
Heuristic algorithms for the unconstrained binary quadratic

programming problem

J.E. Beasley

December 1998

j.beasley@ic.ac.uk

http://mscmga.ms.ic.ac.uk/jeb/jeb.html

The Management School

Imperial College

London SW7 2AZ

England

ABSTRACT

In this paper we consider the unconstrained binary

quadratic programming problem. This is the problem of

maximising a quadratic objective by suitable choice of binary

(zero-one) variables.

We present two heuristic algorithms based upon tabu

search and simulated annealing for this problem. Computational

results are presented for a number of publically available

data sets involving up to 2500 variables.

An interesting feature of our results is that whilst for

most problems tabu search dominates simulated annealing for

the very largest problems we consider the converse is true.

This paper typifies a "multiple solution technique,

single paper" approach, i.e. an approach that within the same

paper presents results for a number of different heuristics

applied to the same problem. Issues relating to algorithmic

design for such papers are discussed.

Keywords: unconstrained binary (zero-one) quadratic

programming; tabu search; simulated annealing

1

1. INTRODUCTION

The unconstrained binary quadratic programming problem,

henceforth UBQP, the problem of maximising a quadratic

objective by suitable choice of binary (zero-one) variables,

can be formulated as follows. Let:

n be the size of the problem (number of variables)

[qij] be a symmetric matrix of size n by n

xi = 1 if variable i (i=1,...,n) is chosen

= 0 otherwise

then the problem is:

maximise qijxixj (1)

subject to xi∈ [0,1] i=1,...,n (2)

Equation (1) is a quadratic expression involving all pairs of

variables, whilst equation (2) is the integrality constraint.

This problem is also sometimes referred to in the

literature as the unconstrained quadratic bivalent programming

problem [17]; the unconstrained quadratic zero-one programming

problem [12]; the quadratic zero-one programming problem [22];

the unconstrained pseudo-Boolean quadratic problem [46]; the

unconstrained pseudo-Boolean quadratic zero-one programming

problem [45]; the Boolean quadratic programming problem [2]

and the binary quadratic program [15].

Note here that it is well-known (e.g. see [37]) that any

generalised objective involving both linear and quadratic

terms such as:

maximise pixi + aijxixj (3)

can be converted into the objective shown in equation (1)

above involving the symmetric matrix [qij] by noting that

2

xi=(xi)
2 (as xi∈ [0,1]) and setting qii=pi+aii ∀ i; qij=(aij+aji)/2

∀ i≠j.

In the light of this UBQP, as defined above, can be

regarded as a general representation of all unconstrained

binary problems whose objective involves both linear and

quadratic terms. Although a number of special cases of UBQP

are solvable in polynomial time (see [3,34,41,42]), in general

UBQP is NP-hard.

We would note here that the literature does not speak

with one voice as to the definition of UBQP. By this we mean

that:

(a) some authors regard it as a maximisation of a symmetric

quadratic term, as in equation (1) above (e.g. [15])

(b) others regard it as the maximisation of the sum of a

linear term and a quadratic term, as in equation (3)

above (e.g. [30])

(c) others regard it as a minimisation of a symmetric

quadratic term (e.g. [35])

(d) others regard it as the minimisation of the sum of a

linear term and a quadratic term (e.g. [4]).

Although all of the above are (trivially) mathematical

equivalent these different definitions can pose problems for

the unwary reader.

Since the computational focus of this paper is a

comparison with the recent work of Glover, Kochenberger and

Alidaee [15] we have adopted here the same definition of UBQP

as in that work.

UBQP, a binary quadratic program, can easily be

3

transformed into a binary linear program by linearising the

quadratic term in a standard way. Defining variables yij to

represent xixj we have that UBQP can be formulated as:

maximise qijyij (4)

subject to yij ≤ xi i=1,...,n j=1,...,n (5)

yij ≤ xj i=1,...,n j=1,...,n (6)

yij ≥ xi + xj - 1 i=1,...,n j=1,...,n (7)

yij∈ [0,1] i=1,...,n j=1,...,n (8)

xi∈ [0,1] i=1,...,n (9)

Equations (5) and (6) ensure that yij must be zero if either of

xi or xj are zero. Equation (7) ensures that yij is one if both

xi and xj are one. Equations (8) and (9) are the integrality

constraints.

The convex hull of solutions to equations (5)-(9) is

known as the Boolean quadric polytope (also known as the

Boolean quadratic polytope [28]). Recent work relating to

characterising this polytope and defining facets can be found

in [26,30,45-47].

The linear programming relaxation of the above program,

equations (4)-(9), provides a bound on the optimal solution to

UBQP and this is known as the roof dual bound [8,9,19].

UBQP has a number of applications. Phillips and Rosen

[43] discuss how a molecular conformation problem can be

formulated as an UBQP. Chardaire and Sutter [12] mention an

application of the problem in cellular radio channel

assignment.

It has long been known that UBQP is equivalent to the

problem of finding a maximum cut in a graph (see [4,18]).

4

Pardalos and Rodgers [39] and Pardalos and Xue [40] have shown

that a number of problems in graphs (maximum clique; maximum

vertex packing; minimum vertex cover; maximum independent set;

maximum weight independent set) can all be formulated as

UBQP’s.

5

2. LITERATURE SURVEY

There have been a considerable number of papers presented

in the literature relating to UBQP. In this section we review

the most recent of these papers, structuring our review by

considering exact algorithms and heuristic algorithms

separately. References to work on the problem that occurred

prior to the 1980’s can be found both in the papers mentioned

below and in Hansen [20].

