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1 Overview

Many issues that are crucial for an e�cient implementation of an interior point

algorithm are addressed in this chapter. To start with, a prototype primal-

dual algorithm is presented. Next, many tricks that make it e�cient in practice

are discussed in detail. Those include: preprocessing techniques, initialization

approaches, methods for computing search directions (and the underlying linear

algebra techniques), centering strategies and methods of stepsize selection.

Several reasons for the manifestation of numerical di�culties, for example

the primal degeneracy of optimal solutions or the lack of feasible solutions, are

explained in a comprehensive way.

A motivation for obtaining an optimal basis is given and a practicable al-

gorithm to perform this task is presented. Advantages of di�erent methods to

perform postoptimal analysis (applicable to interior point optimal solutions) are

discussed.

Important questions that still remain open in the implementation of inte-

rior point methods are also addressed, e.g. performing correct postoptimal

analysis, detecting infeasibility or resolving di�culties arising in the presence

of unbounded optimal faces. The challenging practical problem of warm start is

recalled and two potentially attractive approaches to it are suggested.

To facilitate understanding of di�erent implementation strategies, some illus-

trative numerical results on a subset of problems from the NETLIB collection

are presented.
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2 Introduction

Karmarkar's publication in 1984 of a new polynomial time algorithm for linear

programming (LP) [40] drew enormous attention from the mathematical pro-

gramming community and has led to great activity, resulting in a ood of papers

(see, e.g. [45]).

The idea of crossing the interior of the feasible region in search of an optimum

of the linear program was present at least since the 1960s. These methods were

for example: an a�ne-scaling method of Dikin [18] and a logarithmic barrier

method SUMT of Fiacco and McCormick [22]. For at least two reasons, however,

these methods could not at the time be shown to be competitive to simplex.

First, due to the storage limitations, the size of the problems solved in the

late 1960s never exceeded several hundred rows and columns and for such sizes

the simplex method is practically unbeatable. Secondly, there were no sparse

symmetric solvers available at that time (they appeared at the beginning of the

1970s) so the orthogonal projections must have killed the e�ciency of interior

point methods (IPMs). IPMs need signi�cantly more memory than the simplex

method which was an unacceptable requirement at that time.

Clearly, the situation was quite di�erent in 1984, which encouraged Kar-

markar to claim an excellent e�ciency for his new approach. In fact, these

claims still had to wait several years to be con�rmed by computational results

[1, 2, 59].

Soon after Karmarkar's publication, Gill, Murray, Saunders, Tomlin and

Wright [27] built the bridge between this new interior point method and the

logarithmic barrier approach. Barrier methods were developed for the primal

and for the dual LP formulation (see, e.g. the surveys [32, 65, 67]). Early imple-

mentations that were based on pure primal or dual methods gave competitive

results with simplex implementations. Nowadays all the state-of-the-art IPM

implementations are those of primal-dual methods, hence in this chapter we

concentrate only on primal-dual methods.

First Megiddo [52] proposed applying a logarithmic barrier method to the

primal and the dual problems at the same time. Independently, Kojima, Mizuno

and Yoshise [44] developed the theoretical background of this method and gave

complexity results. Its early implementations [15, 51] showed much promise and

encouraged further research. For extensions that represent current state-of-the-

art primal-dual implementations, see Lustig, Marsten and Shanno [49, 47, 48]

and Mehrotra [54, 55].

A primal-dual algorithm is a feasible IPM if all the iterates are primal and

dual feasible. If the iterates are positive but infeasible then the primal-dual

algorithm is called an infeasible IPM. This algorithm attains feasibility at the

same time as optimality is reached. It had been successfully implemented that

way [47] and had shown very good practical convergence long before a theoretical

justi�cation for such behaviour was found by Kojima, Megiddo and Mizuno [43].

The method has proven polynomial complexity: O(n2L) in [79] and O(nL) in

[57, 62].
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Although the complexity of the infeasible primal-dual algorithm is worse than

the best-known complexity O(
p
nL) of most feasible IPMs (see, e.g. the surveys

[32, 65, 67]), it is now widely accepted that primal-dual infeasible IPMs are more

e�cient in implementations. Since infeasible IPMs are the methods of choice to

date for \state of the art" implementations, throughout the whole chapter we

mean a primal-dual infeasible IPM we speak about a primal-dual algorithm. To

facilitate this, in Section 3 we shall introduce a prototype primal-dual infeasible

IPM algorithm.

