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High frequency scattering is notoriously challenging for conventional boundary element
methods based on piecewise polynomial approximation spaces, because of the large num-
ber of degrees of freedom required to capture the oscillatory solution. Hybrid numerical-
asymptotic (HNA) methods aim to significantly reduce the dimension of the numerical
approximation space by enriching it with oscillatory functions, carefully chosen to capture
the high frequency asymptotic behaviour of the wave solution [1].

In this talk I will report some recent advances in HNA boundary element methods for
transmission problems (involving penetrable, or dielectric scatterers), relevant, for exam-
ple, to light scattering by atmospheric ice crystals. For scattering by penetrable convex
polygons in two dimensions our algorithm presented in [2] achieves fixed accuracy with
a frequency-independent number of BEM degrees of freedom, associated with oscillatory
basis functions capturing corner-diffracted waves. Our current investigations suggest that
to obtain good performance uniformly across all incident angles it is necessary to in-
clude basis functions capturing so-called “lateral” or “head” waves, which in the high
frequency asymptotic theory correct for the phase mismatch between the internal and
external diffracted waves.

[1] S. N. Chandler-Wilde, I. G. Graham, S. Langdon, E. A. Spence, Numerical-asymptotic
boundary integral methods in high-frequency acoustic scattering, Acta Numer., 21 (2012)
89-305.

[2] S. P. Groth, D. P. Hewett, S. Langdon, A high frequency boundary element method for
scattering by penetrable convez polygons, Wave Motion, 78 (2018), 32-53.
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We describe an ongoing project to develop a flexible and rigorously justified software tool
for optimizing the design of thin film solar cells [I]. We use the differential evolution
algorithm (DEA) [3] to optimize the efficiency of a solar cell design. To evaluate the
efficiency there are two steps:

Photonic model Maxwell’s equations need to be solved in the solar cell to find the gener-
ation rate of electrons and holes. We restrict ourselves to the case when Maxwell’s
equations decouples into s-polarized and p-polarized waves that satisfy different
Helmholtz equations.

To solve these Helmholtz equations rapidly we use the Rigorous Coupled Wave
Analysis (RCWA) method [4], that is based on using Fourier series in the horizontal
(quasi-periodic) direction. Since the technique is meshless, it is easy to change both
the geometry of the device and the material parameters for each simulation. We
prove convergence of RCWA [2].

Electron transport We use the drift-diffusion model to simulate electron transport in
the semiconductor layers of the device. This model involves the density of electrons
and holes in the device as well as the static electric field generated by these entities.
Using the Hybridizable Discontinuous Galerkin (HDG) scheme [5], we can discretize
the system using appropriate piecewise polynomials for each unknown in the system.
The resulting system of nonlinear equations is solved by Newton’s method, and by
using different biasing voltages the optimal efficiency for a given design can be
computed. Convergence is proved for a related time domain problem.

We have used the above algorithm to optimize a representative solar cell. Future work
will include investigating more novel designs, and implementing a full three dimensional
model.
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The plasmonics of graphene and other two-dimensional materials has attracted enormous
attention in the past decade. Both the possibility of exciting plasmons in the terahertz
to midinfrared regime, and the active tunability of graphene has generated a great deal
of excitement. Consequently there is significant demand for robust and highly accurate
computational schemes which incorporate such materials. We describe an algorithm which
models the graphene layer with a surface current that is applicable to a wide class of two-
dimensional materials. We reformulate the governing volumetric equations in terms of
surface quantities using Dirichlet-Neumann operators, which can be numerical simulated
in an efficient, stable, and accurate fashion using a novel High-Order Perturbation of
Envelopes methodology. We demonstrate an implementation of this algorithm to study
absorbance spectra of TM polarized plane-waves scattered by a periodic grid of graphene
ribbons.
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Spectral geometry concerns the study of the interplay between geometric properties of a
domain and the spectrum of pseudodifferential operators defined on these domains. Of
particular interest in the design of optical and photonic devices is the question of spectral
optimization. In this talk, we consider some theoretical and computational questions
which arise in the spectral geometry of the Steklov eigenvalue problem for the Laplacian
and the Lamé operators. We present discretization methodologies based on both a finite
element method, and a boundary integral strategy.
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It is important to engineers and scientists alike to simulate scattering returns of electro-
magnetic radiation from bounded obstacles. In this talk we present High-Order Pertur-
bation of Surfaces algorithms for the simulation of such configurations, implemented with
Dirichlet-Neumann Operators and Impedance-Impedance Operators. With an implemen-
tation of these approaches we demonstrate the stable, robust, and highly accurate prop-
erties of our algorithms. We also demonstrate the validity and utility of our approaches
with a sequence of numerical experiments. Moreover, we show how our formulation de-
livers a straightforward proof of existence, uniqueness, and analyticity of solutions to this
problem.