2.1 Exact algorithms

Barahona, Jünger and Reinelt [4] presented an algorithm

based on reducing the problem to a max-cut problem in a graph

and using cutting planes derived for the max-cut problem. A

branch and cut algorithm was used to solve the problem to

optimality. Computational results were presented for problems

of various sizes up to n=100.

Billionnet and Sutter [7] presented a tree search

algorithm using a bound based upon the sum of three

components, the first component using roof duality, the second

using positive quadratic posiforms and the third using a

posiform of degree four. Computational results were presented

for problems of various sizes up to n=100.

Chardaire and Sutter [12] presented an algorithm for

finding a bound on the problem by decomposing the original

quadratic objective into a sum of pseudo-bilinear functions.

The decomposition to use is found via (approximate) solution

of the dual of a lagrangean decomposition of the initial

problem. Computational results were presented for problems of

6

various sizes up to n=100.

Gulati, Gupta and Mittal [17] presented a tree search

procedure based on enumerating local optima. Computational

results were presented for problems of various sizes up to

n=40.

Helmberg and Rendl [22] presented a tree search algorithm

combining cutting planes and a bound based upon semidefinite

relaxation. Computational results were presented for problems

of various sizes up to n=450.

Kalantari and Bagchi [23] presented a tree search

algorithm based on transforming the problem into an equivalent

concave optimisation problem which can be tackled using an

algorithm due to Kalantari and Rosen [24]. Computational

results were presented for problems of various sizes up to

n=50.

Palubeckis [32] presented a tree search algorithm

incorporating transformation of subproblems based upon a

heuristic solution. Computational results were presented for

problems of various sizes up to n=247.

Pardalos and Rodgers [37] presented a tree search

algorithm that uses a bound based upon the variables fixed at

each node of the tree and consideration of the positive and

negative elements of [qij]. Their algorithm incorporates a test

to fix variables based upon a gradient expression.

Computational results were presented for problems of various

sizes up to n=200. They also presented FORTRAN code for the

generation of standard test problems (see also Pardalos [33]).

Pardalos and Rodgers [38] presented a parallel branch and

7

bound algorithm implemented on a hypercube architecture. They

used a bound based upon the sign of each qij. Computational

results were presented for problems of various sizes up to

n=100. See also [36].

2.2 Heuristic algorithms

Glover, Kochenberger and Alidaee [15] presented a

heuristic based upon tabu search. In their heuristic a move

corresponds to changing the value of a single variable (i.e.

setting xi=1-xi for some i). They refer to setting variables to

one as a "constructive" phase and setting variables to zero as

a "destructive" phase. They use a strategic oscillation scheme

that alternates between constructive and destructive phases.

Their approach employs recency and long-term frequency

information related to "critical events", a critical event

being a decrease in the objective function value.

Computational results were presented for 45 test problems of

various sizes up to n=500.

Lodi, Allemand and Liebling [27] presented a heuristic

based upon genetic algorithms and scatter search. Their

algorithm incorporates variable fixing (utilising the work of

Pardalos and Rodgers [37]). As in Glover et al [15] they refer

to setting variables to one as a "constructive" phase and

setting variables to zero as a "destructive" phase and present

a simple local search procedure that incorporates both phases.

All children generated in their algorithm are subjected to

this local search procedure in an attempt to improve them

before they are entered into the population. Computational

8

results were presented for the same set of 45 test problems as

were solved by Glover et al [15].

Palubeckis [31] presented two constructive heuristics

with known worst-case performance. Computational results were

presented for problems of various sizes up to n=306.

Pardalos and Jha [35] discussed the computational

complexity of a number of problems related to UBQP and

presented a simple local search heuristic for the problem.

Computational results were presented for 20 test problems of

size n=100.

9

3. HEURISTIC ALGORITHMS

In this section we outline the two heuristic algorithms

based upon tabu search and simulated annealing that we have

developed for solving UBQP. We also comment on the algorithmic

design of our heuristics and on applying a genetic algorithm

to the problem.

3.1 Tabu search

Tabu search (TS) is a local search heuristic due to

Glover [14] and Hansen [21]. In TS the fundamental concept is

that of a "move", a systematic operator that, given a single

starting solution, generates a number of other possible

solutions. In local search terms these other solutions are the

"neighbourhood" of the single starting solution. Note here

that these solutions may, or may not, be feasible. From the

neighbourhood the "best" solution is chosen to become the new

starting solution for the next iteration and the process

repeats. This "best" solution may either be the first

improving solution encountered as the move operator enumerates

the neighbourhood, or it may be based upon complete

enumeration of the neighbourhood.

In order to prevent cycling a list of "tabu moves" is

employed. Typically this list prohibits certain moves which

would lead to the revisiting of a previously encountered

solution. This list of tabu moves is updated as the algorithm

proceeds so that a move just added to the tabu list is removed

from the tabu list after a certain number of iterations (the

"tabu tenure") have passed. Tabu moves are sometimes allowed

10

to be made however if they lead to an improved feasible

solution (an "aspiration criteria"). A more comprehensive

overview of TS can be found in [1,16,44].

3.2 Tabu search heuristic

In our TS heuristic a move corresponds to changing the

value of a single variable (i.e. setting xi=1-xi for some i).

This is the natural move for UBQP and was used by Glover et al

[15]. We started from the all-zero solution (xi=0 i=1,...,n)

and, at each solution, examined all non-tabu moves. If a move

was found that led to an improved solution then it was taken

immediately, otherwise from the set of all non-tabu moves the

move that led to the best solution was taken.