A common feature of almost all IPMs is that they can be interpreted in

terms of following the path of centers [68] that leads to the optimal solution

(see, e.g. [32, 65]). With some abuse of mathematics, a basic iteration of a

path-following algorithm consists of moving from one point in a neighbourhood

of the central path to another one called the target that preserves the property

of lying in a neighbourhood of the central path and reduces the distance to

optimality measured with some estimation of the duality gap. Such a movement

can in principle involve more than one step towards the target. Depending on

how signi�cant is the update of the target (and consequently, whether just one

or more Newton steps are needed to reach the vicinity of the new target) one

distinguishes between short-step and long-step methods. Due to the considerable

cost of every Newton step, usually (at least in implementations) one Newton step

is allowed before a new target is de�ned.

Every Newton step requires computing at least one orthogonal projection

onto the null space of a scaled linear operator AD, where A is the LP constraint

matrix and D is a positive diagonal scaling matrix that changes in subsequent

iterations. Primal, dual and primal-dual variants of IPMs di�er on the way ma-

trix D is de�ned, but the e�ort to compute Karmarkar's projection is always the

same. Every orthogonal projection involves inversion of the matrixAD2AT { the

most time consuming linear algebra operation which takes about 60{90% of the

computation time of a single interior point iteration. Unless the linear program is

specially structured and this structure can be exploited to determine an easily in-

vertible preconditioner for an iterative method (such as e.g. a conjugate gradient

algorithm, implemented successfully for network problems [61, 64]), direct meth-

ods [19] that compute a sparse symmetric factorization (Cholesky decomposition

of the positive de�nite system AD2AT or Bunch{Parlett [7, 13] decomposition

of the inde�nite augmented system

"
D�2 AT

A 0

#
) are the methods of choice.

Computing projections onto a�ne spaces seems crucial for the e�ciency of any

interior point algorithm. We shall thus discuss it in detail in Section 4 which

also addresses other issues of implementation of the IPM such as the role of pre-

solve analysis, the choice of the starting point, the choice of the stepsizes in the

primal and in the dual spaces, the role of centering, higher-order methods, the

termination conditions and, �nally, the comparison of theoretical and practical

complexity.

In Section 5 we shall add some remarks relating to manifestations of degen-
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eracy and ill-conditioning in the computation of projections.

For about forty years, the simplex method (starting from its discovery in

1947 [16] until Karmarkar's breakthrough [40]) was the only e�ective algorithm

for linear programs. Hence, operations research practitioners got used to seeing

linear programming from the simplex perspective. This, in particular, applies to

the use of the postoptimality analysis available from the optimal basis solution.

In fact, such a postoptimality analysis is almost always incomplete (frequently

incorrect), see e.g. [17, 33, 37]. Nevertheless, there exist many applications in

which an optimal basis is necessary, e.g. reoptimization in integer programming.

In such a case a need arises for identifying an optimal basis from the interior

point optimal solution. Fortunately, this can be done in strongly polynomial time

[53]. We shall address the problem of optimal basis identi�cation in Section 6.

Section 7 will be devoted to some crucial questions that still remain open.

Sensitivity analysis based on interior point optimal solution is generally more

expensive but produces correct information. We discuss how to handle problems

with unbounded level sets, how to detect infeasibility and how to implement

e�cient warm start in interior point algorithms.

Most relevant issues of interior point method implementations will be illus-

trated by solving a subset of the NETLIB LP problem test collection using

version 2.0 of the HOPDM (Higher Order Primal Dual Method) code [4, 31]. All

of our computations are made on a SUN SPARC-10 workstation.

Later on in the chapter we will frequently speak about stability, robustness

and e�ciency of di�erent methods. On stability, the usual numerical stability is

meant. Talking about robustness, one thinks about whether the algorithm gives

reliable answers on a wide range (optimally all) of problem instances. Finally,

e�ciency relates to the speed of the algorithm, and the speed of the implemen-

tation.

3 A prototype primal-dual algorithm

Let us consider a primal linear programming problem:

minimize cTx;

subject to Ax = b; (3.1)

x+ s = u;

x; s � 0;

where c; x; s; u 2 IRn; b 2 IRm; A 2 IRm�n; and its dual:

maximize bTy � uT t;

subject to ATy � t+ z = c; (3.2)

z; t � 0;

where y 2 IRm and z; t 2 IRn. Here we assume that rank A = m (in Section

4.1.3 we will see that this assumption is not restrictive).

To derive the primal-dual algorithm, let us replace non-negativity of con-


