ean quadric pol ytope (al so known as the
Bool ean quadratic pol ytope [28]). Recent work relating to
characterising this polytope and defining facets can be found
in [26,30,45-47].

The linear progranm ng rel axation of the above program
equations (4)-(9), provides a bound on the optimal solution to
UBQP and this is known as the roof dual bound [8,9, 19].

UBQP has a nunber of applications. Phillips and Rosen
[ 43] discuss how a nol ecul ar conformati on probl em can be
formul ated as an UBQP. Chardaire and Sutter [12] nention an
application of the problemin cellular radi o channel
assi gnnent .

It has | ong been known that UBQP is equivalent to the

probl em of finding a maxi mumcut in a graph (see [4,18]).
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Par dal os and Rodgers [39] and Pardal os and Xue [40] have shown
that a nunber of problens in graphs (maxi num clique; nmaxi mum
vertex packing; m nimum vertex cover; nmaxi mum i ndependent set;

maxi mum wei ght i ndependent set) can all be fornul ated as

UBQP' s.



2. LI TERATURE SURVEY

There have been a consi derabl e nunber of papers presented
inthe literature relating to UBQP. In this section we review
the nost recent of these papers, structuring our review by
consi dering exact algorithns and heuristic algorithns
separately. References to work on the problemthat occurred
prior to the 1980's can be found both in the papers nentioned

bel ow and i n Hansen [20].

2.1 Exact algorithns

Bar ahona, Junger and Reinelt [4] presented an al gorithm
based on reducing the problemto a max-cut problemin a graph
and using cutting planes derived for the max-cut problem A
branch and cut algorithmwas used to solve the problemto
optimality. Conputational results were presented for problens
of various sizes up to n=100.

Billionnet and Sutter [7] presented a tree search
al gorithmusing a bound based upon the sum of three
conponents, the first conponent using roof duality, the second
usi ng positive quadratic posifornms and the third using a
posi form of degree four. Conputational results were presented
for problens of various sizes up to n=100.

Chardaire and Sutter [12] presented an algorithmfor
finding a bound on the problem by deconposing the original
gquadratic objective into a sum of pseudo-bilinear functions.
The deconposition to use is found via (approxi mate) sol ution
of the dual of a | agrangean deconposition of the initial

probl em Conputational results were presented for problens of



various sizes up to n=100.

Gulati, Gupta and Mttal [17] presented a tree search
procedure based on enunerating |ocal optim. Conputational
results were presented for problens of various sizes up to
n=40.

Hel nberg and Rendl [22] presented a tree search al gorithm
conbi ning cutting planes and a bound based upon sem definite
rel axation. Conputational results were presented for problens
of various sizes up to n=450.

Kal antari and Bagchi [23] presented a tree search
al gorithm based on transform ng the probleminto an equival ent
concave optim sation problem which can be tackl ed using an
al gorithm due to Kalantari and Rosen [24]. Conputationa
results were presented for problens of various sizes up to
n=50.

Pal ubeckis [32] presented a tree search al gorithm
i ncorporating transformati on of subprobl ens based upon a
heuristic solution. Conputational results were presented for
probl ens of various sizes up to n=247.

Par dal os and Rodgers [37] presented a tree search
algorithmthat uses a bound based upon the variables fixed at
each node of the tree and consideration of the positive and
negative elenents of [q;;]. Their algorithmincorporates a test
to fix variables based upon a gradi ent expression.

Conmput ational results were presented for problens of various
sizes up to n=200. They al so presented FORTRAN code for the
generation of standard test problens (see also Pardalos [33]).

Par dal os and Rodgers [38] presented a parallel branch and



bound al gorithm i npl enented on a hypercube architecture. They
used a bound based upon the sign of each g;;. Conputationa
results were presented for problens of various sizes up to

n=100. See al so [ 36].

2.2 Heuristic algorithns

d over, Kochenberger and Alidaee [15] presented a
heuristic based upon tabu search. In their heuristic a nove
corresponds to changing the value of a single variable (i.e.
setting x;=1-x; for sone i). They refer to setting variables to
one as a "constructive" phase and setting variables to zero as
a "destructive" phase. They use a strategic oscillation schene
that alternates between constructive and destructive phases.
Their approach enpl oys recency and | ong-term frequency
information related to "critical events", a critical event
being a decrease in the objective function val ue.