Limited computational experience indicated that it was

effective to apply a simple local search procedure each time

an improved solution was found. This procedure attempts to

improve that solution further by examining all possible moves

(irrespective of their tabu status) and making any moves that

improve the solution. Our local search procedure is shown in

pseudocode in Algorithm 1 and our complete TS heuristic is

shown in pseudocode in Algorithm 2.

The (arbitrary) termination criterion in our TS heuristic

shown in Algorithm 2 was that we could only examine

max(500000,5000n) solutions. This is a key computational

point. By far the most computationally expensive part of our

heuristic is evaluating a solution (i.e. computing the

objective function value as given by equation (1)). A naive

implementation of this evaluation would require O(n2)

11

operations. However in our TS heuristic we are evaluating a

new solution which differs by just a single move (i.e. by only

one variable value) from an old solution. As the objective

function value of this old solution is known the objective

function evaluation of the new solution can be done by

focusing on the variable that has changed in value. In this

way evaluating a new solution can be accomplished in O(n)

operations.

3.3 Simulated annealing

Simulated annealing (SA) originated in an algorithm to

simulate the cooling of material in a heat bath [29] but its

use for optimisation problems originated with Kirkpatrick,

Gelatt and Vecchi [25] and Cerny [10].

SA has much in common with TS in that they both examine

potential moves from a single starting solution. SA

incorporates a statistical component in that moves to worse

solutions are accepted with a specified probability that

decreases over the course of the algorithm.

This probability is related to what is known as the

"temperature". More precisely, a move that worsens the

objective function value by ∆ is accepted with a probability

proportional to e-∆/T, where T is the current temperature. The

higher the temperature T, the higher the probability of

accepting the move. Hence this probability decreases as the

temperature decreases.

In SA the temperature is reduced over the course of the

algorithm according to a "cooling schedule" which specifies

12

the initial temperature and the rate at which temperature

decreases. A common cooling schedule is to reduce the

temperature T by a constant factor α (0<α<1) using T=αT at

regular intervals. A more comprehensive overview of SA can be

found in [1,44].

3.4 Simulated annealing heuristic

Our SA heuristic is similar to our TS heuristic and can

be seen in pseudocode in Algorithm 3. The initial temperature

was set equal to the problem size n and α was set equal to

0.995. In contrast to our TS heuristic limited computational

experience indicated that it was ineffective to apply a simple

local search procedure each time an improved solution was

found. Rather that local search procedure was applied once

only at the end of the SA heuristic.

Note here that, as far as we are aware, this paper

represents the first reported application of simulated

annealing to UBQP.

3.5 Algorithmic design

There is an important point relating to the algorithmic

design of the heuristics presented above, and to their

subsequent computational comparison presented below, that we

wish to emphasise here.

The majority of papers in the literature that deal with

heuristics (not just for UBQP but also for many other

combinatorial optimisation problems) apply just a single

solution technique (e.g. tabu search) to the problem under

13

consideration. A computational comparison is then carried out

with the algorithms of other workers, increasingly in recent

years on publically available test problems. As such it is

clearly legitimate (and indeed the author freely admits to

having done this himself) to build into an algorithm what

might colloquially be phrased "bells and whistles",

algorithmic tricks/steps (extra intellectual effort) that

computationally, mean that the algorithm generates better

results than it otherwise would.

Recently however the author (e.g. as in [11]) has tried

to move beyond this "single solution technique, single paper"

approach to a "multiple solution technique, single paper"

approach, i.e. to an approach that within the same paper

presents results for a number of different heuristics applied

to the same problem. As such the key algorithmic design point

is whether, or not, it is legitimate to build "bells and

whistles" into one algorithm at the expense of another.

Consider the two heuristics presented above. We could

have:

(a) built many extra tricks/steps (invested much more

intellectual effort) in the tabu search algorithm in an

attempt to improve its computational performance

(b) not built any such tricks/steps (not invested as much

intellectual effort) in the simulated annealing

algorithm.

As such we may have obtained different computational results.

However, we strongly believe, that this is not a

legitimate approach to algorithm comparison within a "multiple

14

solution technique, single paper" approach. Simply put, it is

not appropriate to attempt to bias the results by investing

more intellectual effort in one algorithm than in another.

Whilst, of necessity, it must remain an imprecise

calculation as to the amount of intellectual effort invested

in an algorithm we have tried, in designing the heuristic

algorithms presented above, to bear this point in mind and not

to bias our results accordingly.

On a personal note we would comment that whilst this

"multiple solution technique, single paper" approach does

nothing to length one’s publication list (indeed quite the

opposite) we do believe that more work of this type should be

carried out.

3.6 Genetic algorithm

We did experiment with a genetic algorithm (GA) for UBQP.

The results are not reported here because we came to believe

that, as the problem size increases, a population heuristic

such as a GA (which explicitly works with a population of

solutions) could never compete computationally with a single

solution heuristic such as TS or SA which make a succession of

small changes to a single solution.

Our reasoning for this is based on the point discussed

above concerning the computational cost of evaluating a

solution. As noted above, within TS or SA a new solution can

be evaluated in O(n) operations. However in a GA the child can

be distinctly different from the parents. This would

potentially entail O(n2) operations to compute the objective

15

function value of the child. Although it is clear that (say)

if the child only differed from one (or other) of the parents

with regard to K variable values this evaluation might be

accomplished in O(Kn) operations the essential point remains;

namely that solution evaluation in a GA for UBQP can be

computationally much more expensive than in a TS or a SA

algorithm for UBQP.

