
5

Branch and cut algorithms

Abilio Lucena

Laborat�orio Nacional de Computa�c~ao Cient�i�ca,

Rio de Janeiro, Brazil 22290

John E. Beasley

The Management School, Imperial College, London SW7 2AZ, England

1 Introduction

Let IR
p

+ and ZZn

+ be, respectively, the set of non-negative real-valued p-dimensional

vectors and the set of non-negative integral valued n-dimensional vectors. For

variables x 2 IR
p

+ and y 2 ZZn

+ , a linear mixed-integer programming (MIP) prob-

lem is given by

minfcx+ hy : Ax+Gy � b; x 2 IR
p

+; y 2 ZZn

+g; (1.1)

where c is a p-vector, h is an n-vector, b is an m-vector, A is an m � p matrix,

and G is an m� n matrix. The feasible region associated with (1.1) is

P = fAx+Gy � b; x 2 IR
p

+; y 2 ZZn

+g; (1.2)

while

z = cx+ hy (1.3)

is the objective function to be optimized over P . Whenever all variables in

(1.1) are restricted to be integral, the problem is known as a linear integer

programming (IP) problem. Conversely, a pure linear programming (LP) problem

results when all variables in (1.1) are restricted to be real valued.

As is frequently the case for MIP, instead of attempting to optimize (1.3)

directly over P , it may be advantageous to divide that region into a �nite number

of smaller regions and optimize the objective function over each smaller region

individually. In the process one must ensure that an optimal solution to (1.1)

is contained in at least one of the smaller regions that were generated. This

basic solution strategy can be further extended to include the newly de�ned

MIP problems. In particular, the idea would be attractive when the resulting

The authors wish to thank Dr. C.E. Ferreira of the University of S~ao Paulo for some helpful

comments on this chapter.

187



188 Abilio Lucena and John E. Beasley

0

P
l

P
1

P
k

P
2

P
k + 1

P

P
k + 2

Fig. 1. Search tree

problems cannot be easily solved with the tools to hand. For most MIP problems,

taken to the limit, the idea would imply almost total enumeration. Therefore it

would only be of use for extremely small problems. A convenient representation

for the process just described is in terms of a tree (see Fig. 1). A node in the

search tree of Fig. 1, say node k, represents the MIP problem given by

minfcx+ hy : (x; y) 2 Pkg; (1.4)

where Pk � P . Notice that problem (1.1) would be represented, in this case,

at the root node (k = 0) of the tree (i.e. P0 = P ). As one moves down the

search tree, the regions Pk become smaller and smaller. Eventually, one may be

able, for a given Pk, to either solve (1.4) to optimality, or else determine that no

optimal solution to (1.1) is contained in Pk. For such a scheme to be applicable

in practice, one tends to work with relaxations of (1.4) instead of (1.4) proper.

For instance, a relaxation of (1.4) is

minfw(x; y) : (x; y) 2 Rkg; (1.5)

where Pk � Rk and w(x; y) � cx + hy; (x; y) 2 Rk. Clearly, (1.5) gives a

lower bound on (1.4). To be fair, nevertheless, (1.5) must be a lot easier to

solve than (1.4). An example of a relaxation that is going to be extensively

used in this chapter is the LP relaxation. A valid LP relaxation of (1.1), for

instance, has the objective function w(x; y) = cx + hy and the feasible region

R = fAx + Gy � b; (x; y) 2 IR
p+n

+ g. One should notice that the solution

strategy outlined above is considerably enhanced with the introduction of MIP

relaxations. With that modi�cation in place, at a given (search) tree node,

whenever the associated MIP problem cannot be easily solved, a relaxation of it

is solved instead. As a result, a better judgement can be made of the subsequent

actions to follow. The solution strategy can be enhanced even further if one is also

capable of generating a good upper bound (corresponding to a feasible solution of



Branch and cut algorithms 189

1.1), v(ub) say. This would result in smaller search trees since a tree node (i.e. the

optimization problem de�ned over, say Pk) is fathomed (i.e. the corresponding

problem can be discarded) whenever it can be established that Pk does not

contain a solution that improves on v(ub). The overall scheme just described is

generically called branch and bound (see Chapter 4 in Gar�nkel and Nemhauser

[18], Gar�nkel [17] or Chapter II.4 in Nemhauser and Wolsey [40]). For branch

and bound algorithms branching deals with the process of conveniently dividing

feasible regions, at every tree node, into smaller regions. Bounding deals with

the generation of upper and lower bounds for the (sub)problems involved.

A branch and cut algorithm (see Padberg and Rinaldi [42]) can be viewed

as branch and bound where one systematically attempts to obtain stronger LP

relaxations (at every node of the search tree). Stronger is used here in the sense

of implying larger objective function values. In particular, this is attempted

with the aid of cutting planes (i.e. linear inequalities which, depending on their

type, could be valid only for the feasible regions implied or else globally valid

across the search tree). Cutting planes in branch and cut algorithms are poly-

hedral in nature (see Chapter I.4 in Nemhauser and Wolsey [40] for the theory

of polyhedral cutting planes) and are globally valid across the search tree. This

represents a major departure from traditional cutting planes such as Gomory

cuts (see Gomory [23, 24]), for instance. These usually can be guaranteed to

be valid only for the subproblems for which they were generated. This would

imply, amongst other things, massive computer memory requirements for storing

the cuts generated during the search tree. Furthermore, in general, polyhedral

cutting planes do not possess the (widely reported) poor convergence properties

associated with the use of general cutting planes (Gomory cuts in particular).

Polyhedral cutting planes are easier to explain if one concentrates on IPs. The

basic ideas conveyed, nevertheless, can be readily extended to MIPs.

Consider a polyhedral region

R = fx 2 IRn

+ : Ax � bg; (1.6)

where (A; b) is an m � (n + 1) matrix. Then the IP problem we consider is:

minfcx : x 2 Pg; (1.7)

where P = R\ZZn

+ is the feasible region associated with this problem. De�ning

conv(P ) as the convex hull of the elements of P , it is possible to show (see page

106 in [40]) that the IP can be solved to optimality by simply solving the LP

program

minfcx : x 2 conv(P )g: (1.8)

Therefore, the key message conveyed is that the more an LP relaxation of (1.7)

approximates conv(P ), the better. As much as is practicable, therefore, one

should aim at obtaining the strongest possible approximations of conv(P ) as

the LP relaxation of choice. For most IP problems, an explicit description of



190 Abilio Lucena and John E. Beasley

conv(P ) by linear inequalities is out of the question. Nevertheless, experience

shows that dramatic computational gains can be realized by working with \good

partial descriptions" of conv(P ). In essence, at a tree node of a branch and

cut algorithm, an LP relaxation of the problem (subproblem) is made stronger

with the introduction of cutting planes that induce facets (or, if these are not

available, hopefully, faces of high dimension) of the polyhedron conv(P ).

We will describe the key elements in a branch and cut algorithm by concen-

trating on two combinatorial optimization problems: the Minimum Spanning

Tree (MST) problem and the Steiner Problem in Graphs (SPG). For a given

connected graph, MSTs can be obtained in polynomial time while the SPG is

NP-hard even for planar graphs (see Garey and Johnson [16]). In spite of this

substantial di�erence, as will become apparent in the following sections, the two

problems have quite a lot in common.

The term \branch and cut" was coined by Padberg and Rinaldi [42]. Most of

the basic methodology associated with branch and cut algorithms can be traced

to the seminal work of Dantzig et al. [11] for the travelling salesman problem

(TSP). A considerable amount of experimentation has occurred before arriving

at the fairly consensual setting for branch and cut algorithms that exists today.

An incomplete list of references that contributed to this state of a�airs follows.

Gr�otschel [26] solved a 120-city TSP using polyhedral cutting planes (which

were generated visually). Padberg and Hong [41] used an automatic procedure

to solve to optimality TSPs with up to 120 cities. Crowder and Padberg [10]

used the technique to solve TSPs of sizes up to 318 cities. They used polyhe-

dral cutting planes (which were generated automatically) and a commercially

available MIP solver. For [10] cutting planes were only used to obtain an initial

LP relaxation bound. From that point on the MIP solver was used to perform

branch and bound whenever optimality could not be achieved at the root node

of the search tree. Gr�otschel et al. [27] described an exact solution algorithm

for the Linear Ordering Problem that could be considered as the very �rst true

branch and cut algorithm. In [27] polyhedral cutting planes could be generated

at any node of the search tree. Padberg and Rinaldi [42] pushed the method-

ology to new heights with their branch and cut algorithm for the TSP. They

were capable of solving to proven optimality TSPs with 2,392 cities. Finally,

Applegate, Bixby, Chv�atal and Cook [2] developed a branch and cut algorithm

that has been able to solve to proven optimality a TSP with 7,397 cities.

2 Solving the Minimum Spanning Tree problem by LP

Let G = (V;E) be a �nite, connected, undirected graph with a set of vertices

V and a set of edges E. Sets V and E have cardinalities m = jV j and n = jEj

respectively. A tree is a connected acyclic partial subgraph of G. The tree is

said to be spanning if it contains exactly jV j � 1 edges. Given costs ce for all

edges e 2 E the cost of a tree equals the sum of the costs of the edges it contains.

The MST problem is to �nd a spanning tree of minimum cost. For a connected

graph G, the greedy algorithm of Kruskal [31]:


