
7

Computational logic and integer programming

H. Paul Williams and Sally C. Brailsford

Faculty of Mathematical Studies,

University of Southampton, Southampton SO17 1BJ, England

1 Introduction

The enormous increase in the availability and speed of computers in the past few

decades has led to a parallel increase in the number of applications. As with other

advances in technology, as many problems are created as are solved. Although

computers create a potential for solving many hitherto impossible problems the

implementation is often much more di�cult than might appear from cursory

examination. However fast computer hardware becomes there will always be

many problems whose computation takes a prohibitive amount of time. Many of

these problems are of a \logical" nature. They arise in problems such as e�cient

computer circuit design, database retrieval systems, expert systems and arti�cial

intelligence.

In order to explain the material in this chapter it is necessary to introduce

some logical notation from the propositional calculus (also sometimes known as

\sentential logic" or \boolean algebra").

We will use capital letters (sometimes su�xed) to represent propositions e.g.

A, B, X1, X2, etc. These propositions may take two possible values, true (T) or

false (F).

Such (atomic) propositions may be altered or combined by means of connec-

tives.

e.g. A means \not A"

A _B means \A or B (or both)"

A �B means \A and B"

The truth of the resulting compound propositions depend on the truth or falsity

of the component atomic propositions in a way prescribed by truth tables. Those

connectives which we will use are de�ned by the truth table below.

249

250 H. Paul Williams and Sally C. Brailsford

A B A A _B A �B A$ B A! B

F F T F F T T

F T T T F F T

T F F T F F F

T T F T T T T

\$ " is referred to as \equivalent to" and \! " is referred to as \implies".

Atomic propositions, e.g. A, X1, etc. or their negation, e.g. A, X1, etc. are

referred to as literals.

Any compound proposition will generally have many di�erent representa-

tions, e.g. (A _ B) � C can be shown to always have the same truth value as

(A � B � C) _ (B � C). In order to give comparable representations it is

convenient to use one of two common standard representations. These are known

as disjunctive form (DF) and conjunctive form (CF). Disjunctive form consists

of a series of conjunctions (i.e. combined by \ � ") of literals which are combined

in a disjunction (i.e. by \ _ "). For example, the following is a statement in DF:

(X1 �X2 �X3) _ (X1 �X2 �X4) _ (X3 �X5):

For convenience the brackets are often left out and the \ � " connective assumed

to be more binding than the \ _ " connective. The component conjunctions, e.g.

X1 �X2 �X3, are referred to as conjunctive clauses.

In contrast in CF a statement is written as a conjunction of disjunctive

clauses, for example

(X1 _X2 _X3) � (X2 _X3) � (X1 _X4 _X5)

is in CF where, e.g. (X1 _X2 _X3) is a disjunctive clause.

There are a number of standard equivalences between compound statements

which can be used to convert statements into equivalent forms. The validity

of these equivalences can readily be demonstrated by means of the truth table

de�nitions above. Those equivalences which we will use are given below. We

will use the symbol \ � " to denote this (meta)equivalence, i.e. equivalence

when referring to the system as opposed to sets of symbols within the system.

Reexivity
=

A � A

Symmetry (i) A _B � B _A

(ii) A �B � B �A

Distribution (i) A � (B _C) � A �B _A �C

(ii) A _B � C � (A _B) � (A _C)

De Morgan's laws (i) A _B � A �B

(ii) A �B � A _B

Implies A! B � A _B

Equivalence A$ B � (A! B) � (B ! A)

Although we have con�ned ourselves to the propositional calculus it should

Computational logic and integer programming 251

be mentioned that some applications of computational logic require use of the

predicate calculus. This allows the use of predicates whose truth values depend on

the interpretation of arguments, e.g. F (a) might represent the predicate \Father

of" whose truth depended on the substitution of a value for the argument \a".

Once such interpretations have been made (a process known as instantiation)

the statements are reduced to those of the propositional calculus. Although we

make partial use of the predicate calculus in Section 2.4 its use is mainly beyond

the scope of this chapter.

Further details and a rigorous coverage of the propositional and predicate

calculus can be found in, e.g. Mendelson [18].

We will demonstrate some typical problems which arise in computational

logic by means of small examples. To start with we will use English sentences

but later revert to the more compact abstract notation of using capital letters

for sentences. These problems are given here for illustrative purposes. Methods

of solution are given in Sections 3, 4 and 5.

Example 1.1 Valid deduction (taken from Mendelson [18])

Is the following deduction valid?

\If Jones did not meet Smith last night, then either Smith was the

murderer or Jones is lying. If Smith was not the murderer, then

Jones did not meet Smith last night and the murder took place after

midnight. If the murder took place after midnight, then either Smith

was the murderer or Jones is lying. Hence Smith was the murderer."

It is convenient to rewrite this problem in symbolic form representing com-

ponent sentences by capital letters as follows:

X1 � \Jones did not meet Smith last night",

X2 � \Smith was the murderer",

X3 � \Jones is lying",

X4 � \The murder took place after midnight".

The premises of the argument are

X1 ! (X2 _X3); (1.1)

X2 ! (X1 �X4); (1.2)

X4 ! (X2 _X3): (1.3)

The suggested conclusion is

X2: (1.4)

Whilst for a small example such as this the trying of all possible truth values

for X1, X2, X3 and X4 by means of truth tables would test if the conclusion is

valid such complete enumeration could be prohibitively demanding in space and

time for larger problems. Methods of computational logic or integer program-

ming (IP) could be used to better e�ect.

More complicated examples than these (often involving the predicate calcu-

