
4

Interior point algorithms for network
ow
problems

Mauricio G.C. Resende

AT&T Bell Laboratories, Murray Hill, NJ 07974-2070 USA

Panos M. Pardalos

The University of Florida, Gainesville, FL 32611-6595 USA

1 Introduction

A large number of problems in transportation, communications and manufactur-
ing can be modelled as network
ow problems. In these problems one seeks to
�nd the most e�cient, or optimal, way to move
ow (e.g. materials, information,
buses, electrical currents) on a network (e.g. postal network, computer network,
transportation grid, power grid). Many of these optimization problems are spe-
cial classes of linear programming problems, with combinatorial properties that
allow the development of e�cient solution techniques. In this chapter, we limit
our discussion to linear network
ow problems. For a treatment of non-linear
network
ow problems, the reader is referred to [17, 28, 29, 48].

Given a directed graph G = (N ;A), where N is a set of m nodes and A
a set of n arcs, let (i; j) denote a directed arc from node i to node j. Every
node is classi�ed in one of the following three categories. Source nodes produce
more
ow than they consume. Sink nodes consume more
ow than they produce.
Transshipment nodes produce as much
ow as they consume. Without loss of
generality, one can assume that the total
ow produced in the network equals
the total
ow consumed. Each arc has associated with it an origin node and a
destination node, implying a direction for
ow to follow. Arcs have limitations
(often called capacities or bounds) on how much
ow can move through them.
The
ow on arc (i; j) must be no less than lij and can be no greater than uij.
To set up the problem in the framework of an optimization problem, a unit
ow
cost cij , incurred by each unit of
ow moving through arc (i; j), must be de�ned.
Besides being restricted by lower and upper bounds at each arc,
ows must
satisfy another important condition, known as Kirchho�'s Law (conservation of

ow), which states that for every node in the network, the sum of all incoming

ow plus the
ow produced at the node must equal the sum of all outgoing
ow
plus the
ow consumed at the node. The objective of the minimum cost network

ow problem is to determine the
ow on each arc of the network, such that all

145

146 Mauricio G.C. Resende and Panos M. Pardalos

of the
ow produced in the network is moved from the source nodes to the sink
nodes in the most cost-e�ective way, whilst not violating Kirchho�'s Law and
the
ow limitations on the arcs. The minimum cost network
ow problem can
be formulated as the following linear program:

minimize
P

(i;j)2A cijxij; (1.1)

subject to
P

(j;k)2A xjk �
P

(k;j)2A xkj = bj; j 2 N ; (1.2)

lij � xij � uij; (i; j) 2 A: (1.3)

In this formulation, xij denotes the
ow on arc (i; j) and cij is the cost of
transporting one unit of
ow on arc (i; j). For each node j 2 N , let bj denote
a quantity associated with node j that indicates how much
ow is produced
or consumed at the node. If bj > 0, node j is a source. If bj < 0, node j

is a sink. Otherwise (bj = 0), node j is a transshipment node. For each arc
(i; j) 2 A, as before, let lij and uij denote, respectively, the lower and upper
bounds on
ow on arc (i; j). The case where uij = 1, for all (i; j) 2 A, gives
rise to the uncapacitated network
ow problem. Without loss of generality, lij
can be set to zero. Most often, the problem data (i.e. cij; uij; lij, for (i; j) 2 A
and bj, for j 2 N) are assumed to be integer, and many software codes adopt
this assumption. However, there can exist applications where the data are real
numbers, and algorithms should be capable of handling problems with real data.