Conmput ational results were presented for 45 test probl ens of
various sizes up to n=500.

Lodi, Allemand and Liebling [27] presented a heuristic
based upon genetic algorithnms and scatter search. Their
al gorithmincorporates variable fixing (utilising the work of
Par dal os and Rodgers [37]). As in dover et al [15] they refer
to setting variables to one as a "constructive" phase and
setting variables to zero as a "destructive" phase and present
a sinple local search procedure that incorporates both phases.
All children generated in their algorithmare subjected to
this |l ocal search procedure in an attenpt to inprove them

before they are entered into the popul ati on. Conput ati onal
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results were presented for the sane set of 45 test problens as
were solved by dover et al [15].

Pal ubeckis [31] presented two constructive heuristics
w th known worst-case performance. Conputational results were
presented for problens of various sizes up to n=306.

Par dal os and Jha [35] discussed the conputati onal
conplexity of a nunber of problens related to UBQP and
presented a sinple |local search heuristic for the problem
Conmput ational results were presented for 20 test problens of

si ze n=100.



3. HEURI STI C ALGORI THVS

In this section we outline the two heuristic algorithns
based upon tabu search and sinmul ated anneali ng that we have
devel oped for solving UBQP. W al so comment on the algorithmc
desi gn of our heuristics and on applying a genetic algorithm

to the problem

3.1 Tabu search

Tabu search (TS) is a local search heuristic due to
A over [14] and Hansen [21]. In TS the fundanental concept is
that of a "nobve", a systenmatic operator that, given a single
starting solution, generates a nunber of other possible
solutions. In |ocal search terns these other solutions are the
"nei ghbour hood" of the single starting solution. Note here
that these solutions may, or nmay not, be feasible. Fromthe
nei ghbour hood the "best" solution is chosen to becone the new
starting solution for the next iteration and the process
repeats. This "best" solution may either be the first
i nproving solution encountered as the nove operator enunerates
t he nei ghbourhood, or it may be based upon conplete
enuner ation of the nei ghbourhood.

In order to prevent cycling a list of "tabu noves" is
enpl oyed. Typically this list prohibits certain noves which
would lead to the revisiting of a previously encountered
solution. This list of tabu noves is updated as the al gorithm
proceeds so that a nove just added to the tabu list is renoved
fromthe tabu list after a certain nunber of iterations (the

"tabu tenure") have passed. Tabu noves are sonetines all owed
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to be made however if they lead to an inproved feasible
solution (an "aspiration criteria"). A nore conprehensive

overview of TS can be found in [1, 16, 44].

3.2 Tabu search heuristic

In our TS heuristic a nove corresponds to changi ng the
value of a single variable (i.e. setting x;=1-%x; for some i).
This is the natural nove for UBQP and was used by d over et a
[15]. We started fromthe all-zero solution (x;=0 i=1,...,n)
and, at each solution, examned all non-tabu noves. |If a nove
was found that led to an inproved solution then it was taken
i mredi ately, otherwise fromthe set of all non-tabu noves the
nove that led to the best solution was taken.

Limted conputational experience indicated that it was
effective to apply a sinple | ocal search procedure each tine
an i nproved solution was found. This procedure attenpts to
i nprove that solution further by exam ning all possible noves
(irrespective of their tabu status) and naki ng any noves t hat
i nprove the solution. Qur |ocal search procedure is shown in
pseudocode in Algorithm 1l and our conplete TS heuristic is
shown i n pseudocode in Algorithm 2

The (arbitrary) termnation criterion in our TS heuristic
shown in Algorithm2 was that we could only exam ne
max (500000, 5000n) solutions. This is a key conputati onal
point. By far the nost conputationally expensive part of our
heuristic is evaluating a solution (i.e. conputing the
obj ective function value as given by equation (1)). A naive

i mpl enent ati on of this evaluation would require Q(n?
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operations. However in our TS heuristic we are evaluating a
new sol ution which differs by just a single nove (i.e. by only
one variable value) froman old solution. As the objective
function value of this old solution is known the objective
function eval uation of the new solution can be done by
focusing on the variable that has changed in value. In this
way eval uating a new solution can be acconplished in Q(n)

oper ati ons.