Consider the largest problems, with n=2500, dealt with in

this paper. Simply evaluating one GA child could (in the worst

case) take as long as evaluating 2500 TS or SA solutions. Even

initialising a GA with a population of (say) 100 randomly

generated solutions would be equivalent to evaluating 250,000

TS or SA solutions. These figures indicate the substantial

computational disadvantage under which a GA for UBQP must

labour in comparison to TS or SA.

Given this reasoning our current view is that the only

way to successfully apply a GA to UBQP is to:

(a) only consider relatively small problems; and/or

(b) invest "intellectual effort" in the algorithm (see the

algorithmic design discussion above).

However, as will become apparent below, our TS and SA

algorithms are (in our view) successful without this extra

intellectual effort and so, in the light of the algorithmic

design issues outlined before for a "multiple solution

technique, single problem" paper such as the one presented

here, we have not pursued the GA approach.

We would comment here that we believe that the Lodi et al

[27] algorithm, which is a population heuristic, relies on

16

"intellectual effort" to limit the number of child solutions

that have to be evaluated.

17

4. COMPUTATIONAL RESULTS

In this section we present computational results for the

two heuristic algorithms (TS and SA) we have presented above

for solving UBQP. Since we will be comparing these algorithms

with the heuristics of Glover, Kochenberger and Alidaee [15]

and of Lodi, Allemand and Liebling [27] we will refer to their

heuristics as GKA and LAL respectively.

4.1 Glover et al [15] test problems

To test our heuristics we first solved the 45 test

problems considered in Glover et al [15]. These problems have

various sizes (up to n=500) and varying characteristics with

respect to the [qij] matrix.

The results for these test problems are shown in Table 1.

In that table we show, for each problem, the results reported

in [15] for GKA with respect to: the best solution value; the

time taken to first find this solution; and the total

execution time. All computer times are in seconds on a Pentium

90 pc.

For the first 25 problems shown in Table 1 (problems

1a-8a, 1b-10b and 1c-7c) the solution values given are known

to be optimal. For the remaining problems the optimal values

are not known.

Also in Table 1 we show, both for LAL and for the tabu

search and simulated annealing heuristics reported in this

paper:

(a) the difference between the best solution found by GKA and

the best solution found by those heuristics (i.e. GKA

18

solution value - heuristic solution value)

(b) the time taken to first find this best solution (in

seconds)

(c) the total execution time (in seconds).

The computation times for LAL relate to a Silicon Graphics

INDY R10000sc (195Mhz) and for our work relate to a Silicon

Graphics Indigo (R4000, 100MHz, 48MB main memory).

We would mention here that both GKA and LAL are run with

different parameter values for different sized problems. Our

TS and SA algorithms, by contrast, use a consistent set of

parameter values for all problem sizes.

With regard to quality of results:

(a) it is clear that GKA and LAL are equivalent, producing

the same solution in all 45 test problems

(b) our TS algorithm is only slightly less effective,

producing the same solution in 42 of the 45 problems.

However the deviations from the best known solution

values are extremely small (an average deviation from the

best known solution of just 0.00035%)

(c) our SA algorithm is the least competitive of these

heuristics, but even it finds the best known solution in

38 of the 45 problems with an average deviation from the

best known solution of just 0.050%.

A computational comparison of the results shown in Table 1 is

difficult as different computers have been used, as well as

different stopping criteria. From Dongarra [13] we can make an

approximate comparison of the results shown in Table 1 by

using scaling values for the achievable speeds of these

19

computers as 15 for our Silicon Graphics Indigo and 11 for a

Pentium 90 pc.

The current (late 1998) version of Dongarra [13] does not

contain a value for a Silicon Graphics INDY R10000sc. Lodi et

al [27] state that they believe that this machine is

equivalent to a 200 Mhz pc. Utilising this statement, together

with technical information from the Silicon Graphics web site

(http://www.sgi.com/) and the SPEC benchmark web site

(http://www.spec.org/) our best estimate for the achievable

speed of their machine is 50.

Using these scaling values and the average time to first

find the best solution shown in Table 1 the ratio

GKA:LAL:TS:SA is given by 181(11):5(50):63(15):15(15) =

1991:250:945:225. We would therefore make the following

observations:

(a) our TS heuristic finds its best solution in approximately

half of the GKA time (i.e. it converges approximately

twice as fast)

(b) our SA heuristic converges approximately four times

faster than our TS heuristic (and at least eight times

faster than GKA)

(c) faster convergence is of interest as it implies more

opportunity for repeated applications of the algorithm to

the same problem (indeed LAL, for example, utilises just

such a restart strategy)

(d) restarting our TS heuristic just once (with a random

starting solution instead of the all-zero starting

solution) meant that the number of cases in which TS

20

yielded a worse solution than GKA dropped from the three

shown in Table 1 to just one

(e) restarting our SA heuristic just once (with a different

random starting solution) meant that the number of cases

in which SA yielded a worse solution than GKA dropped

from the seven shown in Table 1 to three.

Overall though our conclusion must be that LAL is the dominant

heuristic of the four heuristics shown in Table 1. GKA and TS

vie for second place (depending upon the emphasis placed on

quality of results or time taken) whilst SA trails the other

heuristics. Were we to allow multiple restarts then both TS

and SA (because of their faster convergence) would become much

more competitive with GKA.

