Hodge Theory- Example Sheet 5

Anne-Sophie Kaloghiros

- 1. Let $E \to X$ be a holomorphic vector bundle over a complex manifold X and $L \to X$ a holomorphic line bundle. Show that $\mathbb{P}(E \otimes L) \simeq \mathbb{P}(E)$, but that $\mathcal{O}_{\mathbb{P}(E \otimes L)}(1) \simeq \mathcal{O}_{\mathbb{P}(E)}(1) \otimes \pi^* L^*$, where $\pi \colon \mathbb{P}(E) \to X$.
- 2. Let X be a complex manifold. Show that the *Bott-Chern cohomology* groups

$$H^{p,q}_{BC}(X) = \frac{\{\alpha \in \mathcal{A}^{p,q}(X) | d\alpha = 0\}}{\partial \overline{\partial} \mathcal{A}^{p-1,q-1}(X)}$$

are well defined, and that there are natural maps

$$H^{p,q}_{BC}(X) \to H^{p,q}(X)$$
 and $H^{p,q}_{BC}(X) \to H^{p+q}(X,\mathbb{C}).$

Show that if X is Kähler, the first map is bijective. Use this to show again that the bidegree decomposition in the Hodge Decomposition Theorem is independent of the Kähler structure.

- 3. Show that any complex curve admits a Kähler structure.
- 4. Let $A \in \operatorname{GL}(n+1,\mathbb{C})$ and consider the natural induced isomorphism $F_A \colon \mathbb{P}^n \to \mathbb{P}^n$. Denote ω_{FS} the Fubini-Study form introduced in lectures. When is $F_A^* \omega_{FS} = \omega_{FS}$?
- 5. Let (X, h) be a connected Kähler manifold of dimension dim $X \ge 2$, and let ω be a Kähler form. Let $\varphi \colon X \to \mathbb{R}^*_+$ be a differentiable function and assume that $\varphi \omega$ is Kähler. Show that φ is constant.
- 6. Let X be a compact Kähler manifold and consider $H^{1,1}(X)$ as a subspace of $H^2(X, \mathbb{C})$. Show that $\mathcal{K}_X = \{\alpha \in H^{1,1}(X) | d\alpha = 0\}$ is an open convex cone in $H^{1,1}(X, \mathbb{R}) = H^{1,1}(X) \cap H^2(X, \mathbb{R})$ and that \mathcal{K}_X does not contain any line $\{\alpha + t\beta; t \in \mathbb{R}\}$ for any $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ with $\beta \neq 0$. Show that if $\alpha \in \mathcal{K}_X$, $\alpha + t\beta \in \mathcal{K}_X$ for any $\beta \in H^{1,1}(X, \mathbb{R})$ and t > 0 sufficiently large.

- 7. Let (X, h) be a Kähler manifold. Show that the Kähler class $\omega = -i\Im h$ is harmonic.
- 8. Let (X, h) be a compact Hermitian manifold of dimension n. Show that d-harmonic forms of degree 0 and 2n coincide with ∂ and $\overline{\partial}$ harmonic forms.

Show that any *d*-harmonic form of type (p, q) is $\overline{\partial}$ -harmonic.

- 9. (The residue formula) Let X be a compact complex curve, and let μ be a volume form on X (μ is a closed form of type (1, 1)).
 - (i) Show that μ is not $\overline{\partial}$ -exact and deduce that $H^1(X, K_X) \neq (0)$ and admits a surjective map $H^1(X, K_X) \to \mathbb{C}$ such that $\omega \mapsto \int_X \omega$.

Let $D = \Sigma P_i$ be a *boundary* divisor of X (all the multiplicities are 1), and denote $K_X(D)$ the holomorphic line bundle defined as follows. If $U \subset X$ is an open set that contains no x_i , $\Gamma(U, K_X(D)) = \Gamma(U, K_X)$, and if U_i is a neighbourhood of x_i and z_i is a local holomorphic coordinate near x_i ,

$$\Gamma(U_i, K_X(D)) = \{s \colon U_i \to \mathbb{C} : s(z_i) = \varphi(z_i) \frac{dz_i}{z_i}, \varphi \in \mathcal{O}_X(U_i)\}$$

(ii) Show that there is an exact sequence

$$0 \to K_X \to K_X(D) \xrightarrow{Res} \Sigma_i \mathbb{C}_{x_i} \to 0, \tag{1}$$

where \mathbb{C}_{x_i} is the *skyscraper sheaf* supported at x_i (i.e. $\Gamma(U, \mathbb{C}_{x_i}) = \{0\}$ if $x_i \notin U$ and \mathbb{C} otherwise). The map $Res_i \colon K_X(D) \to \mathbb{C}_{x_i}$ is defined by:

$$\operatorname{Res}_i(\omega) = \frac{1}{2\pi} \int_{\partial D_i} \omega,$$

for a disk D_i centered at x_i and containing no $x_j \neq x_i$.

- (iii) Let $\delta: H^0(X, \Sigma \mathbb{C}_{x_i}) \to H^1(X, K_X)$ be the map in the long exact sequence associated to (1). Show that $\delta(1_{x_i})$ is the class in $H^1(X, K_X)$ of $\overline{\partial}\mu_i$, where μ_i is a (1,0)-form which is differentiable away from x_i and equal to $\frac{dz_i}{z_i}$ on a neighbourhood U_i of x_i .
- (iv) Show that $\int_X \delta \mu_i = -2i\pi$, and deduce that if ω is a meromorphic 1-form having poles of order at most 1 at each x_i and holomorphic otherwise, then

$$\Sigma Res_i \omega = 0.$$