3.3 Sinmul ated anneal i ng

Sinmul ated annealing (SA) originated in an algorithmto
simulate the cooling of material in a heat bath [29] but its
use for optimsation problens originated with Kirkpatrick,
Cel att and Vecchi [25] and Cerny [10].

SA has nmuch in comon with TS in that they both exam ne
potential noves froma single starting solution. SA
i ncorporates a statistical conponent in that noves to worse
solutions are accepted with a specified probability that
decreases over the course of the algorithm

This probability is related to what is known as the
"tenperature”. Mre precisely, a nove that worsens the
obj ective function value by A is accepted with a probability
proportional to e T where T is the current tenperature. The
hi gher the tenperature T, the higher the probability of
accepting the nove. Hence this probability decreases as the
t enper at ure decreases.

In SA the tenperature is reduced over the course of the

al gorithmaccording to a "cooling schedul e which specifies
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the initial tenperature and the rate at which tenperature
decreases. A common cooling schedule is to reduce the
tenperature T by a constant factor a (0<o<1l) using T=aT at
regul ar intervals. A nore conprehensive overview of SA can be

found in [1,44].

3.4 Sinul ated anneali ng heuristic

Qur SA heuristic is simlar to our TS heuristic and can
be seen in pseudocode in Algorithm 3. The initial tenperature
was set equal to the problemsize n and a was set equal to
0.995. In contrast to our TS heuristic limted conputational
experience indicated that it was ineffective to apply a sinple
| ocal search procedure each tinme an inproved sol ution was
found. Rather that |ocal search procedure was applied once
only at the end of the SA heuristic.

Note here that, as far as we are aware, this paper
represents the first reported application of sinulated

anneal i ng to UBGQP.

3.5 Algorithm c design

There is an inportant point relating to the algorithmc
design of the heuristics presented above, and to their
subsequent conputational conparison presented bel ow, that we
w sh to enphasi se here.

The majority of papers in the literature that deal with
heuristics (not just for UBQP but also for many ot her
conbi natorial optim sation problens) apply just a single

solution technique (e.g. tabu search) to the probl em under
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consideration. A conputational conparison is then carried out
with the algorithnms of other workers, increasingly in recent
years on publically avail able test problens. As such it is
clearly legitimate (and indeed the author freely admts to
havi ng done this hinself) to build into an al gorithm what
m ght colloquially be phrased "bells and whistles",
algorithmc tricks/steps (extra intellectual effort) that
conputationally, nean that the al gorithm generates better
results than it otherw se woul d.

Recently however the author (e.g. as in [11l]) has tried
to nove beyond this "single solution technique, single paper”
approach to a "nmultiple solution techni que, single paper”
approach, i.e. to an approach that within the sane paper
presents results for a nunber of different heuristics applied
to the same problem As such the key algorithm c design point
is whether, or not, it is legitimate to build "bells and
whi stles" into one algorithmat the expense of another.

Consi der the two heuristics presented above. W could
have:

(a) built many extra tricks/steps (invested nmuch nore
intellectual effort) in the tabu search algorithmin an
attenpt to inprove its conputational perfornmance

(b) not built any such tricks/steps (not invested as much
intellectual effort) in the simulated annealing
al gorithm

As such we may have obtained different conputational results.
However, we strongly believe, that this is not a

| egitimate approach to al gorithm conparison within a "nmultiple
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solution techni que, single paper" approach. Sinply put, it is
not appropriate to attenpt to bias the results by investing
nmore intellectual effort in one algorithmthan in another.

Wi | st, of necessity, it nust remain an inprecise
calculation as to the anount of intellectual effort invested
in an algorithmwe have tried, in designing the heuristic
al gorithns presented above, to bear this point in mnd and not
to bias our results accordingly.

On a personal note we would comment that whilst this
"mul tiple solution technique, single paper"” approach does
nothing to length one’s publication list (indeed quite the
opposite) we do believe that nore work of this type should be

carri ed out.

3.6 GCenetic algorithm

We did experinment with a genetic algorithm (GA) for UBQP
The results are not reported here because we cane to believe
that, as the problem size increases, a population heuristic
such as a GA (which explicitly works with a popul ati on of
sol utions) could never conpete conputationally with a single
solution heuristic such as TS or SA which nmake a succession of
smal | changes to a single solution.