Constraints of type (1.2) are referred to as the
ow conservation equations,
while constraints of type (1.3) are called the
ow capacity constraints. In matrix
notation, the above network
ow problem can be formulated as a linear program
of the special form

min fc>x j Ax = b; l � x � ug;

where A is the m � n node-arc incidence matrix of the graph G = (N ;A),
i.e. for each arc (i; j) in A there is an associated column in matrix A with
exactly two non-zero entries: an entry 1 in row i and an entry �1 in row j.
Note that of the mn entries of A, only 2n are non-zero and because of this the
node-arc incidence matrix is not a space-e�cient representation of the network.
There are many other ways to represent a network. A popular representation
is the node-node adjacency matrix B. This is an m � m matrix with an entry
1 in position (i; j) if arc (i; j) 2 A and 0 otherwise. Such a representation
is e�cient for dense networks, but is ine�cient for sparse networks. A more
e�cient representation for sparse networks is the adjacency list, where for each
node i 2 N there exists a list of arcs emanating from node i, i.e. a list of
nodes j such that (i; j) 2 A. The forward star representation is a multi-array
implementation of the adjacency list data structure. The adjacency list allows
easy access to the arcs emanating from a given node, but no easy access to the
incoming arcs. The reverse star representation allows easy access to the list of
arcs incoming into i. Another representation that is much used in interior point
network
ow implementations is a simple arc list, where the arcs are stored in a
linear array. The complexity of an algorithm for solving network
ow problems

Interior point algorithms for network
ow problems 147

depends greatly on the network representation and the data structures used for
maintaining and updating intermediate computations.

We denote the i-th column of A by Ai, the i-th row of A by A:i and a
submatrix of A formed by columns with indices in set S by AS . If graph G is
disconnected and has p connected components, there are exactly p redundant

ow conservation constraints, which are sometimes removed from the problem
formulation. We rule out a trivially infeasible problem by assumingX

j2Nk

bj = 0; k = 1; : : : ; p; (1.4)

where N k is the set of nodes for the k-th component of G.

Often it is further required that the
ow xij be integer, i.e. we replace (1.3)
by

lij � xij � uij; xij integer; (i; j) 2 A: (1.5)

Since the node-arc incidence matrix A is totally unimodular, when the data is
integer all vertex solutions of the linear program are integer. An algorithm that
�nds a vertex solution, such as the simplex method, will necessarily produce
an integer optimal
ow. In certain types of network
ow problems, such as the
assignment problem, one may only be interested in solutions having integer
ows,
since fractional
ows do not have a logical interpretation.

In the remainder of this chapter we assume, without loss of generality, that
lij = 0 for all (i; j) 2 A and that c 6= 0. A simple change of variables can
transform the original problem into an equivalent one with lij = 0 for all (i; j) 2
A. The case where c = 0 is a simple feasibility problem, and can be handled by
solving a maximum
ow problem [3].

Many important combinatorial optimization problems are special cases of the
minimum cost network
ow problem. Such problems include the linear assign-
ment and transportation problems, and the maximum
ow and shortest path
problems. In the transportation problem, the underlying graph is bipartite, i.e.
there exist two sets S and T such that S [T = N and S \T = ; and arcs occur
only from nodes of S to nodes of T . The set S is usually called the set of source
nodes and the set T the set of sink nodes. For the transportation problem, the
right-hand side vector in (1.2) is given by

bj =

(
sj ; if j 2 S;

�tj; if j 2 T ;

where sj is the supply at node j 2 S and tj is the demand at node j 2 T . The
assignment problem is a special case of the transportation problem, in which
sj = 1 for all j 2 S and tj = 1 for all j 2 T .

The computation of the maximum
ow from node s to node t in G = (N ;A)
can be done by computing a minimumcost
ow in G0 = (N 0;A0), where N 0 = N

148 Mauricio G.C. Resende and Panos M. Pardalos

and A0 = A[(t; s), where

cij =

(
0; if (i; j) 2 A;

�1; if (i; j) = (t; s);

and

uij =

(
cap(i; j); if (i; j) 2 A;

1; if (i; j) = (t; s);

where cap(i; j) is the capacity of arc (i; j) in the maximum
ow problem.
The shortest paths from node s to all nodes in N n fsg can be computed by

solving an uncapacitated minimumcost network
ow problem in which cij is the
length of arc (i; j) and the right-hand side vector in (1.2) is given by

bj =

(
m � 1; if j = s;

�1; if j 2 N n fsg:

Although all of the above combinatorial optimization problems are formulated as
minimum cost network
ow problems, several specialized algorithms have been
devised for solving them e�ciently.