However we would like to return here to the algorithmic

design issue mentioned previously. It is clear (at least to

us) that both GKA and LAL contain much more intellectual

effort ("bells and whistles") than are contained in our

heuristics.

One might expect therefore both GKA and LAL to be far

superior to our simple heuristics. That this is not the case

is, we believe, a validation of the "multiple solution

technique, single paper" approach we have followed in this

paper. Following such an approach forces one to balance

intellectual effort and focus on key algorithmic design

features, rather than allowing one to incorporate any number

of algorithmic tricks/steps such as is commonly done in the

"single solution technique, single paper" approach.

21

4.2 Other test problems

In order to compare our heuristics more fully we also

randomly generated a larger series of 60 test problems

(n=50/100/250/500/1000/2500; 10 problems for each value of n)

with constant characteristics (10% density; all qij entries

being integers uniformly drawn from [-100,+100]). These

problems are in contrast to the problems considered in Table 1

which have varying characteristics.

As far as we are aware problems of this size are

significantly larger than problems considered to date in the

literature.

Note here that the test problems solved in this paper are

publically available from OR-Library [5,6], email the message

bqpinfo to o.rlibrary@ic.ac.uk or see

http://mscmga.ms.ic.ac.uk/jeb/orlib/bqpinfo.html. By making

our problems publically available we hope to stimulate work on

heuristic techniques for UBQP.

The results for these test problems are shown in Table 2.

In that table we show the best known solution value (either

from TS or SA). In addition we show (both for TS and for SA):

(a) the difference between the best known solution value and

the best solution found by each of our heuristics (i.e.

best known solution value - heuristic solution value)

(b) the time taken to first find this best solution (in

seconds)

(c) the total execution time (in seconds).

As before these times relate to a Silicon Graphics Indigo

(R4000, 100MHz, 48MB main memory).

22

It is interesting to note from Table 2 that for n≤1000

the comparative performance of TS and SA is as in Table 1 (TS

getting better quality results slower).

However for n=2500 SA outperforms TS. For the ten

problems with n=2500 TS finds the best known solution 4 times,

has an average percentage deviation from the best known

solution of 0.045% and an average time to solution of 35071.

SA dominates TS with respect to all of these measures: finding

the best known solution 6 times, having an average percentage

deviation from the best known solution of 0.015% and an

average time to solution of 11415.

Whether the LAL heuristic of Lodi et al [27] (a

population based approach), which was the dominant heuristic

on the problems shown in Table 1, would remain dominant when

applied to the much larger problems considered in Table 2 is

currently an open question. As our results for TS and SA show,

relative performance can change as problem size increases.

However we would repeat here our comments made previously

that our experience for UBQP has been that, as problem size

increases, getting a population heuristic to compete

computationally with single solution heuristics (such as tabu

search or simulated annealing) is difficult since solution

evaluation in a population heuristic for UBQP can be

computationally much more expensive than in a tabu search or

simulated annealing algorithm for UBQP.

23

5. CONCLUSIONS

In this paper we have considered the unconstrained binary

quadratic programming problem and have presented two heuristic

algorithms based upon tabu search and simulated annealing.

Computational results were given for publically available test

problems that are significantly larger than those solved by

other workers.

For most problems tabu search dominated simulated

annealing but for the very largest problems considered the

converse was true.

This paper was an example of the "multiple solution

technique, single paper" approach, and issues relating to

algorithmic design for such papers were discussed.

REFERENCES

[1] E.H.L. Aarts and J.K. Lenstra (editors), Local search in
combinatorial optimization. Wiley, (1997).

[2] K.M. Anstreicher, On the equivalence of convex
programming bounds for boolean quadratic programming.
Working paper (1998) available from the author at
Department of Management Sciences, University of Iowa,
Iowa City, IA 52242, USA.

[3] F. Barahona, A solvable case of quadratic 0-1
programming. Discrete Applied Mathematics 13 (1986) 23-
26.

[4] F. Barahona, M. Jünger and G. Reinelt, Experiments in
quadratic 0-1 programming. Mathematical Programming 44
(1989) 127-137.

[5] J.E. Beasley, OR-Library: distributing test problems by
electronic mail. Journal of the Operational Research
Society 41 (1990) 1069-1072.

[6] J.E. Beasley, Obtaining test problems via Internet.
Journal of Global Optimization 8 (1996) 429-433.

[7] A. Billionnet and A. Sutter, Minimization of a quadratic
pseudo-Boolean function. European Journal of Operational
Research 78 (1994) 106-115.

[8] E. Boros, Y. Crama and P.L. Hammer, Upper-bounds for
quadratic 0-1 maximization. Operations Research Letters 9
(1990) 73-79.

[9] E. Boros, Y. Crama and P.L. Hammer, Chvatal cuts and odd
cycle inequalities in quadratic 0-1 optimization. SIAM
Journal of Discrete Mathematics 5 (1992) 163-177.

[10] V. Cerny, Thermodynamical approach to the travelling
salesman problem: an efficient simulation algorithm.
Journal of Optimization Theory and Applications 45 (1985)
41-51.

[11] T.-J. Chang, N. Meade, J.E. Beasley and Y.M. Sharaiha,
Heuristics for cardinality constrained portfolio
optimisation. Working paper (1998) available from the
third author at The Management School, Imperial College,
London SW7 2AZ.

[12] P. Chardaire and A. Sutter, A decomposition method for
quadratic zero-one programming. Management Science 41
(1995) 704-712.

[13] J.J. Dongarra, Performance of various computers using
standard linear equations software. Working paper (1998)
available from the author at Computer Science Department,
University of Tennessee, Knoxville, TN 37996-1301, USA.
Also available at

http://www.netlib.org/benchmark/performance.ps

[14] F. Glover, Future paths for integer programming and links
to artificial intelligence. Computers & Operations
Research 13 (1986) 533-549.

[15] F. Glover, G.A. Kochenberger and B. Alidaee, Adaptive
memory tabu search for binary quadratic programs.
Management Science 44 (1998) 336-345.

[16] F.W. Glover and M. Laguna, Tabu search. Kluwer Academic
Publishers, (1997).

[17] V.P. Gulati, S.K. Gupta and A.K. Mittal, Unconstrained
quadratic bivalent programming problem. European Journal
of Operational Research 15 (1984) 121-125.

[18] P.L. Hammer, Some network flow problems solved with
pseudo-Boolean programming. Operations Research 13 (1965)
388-399.

[19] P.L. Hammer, P. Hansen and B. Simeone, Roof duality,
complementation and persistency in quadratic 0-1
optimization. Mathematical Programming 28 (1984) 121-155.

[20] P. Hansen, Methods of nonlinear 0-1 programming. Annals
of Discrete Mathematics 5 (1979) 53-70.

[21] P. Hansen, The steepest ascent mildest descent heuristic
for combinatorial programming. Presented at the Congress
on Numerical Methods in Combinatorial Optimization,
Capri, Italy (1986).

[22] C. Helmberg and F. Rendl, Solving quadratic (0,1)-
problems by semidefinite programs and cutting planes.
Mathematical Programming 82 (1998) 291-315.

[23] B. Kalantari and A. Bagchi, An algorithm for quadratic
zero-one programs. Naval Research Logistics 37 (1990)
527-538.

[24] B. Kalantari and J.B. Rosen, An algorithm for global
minimization of linearly constrained concave quadratic
functions. Mathematics of Operations Research 12 (1987)
544-561.

[25] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization
by simulated annealing. Science 220 (1983) 671-680.

[26] C.-W. Ko, J. Lee and E. Steingrimsson, The volume of
relaxed Boolean-quadric and cut polytopes. Discrete
Mathematics 163 (1997) 293-298.

[27] A. Lodi, K. Allemand and T.M. Liebling, An evolutionary
heuristic for quadratic 0-1 programming. Working paper
(1998) available from the second author at Departement de
Mathematiques, Ecole Polytechnique Federale de Lausanne,
CH 1015 Lausanne, Switzerland.

[28] A. Mehrotra, Cardinality constrained Boolean quadratic
polytope. Discrete Applied Mathematics 79 (1997) 137-154.

[29] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.
Teller and E. Teller, Equation of state calculations by
fast computing machines. Journal of Chemical Physics 21
(1953) 1087-1092.

[30] M. Padberg, The boolean quadric polytope: some
characteristics, facets and relatives. Mathematical
Programming 45 (1989) 139-172.

[31] G. Palubeckis, Heuristics with a worst-case bound for
unconstrained quadratic 0-1 programming. Informatica 3
(1992) 225-240.

[32] G. Palubeckis, A heuristic-based branch and bound
algorithm for unconstrained quadratic zero-one
programming. Computing 54 (1995) 283-301.

[33] P.M. Pardalos, Construction of test problems in quadratic
bivalent programming. ACM Transactions on Mathematical
Software 17 (1991) 74-87.

[34] P.M. Pardalos and S. Jha, Graph separation techniques for
quadratic zero-one programming. Computers and Mathematics
with Applications 21 (1991) 107-113.

[35] P.M. Pardalos and S. Jha, Complexity of uniqueness and
local search in quadratic 0-1 programming. Operations
Research Letters 11 (1992) 119-123.

[36] P.M. Pardalos and G.P. Rodgers, Parallel branch and bound
algorithms for unconstrained quadratic zero-one
programming. In R. Sharda et al (editors) Impacts of
recent computer advances on Operations Research (1989)
131-143, North-Holland, Amsterdam.

[37] P.M. Pardalos and G.P. Rodgers, Computational aspects of
a branch and bound algorithm for quadratic zero-one
programming. Computing 45 (1990) 131-144.

[38] P.M. Pardalos and G.P. Rodgers, Parallel branch and bound
algorithms for quadratic zero-one programs on the
hypercube architecture. Annals of Operations Research 22
(1990) 271-292.

[39] P.M. Pardalos and G.P. Rodgers, A branch and bound
algorithm for the maximum clique problem. Computers &
Operations Research 19 (1992) 363-375.

[40] P.M. Pardalos and J. Xue, The maximum clique problem.
Journal of Global Optimization 4 (1994) 301-328.

[41] J.C. Picard and H.D. Ratliff, A graph-theoretic
equivalence for integer programs. Operations Research 21
(1973) 261-269.

[42] J.C. Picard and H.D. Ratliff, Minimum cuts and related
problems. Networks 5 (1975) 357-370.

[43] A.T. Phillips and J.B. Rosen, A quadratic assignment
formulation of the molecular conformation problem.
Journal of Global Optimization 4 (1994) 229-241.

[44] C.R. Reeves (editor), Modern heuristic techniques for
combinatorial problems. Blackwell Scientific
Publications, Oxford, (1993).

[45] H.D. Sherali, Y. Lee and W.P. Adams, A simultaneous
lifting strategy for identifying new classes of facets
for the Boolean quadric polytope. Operations Research
Letters 17 (1995) 19-26.

[46] C. De Simone, The cut polytope and the Boolean quadric
polytope. Discrete Mathematics 79 (1989) 71-75.

[47] C. De Simone, A note on the Boolean quadric polytope.
Operations Research Letters 19 (1996) 115-116.

Xi is the value for variable i in the current solution
V* is the best solution value found so far
t is the iteration counter

begin local_search([Xi],V
*,t)

improved:=false /* set flag that marks whether an improved solution found or not */
for k=1 to n do /* examine all variables */

t:=t+1 /* increment iteration counter */
Xk:=1-Xk /* make the move for variable k */

V:= qijXiXj /* evaluate new solution */

if V > V* then /* check for improved solution */
V*:=V /* record improved solution */
improved:=true /* set improved flag */

else
Xk:=1-Xk /* reset variable k */

end if
end for
if improved then repeat this procedure else return
end

Algorithm 1: Local search

Xi is the value for variable i in the current solution
V* is the best solution value found so far
V** is the best solution value associated with a neighbour of [Xi]
Li is the tabu value for variable i, where Li=0 if the variable is not tabu
L* is the tabu tenure value
t is the iteration counter

begin
Xi:=0 i=1,...,n /* set the starting solution */
V*:=0 /* initialise best solution value */
Li:=0 i=1,...,n /* initialise tabu values */
L*:=min(20,n/4) /* set tabu tenure */
T*:=max(500000,5000n) /* set maximum number of iterations */
t:=0 /* initialise iteration counter */
while t<T* do /* T* iterations in all */
V**:=-∞ /* initialise best neighbour value */
for k=1 to n and Lk=0 do /* examine all non-tabu variables */

t:=t+1 /* increment iteration counter */
Xk:=1-Xk /* make the move for variable k */

V:= qijXiXj /* evaluate new solution */

if V > V* then /* check for improved solution */
K:=k /* record variable associated with the move */
local_search([Xi],V

,t) / apply the local search procedure */
go to done:

end if

Xk:=1-Xk /* reset variable k */

if V > V** then /* check for improved neighbouring solution */
K:=k /* record variable associated with the move */
V**:=V /* record solution value */

end if
end for

XK:=1-XK /* make the move for the chosen variable K */

done: Li:=max(0,Li-1) i=1,...,n /* reduce all tabu values by one */
LK:=L* /* tabu the chosen variable */

end while
return V*

end

Algorithm 2: TS heuristic

Xi is the value for variable i in the current solution
V* is the best solution value found so far
Yi is the value of variable i in V*

V** is the solution value associated with the current solution
t is the iteration counter

begin
initialise Xi i=1,...,n randomly /* randomise the starting solution */
Yi:=Xi i=1,...,n /* set best solution */

V*:= qijXiXj /* initialise best solution value */

V**:=V* /* set current solution value */
T:=n /* initialise SA parameters */
α:=0.995
T*:=max(500000,5000n) /* set maximum number of iterations */
t:=0 /* initialise iteration counter */
while t<T* do /* T* iterations in all */
t:=t+1 /* increment iteration counter */
randomly select a variable k
Xk:=1-Xk /* make the move for variable k */

V:= qijXiXj /* evaluate new solution */

if V > V* then /* check for improved solution */
V*:=V /* record the improved solution */
Yi:=Xi i=1,...,n

end if

if V > V** then /* check if new solution better than current solution */
V**:=V /* change V** */

else
r:=a random number drawn from [0,1]
if r < exp[- V**-V /T] then /* check for accept worst solution */

V**:=V /* change V** */
else

Xk:=1-Xk /* reset variable k */
end if

end if

T:=αT /* reduce temperature */

end while
local_search([Yi],V

,t) / apply the local search procedure */
return V*

end

Algorithm 3: SA heuristic

Problem
number
[15]