Qur reasoning for this is based on the point discussed
above concerning the conputational cost of evaluating a
solution. As noted above, within TS or SA a new sol ution can
be evaluated in Q(n) operations. However in a GA the child can
be distinctly different fromthe parents. This would

potentially entail Q(n? operations to conpute the objective
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function value of the child. Although it is clear that (say)
if the child only differed fromone (or other) of the parents
with regard to K variable values this evaluation m ght be
acconplished in O Kn) operations the essential point renains;
nanmely that solution evaluation in a GA for UBQP can be
conputationally nmuch nore expensive than in a TS or a SA
al gorithmfor UBQP.

Consi der the | argest problens, with n=2500, dealt with in
this paper. Sinply evaluating one GA child could (in the worst
case) take as long as evaluating 2500 TS or SA solutions. Even
initialising a GA wth a population of (say) 100 randomy
generated sol uti ons woul d be equi val ent to eval uating 250, 000
TS or SA solutions. These figures indicate the substanti al
conput ati onal di sadvantage under which a GA for UBQP nust
| abour in conparison to TS or SA

G ven this reasoning our current viewis that the only
way to successfully apply a GAto UBQP is to:

(a) only consider relatively small probl ens; and/or
(b) invest "intellectual effort” in the algorithm (see the

al gorithm c design di scussion above).

However, as will| becone apparent bel ow, our TS and SA
algorithns are (in our view) successful without this extra
intellectual effort and so, in the light of the algorithmc
design issues outlined before for a "multiple solution
techni que, single problem paper such as the one presented
here, we have not pursued the GA approach

We woul d comment here that we believe that the Lodi et al

[27] algorithm which is a population heuristic, relies on
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"Intell ectual effort" to limt the nunber of child sol utions

t hat have to be eval uat ed.
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4. COMPUTATI ONAL RESULTS

In this section we present conputational results for the
two heuristic algorithnms (TS and SA) we have presented above
for solving UBQ. Since we will be conparing these algorithns
with the heuristics of 3 over, Kochenberger and Alidaee [15]
and of Lodi, Allemand and Liebling [27] we will refer to their

heuristics as GKA and LAL respectively.

4.1 dover et al [15] test problens

To test our heuristics we first solved the 45 test
probl ens considered in dover et al [15]. These probl ens have
various sizes (up to n=500) and varying characteristics with
respect to the [q;;] matrix.

The results for these test problens are shown in Table 1
In that table we show, for each problem the results reported
in [15] for KA with respect to: the best solution value; the
time taken to first find this solution; and the total
execution tinme. Al conputer tines are in seconds on a Pentium
90 pc.

For the first 25 problens shown in Table 1 (problens
la-8a, 1b-10b and 1lc-7c) the solution values given are known
to be optimal. For the remaining problens the optinal val ues
are not known.

Also in Table 1 we show, both for LAL and for the tabu
search and sinul ated annealing heuristics reported in this
paper :

(a) the difference between the best solution found by GKA and

the best solution found by those heuristics (i.e. GKA
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solution value - heuristic solution val ue)

(b) the tinme taken to first find this best solution (in
seconds)

(c) the total execution tinme (in seconds).

The conputation tinmes for LAL relate to a Silicon G aphics

| NDY R10000sc (195Whz) and for our work relate to a Silicon

G aphics I ndigo (R4000, 100MHz, 48MB nami n nenory).

We woul d nention here that both GKA and LAL are run with
different paraneter values for different sized problens. CQur
TS and SA al gorithnms, by contrast, use a consistent set of
paraneter values for all problemsizes.

Wth regard to quality of results:

(a) it is clear that GKA and LAL are equival ent, producing
the sanme solution in all 45 test problens

(b) our TS algorithmis only slightly | ess effective,
produci ng the sane solution in 42 of the 45 probl ens.

