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1 Introduction

An algorithm for solving linear programming problems can be used as a subrou-
tine in methods for more complicated problems. Such methods usually involve
solving a sequence of related linear programming problems, where the solution
to one linear program is close to the solution to the next, that is, it provides a
warm start for the next linear program. The branch and cut method for solving
integer programming problems is of this form: linear programming relaxations
are solved until eventually the integer programming problem has been solved.
Within the last ten years, interior point methods have become accepted as pow-
erful tools for solving linear programming problems. It appears that interior
point methods may well solve large linear programs substantially faster than
the simplex method. A natural question, therefore, is whether interior point
methods can be successfully used to solve integer programming problems. This
requires the ability to exploit a warm start.

As discussed in Chapter 5 of this book, branch and cut methods for integer
programming problems are a combination of cutting plane methods and branch
and bound methods. In a cutting plane method for solving an integer pro-
gramming problem, the linear programming relaxation of the integer program is
solved. If the optimal solution to the linear program is feasible in the integer pro-
gram, it also solves the integer program; otherwise, a constraint is added to the
linear program which separates the optimal solution from the set of feasible solu-
tions to the integer program, the new linear program is solved, and the process
is repeated. In a branch and bound method for solving an integer programming
problem, the first step is also to solve the linear programming relaxation. If the
optimal solution is feasible in the integer program, it solves the integer program.
Otherwise, the relaxation is split into two subproblems, usually by fixing a par-
ticular variable at zero or one. This i1s the start of a tree of subproblems. A
subproblem is selected and the linear programming relaxation of that subprob-
lem is solved. Four outcomes are possible: the linear programming relaxation is
infeasible, in which case the integer subproblem is also infeasible, and the tree
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can be pruned at this node; the optimal solution to the linear programming re-
laxation is feasible in the integer subproblem, in which case it also solves the
subproblem, and the tree can be pruned at this node; the optimal solution has
a worse objective function value than a known integer solution to the original
problem, in which case any solution to the integer subproblem is also worse than
the known solution, and the tree can be pruned at this node; finally, none of
these situations occur, in which case 1t is necessary to split the node into two
further subproblems.

The difficulty with using an interior point method in a cutting plane algorithm
is that the solution to one relaxation is usually not a good starting point for
an interior point method, because it is close to the boundary of the feasible
region. Thus, it is usually necessary to attempt to stop working on the current
relaxation before it is completely solved to optimality: the earlier we are able to
find good cutting planes, the better the initial solution to the next relaxation.
Early termination obviously reduces the number of iterations spent solving the
current relaxation; in addition, it reduces the number of iterations spent solving
the next relaxation, because the initial point to the next relaxation is more
centered. There are two potential disadvantages from trying to find cutting
planes early: if the search for cutting planes is unsuccessful, we have wasted
time; secondly, it may well be that superfluous constraints are added, with the
result that the algorithm requires extra iterations and extra stages of adding
cutting planes.

It is also necessary to be able to use a warm start when using an interior
point method in a branch and bound algorithm; again, it 1s possible to use early
termination to improve the algorithm. Usually, the only time it is necessary to
solve the subproblem to optimality in the branch and bound tree is when the
optimal solution to the linear programming relaxation is feasible in the integer
subproblem.

We will concentrate on branch and cut algorithms for integer programming
in the rest of this chapter, with the principal ideas being presented in Section 2.
A cutting plane method can be regarded as a column generation method applied
to the dual of the linear programming relaxation, because the addition of a cut-
ting plane, or constraint, to the relaxation adds a column to the dual. There
has been research on using interior point methods in column generation algo-
rithms for various problems, and we will discuss some of this work later in the
chapter, because of its relevance to branch and cut algorithms. For now, we give
two examples. First, consider a linear programming problem with many more
variables than constraints. If all the variables were included in the working set
of columns, the matrix algebra would become impractical. Therefore, a pricing
criterion is used to select a subset of the variables, and this subset is updated
periodically — see Bixby et al. [3], Kaliski and Ye [20], and Mitchell [26], for
example. Secondly, column generation methods are also useful for solving non-
smooth optimization problems. The constraints and the objective function are
approximated by piecewise linear functions, and the approximation is improved
as the algorithm proceeds. The problem solved at each stage is a linear program-
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ming problem, and refining the approximation corresponds to adding columns
to the linear program. For more details, see, for example, the papers by Goffin
and Vial and their coauthors [10, 12].

Another approach for solving integer programming problems using interior
point methods has been presented by Karmarkar et al. [21]. We discuss this
method in Section 3.2.

2 Interior point branch and cut algorithms

In this section, we discuss the use of interior point methods in cutting plane and
branch and bound approaches to solving integer programming problems. The
two approaches can be combined into a branch and cut algorithm; however, we
intend to deal with them separately in order to make the basic ideas clear. Vari-
ous observations about interior point algorithms will affect the design of efficient
algorithms in both the cutting plane and branch and bound approaches. In par-
ticular, 1t is vital to use early termination in order to obtain good performance
from these algorithms.

The standard form integer programming problem we consider has the form:

minimize e,
subject to Az > b, (IP)
r € {0,1},

where x and ¢ are n-vectors, b is an m-vector and A 1s an m xn matrix. Note that
we restrict attention to problems where the integer variables are constrained to be
binary. We define the polyhedron @ to be the convex hull of feasible solutions
to the problem (IP). The problem (IP) can be solved by solving the linear
programming problem min{c’z : z € Q}. (If this linear program has multiple
optimal solutions, an interior point method may well return a point which is
non-integral, but this can be rounded to give an integer optimal extreme point
of @ using the methods of, for example, Megiddo [24].) The difficulty with
this approach, obviously, is that in general a closed form expression for () 1s not
known. In a cutting plane method, we consider linear programming relazations of
(IP), where the feasible region gradually becomes a better approximation to @,
at least in the neighbourhood of the optimal solution. The linear programming
relaxation of (IP) is

minimize cx,
subject to Az > b, (LPP)
0<z<e

where e denotes a vector of ones of the appropriate dimension. We denote the
feasible region of this problem by Q*F* .= {x € R” : Az > b, 0 <z <e}. The
dual of this problem is

maximize by —eTw,