n GKA [15] LAL [27] TS SA

Solution
value

Time to
solution

Total
time

Solution
difference

Time to
solution

Total
time

Solution
difference

Time to
solution

Total
time

Solution
difference

Time to
solution

Total
time

1a 50 3414 < 1 37 - < 1 1 - < 1 16 - < 1 23
2a 60 6063 < 1 60 - < 1 1 - < 1 22 - < 1 30
3a 70 6037 15 71 - < 1 1 - 7 21 - < 1 26
4a 80 8598 14 93 - < 1 1 - 10 26 - 1 31
5a 50 5737 7 38 - < 1 1 - < 1 19 - < 1 24
6a 30 3980 < 1 15 - < 1 1 - < 1 11 - < 1 17
7a 30 4541 < 1 14 - < 1 1 - < 1 12 - < 1 18
8a 100 11109 17 141 - < 1 1 - < 1 29 - 1 40
1b 20 133 < 1 2 - < 1 1 - < 1 6 - < 1 9
2b 30 121 < 1 4 - < 1 1 - < 1 7 - < 1 10
3b 40 118 < 1 5 - < 1 1 - < 1 9 - < 1 11
4b 50 129 < 1 8 - < 1 1 - < 1 10 - < 1 13
5b 60 150 < 1 11 - < 1 1 - < 1 11 - < 1 12
6b 70 146 < 1 14 - < 1 1 - 2 12 - < 1 12
7b 80 160 < 1 18 - < 1 1 - < 1 13 - < 1 13
8b 90 145 5 21 - < 1 1 - 11 15 - < 1 14
9b 100 137 11 27 - < 1 1 - 4 15 2 1 15
10b 125 154 5 46 - < 1 1 - 2 21 - 2 22
1c 40 5058 < 1 27 - < 1 1 - < 1 17 - < 1 20
2c 50 6213 < 1 40 - < 1 1 - < 1 22 - < 1 30
3c 60 6665 3 64 - < 1 1 - < 1 23 - < 1 31
4c 70 7398 10 74 - < 1 1 - < 1 24 - < 1 31
5c 80 7362 41 100 - < 1 1 - < 1 27 - 2 37
6c 90 5824 49 111 - < 1 1 - 6 28 - 2 35
7c 100 7225 7 140 - < 1 1 - 6 32 - 2 40
1d 100 6333 3 60 - < 1 1 - < 1 32 - 2 41
2d 100 6579 18 56 - < 1 1 - < 1 29 - 2 37
3d 100 9261 3 62 - < 1 1 - < 1 31 - 2 40
4d 100 10727 7 59 - < 1 1 - < 1 31 - 2 38
5d 100 11626 53 64 - < 1 1 - 12 32 - 1 41
6d 100 14207 32 64 - < 1 1 - 2 32 50 1 37
7d 100 14476 23 63 - < 1 1 - < 1 36 - 1 43
8d 100 16352 11 63 - < 1 1 - < 1 36 - 2 45
9d 100 15656 1 58 - < 1 1 - < 1 33 - 1 38
10d 100 19102 2 70 - < 1 1 - < 1 39 - < 1 48
1e 200 16464 374 876 - 2 5 - 26 128 6 14 141
2e 200 23395 149 913 - < 1 5 - 63 130 - 19 147
3e 200 25243 56 1069 - < 1 5 - 3 130 - 10 149
4e 200 35594 21 1054 - < 1 5 - < 1 149 - 15 168
5e 200 35154 284 1007 - < 1 5 - 18 149 - 15 168
1f 500 61194 2530 4925 - 43 60 - 53 960 11 116 965
2f 500 100161 1055 5005 - 43 60 3 619 1031 3 130 1033
3f 500 138035 205 4900 - 59 60 14 819 1076 - 127 1077
4f 500 172771 2520 4835 - 9 60 - 1107 1156 621 89 1142
5f 500 190507 590 5090 - 59 60 5 62 1182 9 115 1210

Average 181 700 5 8 63 150 15 159

Table 1: Results for the Glover et al [15] problems

Notes:
(a) for problems 1f-5f the times quoted above have been adjusted (using the information given in [15]) to

account for use of a different computer
(b) for times given as < 1 a figure of 0.5 has been assumed in computing the average values given above

n Problem
number

Best known
solution
value

TS SA

Solution
difference

Time to
solution

Total
time

Solution
difference

Time to
solution

Total
time

50 1 2098 - < 1 14 - < 1 19
2 3702 - < 1 16 - < 1 20
3 4626 - < 1 17 - < 1 21
4 3544 - < 1 16 - < 1 21
5 4012 - < 1 16 - < 1 20
6 3693 - < 1 16 - < 1 22
7 4520 - < 1 17 - < 1 22
8 4216 - < 1 17 - < 1 22
9 3780 - < 1 17 - < 1 22
10 3507 - < 1 17 - < 1 21

100 1 7970 - 5 34 28 1 31
2 11036 - 8 35 - 2 34
3 12723 - 8 37 - 2 34
4 10368 - < 1 33 - 1 33
5 9083 - < 1 36 - 2 33
6 10210 - 5 36 - 2 34
7 10125 - 24 36 - 3 32
8 11435 - 2 36 - 2 31
9 11455 - < 1 35 - 1 32
10 12565 - 36 38 - 2 36

250 1 45607 - 45 238 - 27 226
2 44810 - 16 239 - 17 226
3 49037 - 49 254 - 19 240
4 41274 - 13 234 - 20 218
5 47961 - 8 245 - 22 232
6 41014 - 25 240 - 16 221
7 46757 - 43 250 - 19 232
8 35726 - 17 225 - 23 212
9 48916 - 133 246 - 14 229
10 40442 - 3 235 - 20 218

500 1 116586 - 681 956 - 113 1006
2 128223 - 326 979 19 112 1009
3 130812 - 438 987 - 104 1030
4 130097 - 477 1003 20 142 1061
5 125487 - 499 964 172 101 1030
6 121719 - 69 966 - 111 1028
7 122201 - 518 952 - 120 1014
8 123559 - 245 1006 90 135 1050
9 120798 1 85 954 - 125 998
10 130619 - 164 971 - 112 1012

1000 1 371438 - 432 4608 304 1083 7150
2 354932 - 2274 4514 295 983 6794
3 371226 153 2829 4518 - 841 6943
4 370560 - 1935 4580 295 1119 7011
5 352736 - 1186 4512 439 975 6939
6 359452 - 3492 4444 139 1001 6749
7 370999 - 922 4546 184 965 6885
8 351836 - 243 4461 835 1079 6961
9 348732 - 2478 4488 423 891 6626
10 351415 7 3553 4474 - 923 6734

2500 1 1515011 40 51461 52011 - 11896 63080
2 1468850 156 25440 51659 - 11588 62787
3 1413083 2362 31186 49101 - 10777 60963
4 1506943 701 19140 50642 - 11263 63018
5 1491796 - 34293 51194 331 13189 63470
6 1468427 727 42966 51669 - 10962 63310
7 1478654 2595 48243 50798 - 11322 62833
8 1484199 - 12721 49861 1246 10196 61918
9 1482306 - 41408 51873 472 10852 62978
10 1482354 - 43855 50981 188 12108 62777

Table 2: Results for other problems