However the deviations fromthe best known sol ution

val ues are extrenely small (an average deviation fromthe

best known sol ution of just 0.00035%

(c) our SA algorithmis the |east conpetitive of these
heuristics, but even it finds the best known solution in

38 of the 45 problens with an average deviation fromthe

best known sol ution of just 0.050%

A conput ati onal conparison of the results shown in Table 1 is
difficult as different conputers have been used, as well as
different stopping criteria. From Dongarra [13] we can nmake an

approxi mate conpari son of the results shown in Table 1 by

usi ng scaling values for the achi evabl e speeds of these
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conputers as 15 for our Silicon Graphics Indigo and 11 for a

Pentium 90 pc.

The current (late 1998) version of Dongarra [13] does not
contain a value for a Silicon Gaphics |INDY RLOOOOsc. Lodi et
al [27] state that they believe that this machine is
equi valent to a 200 Whz pc. Uilising this statenent, together
wth technical information fromthe Silicon Gaphics web site
(http://ww. sgi.con’) and the SPEC benchmark web site
(http://ww. spec.org/) our best estimate for the achievable
speed of their machine is 50.

Usi ng these scaling values and the average tine to first
find the best solution shown in Table 1 the ratio
CKA: LAL: TS: SA is given by 181(11):5(50):63(15):15(15) =
1991: 250: 945: 225. W& woul d therefore make the foll ow ng
observati ons:

(a) our TS heuristic finds its best solution in approxi mately
half of the GKAtinme (i.e. it converges approxi mately
tw ce as fast)

(b) our SA heuristic converges approximately four tinmes
faster than our TS heuristic (and at | east eight tines
faster than GKA)

(c) faster convergence is of interest as it inplies nore
opportunity for repeated applications of the algorithmto
the sanme problem (indeed LAL, for exanple, utilises just
such a restart strategy)

(d) restarting our TS heuristic just once (wWth a random
starting solution instead of the all-zero starting

solution) neant that the nunber of cases in which TS
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yi el ded a worse sol ution than GKA dropped fromthe three
shown in Table 1 to just one

(e) restarting our SA heuristic just once (wth a different
random starting solution) neant that the nunber of cases
in which SA yielded a worse solution than GKA dropped
fromthe seven shown in Table 1 to three.

Overall though our conclusion nust be that LAL is the dom nant

heuristic of the four heuristics shown in Table 1. GKA and TS
vie for second place (dependi ng upon the enphasis placed on
quality of results or tinme taken) whilst SA trails the other
heuristics. Were we to allow nultiple restarts then both TS
and SA (because of their faster convergence) would becone much
nmore conpetitive wth GKA

However we would like to return here to the algorithmc
design issue nentioned previously. It is clear (at least to
us) that both GKA and LAL contain nuch nore intell ectual
effort ("bells and whistles") than are contained in our
heuri sti cs.

One m ght expect therefore both GKA and LAL to be far
superior to our sinple heuristics. That this is not the case
is, we believe, a validation of the "nultiple solution
techni que, single paper" approach we have followed in this
paper. Foll ow ng such an approach forces one to bal ance
intellectual effort and focus on key al gorithm c design
features, rather than allow ng one to incorporate any nunber
of algorithmc tricks/steps such as is comonly done in the

"single solution technique, single paper" approach.
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4.2 Oher test probl ens

In order to conpare our heuristics nore fully we al so
randomy generated a |l arger series of 60 test problens
(n=50/ 100/ 250/ 500/ 1000/ 2500; 10 problens for each val ue of n)
with constant characteristics (10%density; all q;; entries
being integers uniformy drawn from|[-100, +100]). These
problens are in contrast to the problens considered in Table 1
whi ch have varying characteristics.

As far as we are aware problens of this size are
significantly larger than problens considered to date in the
literature

Note here that the test problens solved in this paper are
publically available fromOR-Library [5,6], email the nessage
bgpinfo to o.rlibrary@c. ac. uk or see
http://mscnga. ns.ic.ac. uk/jeb/orlib/bgpinfo.htm. By making
our problens publically available we hope to stinulate work on
heuristic techniques for UBQP.

The results for these test problens are shown in Table 2.
In that table we show the best known sol ution value (either
fromTS or SA). In addition we show (both for TS and for SA)
(a) the difference between the best known solution val ue and

the best solution found by each of our heuristics (i.e.

best known sol ution value - heuristic solution val ue)
(b) the tinme taken to first find this best solution (in

seconds)
(c) the total execution tinme (in seconds).
As before these tines relate to a Silicon Gaphics Indigo

(R4000, 100MHz, 48MB nmi n nenory).
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It is interesting to note from Table 2 that for n<1000
the conparative performance of TS and SAis as in Table 1 (TS
getting better quality results slower).

However for n=2500 SA outperfornms TS. For the ten
probl enms with n=2500 TS finds the best known solution 4 tines,
has an average percentage deviation fromthe best known
solution of 0.045% and an average tinme to solution of 35071
SA dom nates TS with respect to all of these neasures: finding
the best known solution 6 tinmes, having an average percentage
deviation fromthe best known solution of 0.015% and an
average tinme to solution of 11415.

Whet her the LAL heuristic of Lodi et al [27] (a
popul ati on based approach), which was the dom nant heuristic
on the problens shown in Table 1, would remai n dom nant when
applied to the nuch |l arger problens considered in Table 2 is
currently an open question. As our results for TS and SA show,
relative performance can change as problem size increases.

However we woul d repeat here our comments nade previously
t hat our experience for UBQ has been that, as problem size
i ncreases, getting a popul ation heuristic to conpete
conputationally with single solution heuristics (such as tabu
search or sinulated annealing) is difficult since solution
evaluation in a popul ation heuristic for UBQ can be
conputationally nmuch nore expensive than in a tabu search or

simul ated anneal ing al gorithm for UBQP.
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5. CONCLUSI ONS

In this paper we have considered the unconstrai ned binary
gquadratic progranm ng probl em and have presented two heuristic
al gorithns based upon tabu search and sinul ated anneal i ng.
Conmput ational results were given for publically avail abl e test
problens that are significantly larger than those sol ved by
ot her workers.

For nost problens tabu search dom nated sinul ated
anneal ing but for the very |l argest problens considered the
converse was true.

Thi s paper was an exanple of the "multiple solution
techni que, single paper" approach, and issues relating to

algorithmc design for such papers were discussed.
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X is the value for variable i in the current solution
V' is the best solution value found so far
t is the iteration counter

begin local_search([X.],V",t)

improved:=false I* set flag that marks whether an improved solution found or not */
for k=1to ndo [* examine all variables */
t=t+1 [* increment iteration counter */
X :=1-X, * make the move for variable k */
V= il il XX /* evaluate new solution */
1= J=
if V>V’ then /* check for improved solution */
V=V /* record improved solution */
improved:=true [* set improved flag */
else
X :=1-X, I* reset variable k */
end if
end for
if improved then repeat this procedure else return
end

Algorithm 1: Local search




is the tabu value for variable i, where L;=0 if the variable is not tabu

[* set the starting solution */

X is the value for variable i in the current solution

vV’ is the best solution value found so far

V" isthe best solution value associated with a neighbour of [X]
L.

LL is the tabu tenure value

t is the iteration counter

begin

X;:=0i=1,...,n

V':=0

LL:O i=1,..,n
L :=min(20,n/4)
T":=max(500000,5000n)
t:=0
while t<T" do
VAR
for k=1tonand L,=0 do
t:=t+1
X :=1-X

Vi= 3% gXX,

i-1 j-=1

if V>V then
K:=k
local_search([X],V",t)
go to done:

end if

if V>V then
K:=k
Vv
end if
end for

done: L;:=max(0,L;-1) i=1,...,n
Ly:=L"

end while
return V'
end

[* initialise best solution value */

/* initialise tabu values */

[* set tabu tenure */

/* set maximum number of iterations */
[* initialise iteration counter */

[* T iterations in al */

[* initialise best neighbour value */

/* examine all non-tabu variables */

/* increment iteration counter */

/* make the move for variable k */

[* evaluate new solution */
* check for improved solution */

[* record variable associated with the move */
/* apply the local search procedure */

I* reset variable k */
* check for improved neighbouring solution */

/* record variable associated with the move */
/* record solution value */

/* make the move for the chosen variable K */

/* reduce al tabu values by one */
[* tabu the chosen variable */

Algorithm 2: TS heuristic




Xi
\VA is the best solution value found so far
Y, isthevaue of varigblei in V'
V**
t is the iteration counter
begin
initialise X; i=1,...,n randomly
Y;:=X; i=1,..,n
Vi= 3% XX
i=1 j=1
V**:: *
T:=n
a:=0.995

T":=max(500000,5000n)
t:=0

while t<T" do

t:=t+1

randomly select a variable k
X, :=1-X

Vi= 3% gXX,

i-1 j=1

if V>V then
V=V
Y:=X;i=1,...,n
end if

if V>V then
\VASEV;
ese

is the value for variable i in the current solution

is the solution value associated with the current solution

[* randomise the starting solution */
[* set best solution */

/* initialise best solution value */

/* set current solution value */
[* initialise SA parameters */

[* set maximum number of iterations */
[* initialise iteration counter */

/* T iterations in all */

/* increment iteration counter */

/* make the move for variable k */

/* evaluate new solution */

[* check for improved solution */
/* record the improved solution */

/* check if new solution better than current solution */

[* change V"™ */

r:=a random number drawn from [0,1]

if r < exp[-|V"-V|/T] then

V =V
else
X :=1-X .
end if
end if
T:=aT
end while
local_search([Y ],V",t)
return V°
end

/* check for accept worst solution */
[* change V™" */

/* reset variable k */

/* reduce temperature */

I* apply the local search procedure */

Algorithm 3: SA heuristic







Probl em] n KA T15] LAL T 27] TS SA
nrggfr Solution| Tine to|Total | Solution |[Tine to|Total | Solution | Tine to [Total | Solution |[Tine to[Total
value [solution|tine|differencelsolution|tine|differencelsolution|tinme |differencelsolution|time
la 50 3414 <1 37 - <1 1 - <1 16 - <1 23
2a 60 6063 <1 60 - <1 1 - <1 22 - <1 30
3a 70 6037 15 71 - <1 1 - 7 21 - <1 26
4a 80 8598 14 93 - <1 1 - 10 26 - 1 31
5a 50 5737 7 38 - <1 1 - <1 19 - <1 24
6a 30 3980 <1 15 - <1 1 - <1 11 - <1 17
7a 30 4541 <1 14 - <1 1 - <1 12 - <1 18
8a 100 11109 17 141 - <1 1 - <1 29 - 1 40
1b 20 133 <1 2 - <1 1 - <1 6 - <1 9
2b 30 121 <1 4 - <1 1 - <1 7 - <1 10
3b 40 118 <1 5 - <1 1 - <1 9 - <1 11
4b 50 129 <1 8 - <1 1 - <1 10 - <1 13
5b 60 150 <1 11 - <1 1 - <1 11 - <1 12
6b 70 146 <1 14 - <1 1 - 2 12 - <1 12
7b 80 160 <1 18 - <1 1 - <1 13 - <1 13
8b 90 145 5 21 - <1 1 - 11 15 - <1 14
9b 100 137 11 27 - <1 1 - 4 15 2 1 15
10b [125 154 5 46 - <1 1 - 2 21 - 2 22
1c 40 5058 <1 27 - <1 1 - <1 17 - <1 20
2c 50 6213 <1 40 - <1 1 - <1 22 - <1 30
3c 60 6665 3 64 - <1 1 - <1 23 - <1 31
4c 70 7398 10 74 - <1 1 - <1 24 - <1 31
5¢ 80 7362 41 100 - <1 1 - <1 27 - 2 37
6¢C 90 5824 49 111 - <1 1 - 6 28 - 2 35
7c 100 7225 7 140 - <1 1 - 6 32 - 2 40
1d 100 6333 3 60 - <1 1 - <1 32 - 2 41
2d 100 6579 18 56 - <1 1 - <1 29 - 2 37
3d 100 9261 3 62 - <1 1 - <1 31 - 2 40
4d 100[ 10727 7 59 - <1 1 - <1 31 - 2 38
5d 100 11626 53 64 - <1 1 - 12 32 - 1 41
6d 100 14207 32 64 - <1 1 - 2 32 50 1 37
7d 100 14476 23 63 - <1 1 - <1 36 - 1 43
8d 100[ 16352 11 63 - <1 1 - <1 36 - 2 45
9d 100[ 15656 1 58 - <1 1 - <1 33 - 1 38
10d 100[ 19102 2 70 - <1 1 - <1 39 - <1 48
le 200 16464 374 876 - 2 5 - 26 128 6 14 141
2e 200[ 23395 149 913 - <1 5 - 63 130 - 19 147
3e 200 25243 56 1069 - <1 5 - 3 130 - 10 149
4de 200[ 35594 21 1054 - <1 5 - <1 149 - 15 168
5e 200[ 35154 284 1007 - <1 5 - 18 149 - 15 168
1f 500 61194 2530 4925 - 43 60 - 53 960 11 116 965
2f 500[ 100161 1055 5005 - 43 60 3 619 1031 3 130 1033
3f 500[ 138035 205 4900 - 59 60 14 819 1076 - 127 1077
af 500[ 172771 2520 4835 - 9 60 - 1107 1156 621 89 1142
5f 500 190507 590 5090 - 59 60 5 62 1182 9 115 1210
Aver age 181 700 5 8 63 150 15 159
Table 1: Results for the Jover et al [15] problens
Not es

(a)

account for use of a different conputer

(b)

for problens 1f-5f the tines quoted above have been adjusted (using the infornmation given in [15]) to

for tines given as < 1 a figure of 0.5 has been assuned in conputing the average val ues given above




n [Probl emBest known TS SA

number sovlaultuleon Solution [ Tinme to| Total Solution | Tine to Tot al
difference|solution| tinme |[difference]|solution tinme

50 1 2098 - <1 14 - <1 19
2 3702 - <1 16 - <1 20

3 4626 - <1 17 - <1 21

4 3544 - <1 16 - <1 21

5 4012 - <1 16 - <1 20

6 3693 - <1 16 - <1 22

7 4520 - <1 17 - <1 22

8 4216 - <1 17 - <1 22

9 3780 - <1 17 - <1 22

10 3507 - <1 17 - <1 21

100 1 7970 - 5 34 28 1 31
2 11036 - 8 35 - 2 34

3 12723 - 8 37 - 2 34

4 10368 - <1 33 - 1 33

5 9083 - <1 36 - 2 33

6 10210 - 5 36 - 2 34

7 10125 - 24 36 - 3 32

8 11435 - 2 36 - 2 31

9 11455 - <1 35 - 1 32

10 12565 - 36 38 - 2 36

250 1 45607 - 45 238 - 27 226
2 44810 - 16 239 - 17 226

3 49037 - 49 254 - 19 240

4 41274 - 13 234 - 20 218

5 47961 - 8 245 - 22 232

6 41014 - 25 240 - 16 221

7 46757 - 43 250 - 19 232

8 35726 - 17 225 - 23 212

9 48916 - 133 246 - 14 229

10 40442 - 3 235 - 20 218

500 1 116586 - 681 956 - 113 1006
2 128223 - 326 979 19 112 1009

3 130812 - 438 987 - 104 1030

4 130097 - 477 1003 20 142 1061

5 125487 - 499 964 172 101 1030

6 121719 - 69 966 - 111 1028

7 122201 - 518 952 - 120 1014

8 123559 - 245 1006 90 135 1050

9 120798 1 85 954 - 125 998

10 130619 - 164 971 - 112 1012

1000 1 371438 - 432 4608 304 1083 7150
2 354932 - 2274 4514 295 983 6794

3 371226 153 2829 4518 - 841 6943

4 370560 - 1935 4580 295 1119 7011

5 352736 - 1186 4512 439 975 6939

6 359452 - 3492 4444 139 1001 6749

7 370999 - 922 4546 184 965 6885

8 351836 - 243 4461 835 1079 6961

9 348732 - 2478 4488 423 891 6626

10 351415 7 3553 4474 - 923 6734
2500 1 1515011 40 51461 52011 - 11896 63080
2 1468850 156 25440 51659 - 11588 62787
3 1413083 2362 31186 49101 - 10777 60963
4 1506943 701 19140 50642 - 11263 63018
5 1491796 - 34293 51194 331 13189 63470
6 1468427 727 42966 51669 - 10962 63310
7 1478654 2595 48243 50798 - 11322 62833
8 1484199 - 12721 49861 1246 10196 61918
9 1482306 - 41408 51873 472 10852 62978
10 1482354 - 43855 50981 188 12108 62777

Table 2: Results for other probl enms