In many practical applications,
ows in networks with more than one com-
modity need to be optimized. In the multicommodity network
ow problem, k
commodities are to be moved in the network. The set of commodities is denoted
by K. Let xk

ij denote the
ow of commodity k in arc (i; j). The multicommodity
network
ow problem can be formulated as the following linear program:

minimize
P

k2K

P
(i;j)2A ckijx

k
ij; (1.6)

subject to
P

(j;l)2A xk
jl �
P

(l;j)2A xk
lj = bkj ; j 2 N ; k 2 K; (1.7)P

k2K x
k
ij � uij; (i; j) 2 A; (1.8)

xk
ij � 0; (i; j) 2 A; k 2 K: (1.9)

The minimumcost network
ow problem is a special case of the multicommodity
network
ow problem, in which there is only one commodity.

In the 1940s, Hitchcock [30] proposed an algorithm for solving the transporta-
tion problem and later Dantzig [14] developed the simplex method for linear pro-
gramming problems. In the 1950s, Kruskal [41] developed a minimum spanning
tree algorithm and Prim [51] devised an algorithm for the shortest path problem.
During that decade, commercial digital computers were introduced widely. The
�rst book on network
ows was published by Ford and Fulkerson [19] in 1962.

Since then, active research has produced a variety of algorithms, data structures
and software for solving network
ow problems. For an introduction to network

ow problems and applications, see the books [3, 7, 17, 19, 39, 42, 58, 62].

The focus of this chapter is on recent computational approaches, based on
interior point methods, for solving large-scale network
ow problems. In the
last two decades, many other approaches have been developed. A history of

Interior point algorithms for network
ow problems 149

computational approaches up to 1977 is summarized in [11]. In addition, several
computational studies had established the fact that, for network
ow problems,
specialized network simplex algorithms were orders of magnitude faster than
simply applying a general simplex linear programming code. (See, e.g. the studies
in [23, 27, 39, 43].) A collection of fortran codes of e�cient algorithms of that
period can be found in [59]. Another important class of network optimization
algorithms and codes are the relaxation methods described in [8]. More recent
computational research is included in [25, 31].

In 1984, Karmarkar introduced a new polynomial time algorithm for solving
linear programming problems [37]. This algorithm and many of its variants,
known as interior point methods, have been used to e�ciently solve network

ow problems. This is the main topic of the remainder of this chapter.

The chapter is organized as follows. In Section 2 we provide a brief survey of
the literature in the �eld of interior point network
ow methods. A discussion
of complexity issues is made. In Section 3 we focus on several important com-
ponents of interior point network
ow implementations, including a discussion
on iterative methods for solving the large linear systems that occur in interior
point methods, preconditioners, identi�cation of the optimal partition, and re-
covery of the optimal
ow. These points are illustrated on a particular interior
point method, the dual a�ne scaling algorithm. In Section 4 we present some
computational results, comparing an interior point network
ow method with an
e�cient, commercially available, network simplex code. Concluding remarks are
made in Section 5.

2 Implementation of interior point network
ow methods

In this section we present issues related to e�cient implementation of interior
point methods for solving network
ow problems. We present a brief review
of the research literature relating to interior point network
ow methods and
discuss the computational complexity of interior point network
ow methods.

2.1 Literature review

After the introduction of Karmarkar's algorithm in 1984, many groups of re-
searchers hurried to implement the method. One of the �rst implementations is
described in Adler et al. [1, 2]. They implemented what is now known as the dual
a�ne scaling algorithm using direct factorization for solving, at each iteration,
a direction-�nding system of linear equations, of the form

ADA>u = t; (2.1)

where A is an m � n constraint matrix, D is a diagonal n � n scaling matrix,

and u and t are m-vectors. Though that implementation was shown to compare

favourably with an e�cient implementation of the simplex method [44] on gen-
eral linear programming problems from the test problem set NETLIB [20], the
code was orders of magnitude slower than the network simplex implementation
netflo [39] on small assignment problems.

