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FREQUENCY-EXPLICIT CONVERGENCE ANALYSIS FOR
FINITE ELEMENT DISCRETIZATIONS OF WAVE PROPAGATION
PROBLEMS IN HETEROGENEOUS MEDIA

Théophile Chaumont-Frelet! and Serge Nicaise?

'Univ. Cote d’Azur, Inria, CNRS, LJAD, France
2Univ. Valenciennes, LAMAV, France

We consider the Helmholtz equation in a heterogeneous domain Q2 C R¢ with d € {2, 3}.
The domain is characterized by its bulk modulus and density x,p : Q — RT, and the
boundary 0f2 is split into two subdomains I'y and I'p. Then, given f : Q — C, we seek a
function u : @ — C such that
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where w > 0 is the (given) angular frequency.

We assume that the heterogeneous coefficients x and p are piecewise smooth. Specif-
ically, we assume that there exists a partition & = {{;} of Q such that each {2, has a
smooth boundary of class €™ 1! and that s, p € €™(Qy) for all , € & where m > 0
is a given integer

We consider finite element discretizations to problem ([Il) of degree p < m + 1 that
are built on shape-regular meshes .7}, compatible with the partition &2. We perform a
stability and convergence analysis under the assumption that the problem is solvable for
all frequencies. Then, for every w > 0, there exists a real number 5;(w) such that

Bs(w)
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The behaviour of f5(w) is known for several configurations of interest, and in particular,
it depends linearly on w for non-trapping domains.

Our key result is the following: under the assumption that wh + fs(w)(wh)? < C, the

finite element solution is quasi-optimal, and we have
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Recalling that Ny = (wh)™! is a measure of the number of elements per wavelength, our
analysis shows that the finite element scheme provides a quasi-optimal solution under the
assumption that

Ny > Cmax (1, Bs(w)'/7) . (3)

Following estimate (3], our key conclusion is that high order finite element methods are
stable on coarser meshes than low order ones, especially in the high-frequency regime.
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This crucial observation is corroborated by numerical experiments, which show that the
main estimates we derive are sharp, and that higher order methods generally need much
less degrees of freedom to achieve a desired accuracy in the high frequency regime.

ADAPTIVE MULTILEVEL SOLVERS FOR THE DISCONTINUOUS
PETROV-GALERKIN METHOD WITH AN EMPHASIS
ON HIGH-FREQUENCY WAVE PROPAGATION PROBLEMS

Leszek Demkowicz® and Socratis Petrides

Oden Institute, The University of Texas at Austin
“leszek@ices.utexas.edu

The work focuses on the development of fast and efficient solution schemes for the simu-
lation of challenging problems in wave propagation phenomena. In particular, emphasis
is given in high frequency acoustic and electromagnetic problems which are characterized
by localized solutions in problems like ultrasonic testing, laser scanning and modeling
of optical laser amplifiers. In wave simulations, the computational cost of any numerical
method, is directly related to the frequency. In the high-frequency regime very fine meshes
have to be used in order to satisfy the Nyquist criterion and overcome the pollution ef-
fect. This often leads to prohibitively expensive problems. Numerical methods based on
standard Galerkin discretizations, lack of pre-asymptotic discrete stability and therefore
adaptive mesh refinement strategies are usually inefficient. Additionally, the indefinite
nature of the wave operator makes state of the art preconditioning techniques, such as
multigrid, unreliable.

A promising alternative approach is followed within the framework of the discontinu-
ous Petrov-Galerkin (DPG) method. The DPG method offers numerous advantages for
our problems of interest: mesh and frequency independent discrete stability even in the
pre-asymptotic region, and a built-in local error indicator that can be used to drive adap-
tive refinements. Combining these two properties together, reliable adaptive refinement
strategies are possible which can be initiated from very coarse meshes. The DPG method
can be viewed as a minimum residual method, and therefore it always delivers symmet-
ric (Hermitian) positive definite stiffness matrix. This is a desirable advantage when it
comes to the design of iterative solution algorithms. Conjugate Gradient based solvers
can be employed which can be accelerated by domain decomposition (one- or multi- level)
preconditioners for symmetric positive definite systems.

Driven by the aforementioned properties of the DPG method, an adaptive multigrid
preconditioning technology is developed that is applicable for a wide range of boundary
value problems. Unlike standard multigrid techniques, our preconditioner involves trace
spaces defined on the mesh skeleton, and it is suitable for adaptive hp-meshes. Integration
of the iterative solver within the DPG adaptive procedure turns out to be crucial in the
simulation of high frequency wave problems. A collection of numerical experiments for
the solution of linear acoustics and Maxwell equations demonstrate the efficiency of this
technology, where under certain circumstances uniform convergence with respect to the
mesh size, the polynomial order and the frequency can be achieved. The construction is
complemented with theoretical estimates for the condition number in the one-level setting.



PARALLEL CONTROLLABILITY METHODS
FOR THE HELMHOLTZ EQUATION

Marcus J. Grote!®, Frédéric Nataf?, Jet Hoe Tang! and Pierre-Henri Tournier?

'Department of Mathematics and Computer Science, University of Basel, Switzerland
“marcus.grote@unibas.ch

2Laboratoire J.L. Lions and ALPINES INRIA, UPMC, Paris, France

The Helmholtz equation is notoriously difficult to solve with standard iterative methods,
increasingly so, in fact, at higher frequencies. Controllability methods instead transform
the problem back to the time-domain, where they seek the time-harmonic solution of the
corresponding time-dependent wave equation. Two different approaches are considered
here based either on the first (mixed) or second-order formulation of the wave equation.
Both are extended to general boundary-value problems governed by the Helmholtz equa-
tion and lead to robust and inherently parallel algorithms. Numerical results illustrate the
accuracy, convergence and strong scalability of controllability methods for the solution of
high frequency Helmholtz equations with up to a billion unknowns on massively parallel
architectures.

INTERPOLATION PROPERTIES OF GENERALIZED PLANE WAVES
FOR THE CONVECTED HELMHOLTZ EQUATION

Lise-Marie Imbert-Gérard® and Guillaume Sylvand

“1mig@math.umd.edu

Trefftz methods are commonly used for wave propagation problems in frequency domain,
and rely on basis functions that solve exactly the driving equation, such as classical plane
waves. In order to take advantage of Trefftz methods for problems with variable coeffi-
cients, in which case there is usually no known exact solution of the PDE to discretize the
Trefftz formulation, Generalized Plane Waves (GPWs) have been developed as approxi-
mated solutions to the given PDE.

We will discuss the design and interpolation properties of GPWs for the 3D convected
Helmholtz equation, emphasizing the similarities with the 2D Helmholtz equation as well
as the challenges arising from inhomogeneity and anisotropy of the 3D medium.



ELECTROMAGNETIC TRANSMISSION PROBLEMS:
WAVENUMBER-EXPLICIT BOUNDS

Andrea Moiola! and Euan A. Spence?

'Department of Mathematics, University of Pavia, Italy
andrea.moiola@unipv.it

2Department of Mathematical Sciences, University of Bath, United Kingdom
e.a.spence@bath.ac.uk

We consider the time-harmonic Maxwell’s equations with rough, possibly discontinuous,
permittivity € and magnetic permeability p. Under a natural assumption on e and pu,
which excludes ray trapping, we prove bounds on the solution in terms of the data, with
these bounds explicit in all parameters. The L? norms of the electric and the magnetic
fields are bounded by the L? norm of the source term, independently of the wavenumber.
The range of problems covered includes, e.g., the scattering by a penetrable star-shaped
Lipschitz obstacle.

Such explicit bounds are key to developing frequency-explicit error analysis for nu-
merical methods such as FEM and BEM. The “shape-robustness” allows to quantify how
variations in the shape of the obstacle affect the solution and makes the bounds particu-
larly suitable for uncertainty quantification (UQ) applications. Our bounds are obtained
using identities first introduced by Morawetz (essentially integration by parts).



RIGOROUS COUPLE WAVE ANALYSIS OF
ONE DIMENSIONAL DIFFRACTION GRATINGS

Peter Monk® and Benjamin Civiletti®

Department of Mathematical Sciences, University of Delaware,
Newark DE 19716, USA
“monk@udel . edu, ’bcivilet@udel.edu

Rigorous Coupled Wave Analysis (RCWA) is a technique for approximating the electro-
magnetic field in a diffraction grating. It is widely used to obtain rapid solutions for
heterogeneous gratings where the relative permittivity varies periodically in one direc-
tion. This semi-analytical approach expands all the electromagnetic field phasors as well
as the relative permittivity as Fourier series in the spatial variable along the direction
of periodicity, and also replaces the relative permittivity with a stairstep approximation
along the direction normal to the direction of periodicity. Thus, there is error due to
Fourier truncation and also due to the approximation of grating permittivity.

We study the convergence properties of RCWA for s- and p-polarized monochromatic
incident light on a one dimensional grating. We prove that the RCWA is a Galerkin
scheme, which allows us to employ techniques borrowed from the Finite Element Method
to analyze the error.

Fo s-polarization an essential tool is a Rellich identity that shows that certain contin-
uous problems have unique solutions that depend continuously on the data with a conti-
nuity constant having explicit dependence on the relative permittivity. We prove that for
s-polarization the RCWA converges with an increasing number of retained Fourier modes
and with a finer approximation of the grating interfaces. Numerical results show that
our convergence results for increasing the number of retained Fourier modes are seen in
practice, while our estimates of convergence in slice thickness are pessimistic.

For p-polarization the analysis via a Rellich identity is much more delicate. However,
for a grating consisting of absorbing media, we prove convergence both with an increasing
number of retained Fourier modes and with a finer approximation of the grating interfaces.
Our analytical results suggest a slow rate of convergence depending on the singularities
occurring in the solution due to material interfaces.



NEARBY PRECONDITIONING FOR MULTIPLE REALISATIONS
OF THE HELMHOLTZ EQUATION, WITH APPLICATION
TO UNCERTAINTY QUANTIFICATION

Ivan G. Graham?, Owen R. Pembery® and Euan A. Spence®

Department of Mathematical Sciences, University of Bath, Bath, BA2 7TAY, UK
%i.g.graham@bath.ac.uk, bo.r. pembery@bath.ac.uk, “e.a.spence@bath.ac.uk

Let AW, j =1,2, be the Galerkin matrices corresponding to the h-FEM discretisation of
the Helmholtz equations

V- (A(j)vu(j)) + 20y = —f 5 =1,2

in the exterior of some bounded set with Dirichlet boundary conditions. In this work we
answer the following question: when is A(") a good left- or right-preconditioner for A®)?
More precisely, we ask: How small must ||A®) — A®)|| 1« and ||[n®) —n®) ||z~ be (in terms
of k-dependence) for GMRES applied to either (AM)"1A® or A@(AM)~1 to converge
in a k-independent number of iterations for arbitrarily large k7

We prove that, if

EJAY — A®) || oo and E||nY — n®|| 1« are both sufficiently small (1)

then A® is a good preconditioner for A® when using weighted GMRES, and numerical
experiments show the conditions (II) are sharp. Moreover, numerical experiments show
that the conditions (I are sharp for standard GMRES, but to prove AW is a good
preconditioner for A® for standard GMRES we require a slightly stronger condition on
A®M and A® than that in ().

Our motivation for tackling this question comes from calculations in uncertainty quan-
tification (UQ) for the Helmholtz equation with random coefficients A and n. Such a
calculation requires the solution of many deterministic Helmholtz problems, each with
different A and n. The answer to the question above dictates to what extent a previously-
calculated preconditioner of one of the Galerkin matrices can be used as a preconditioner
for other Galerkin matrices. The extent to which one can reuse preconditioners reduces
the cost of the UQ calculation.



SOME CONTRIBUTIONS OF THE NUMERICAL SIMULATION
FOR WAVES PROPAGATION IN COMPLEX MEDIA

Romain Pierrat

ESPCI Paris, PSL University, CNRS, Institut Langevin,
1 rue Jussieu, 75005 Paris, France
romain.pierrat@espci.psl.eu

In this talk, I will present two numerical methods we have widely used to obtain nice phys-
ical results regarding wave propagation in complex heterogeneous media: the moment or
volume integral method [3] and the coupled dipoles method [4]. For both I will present the
advantages and limitations in term of accuracy and requested computing resources. Two
physical systems will be considered as illustrations: near-field optics of semi-continuous
metallic films [2] and light propagation in disordered clouds of correlated dipolar nanopar-
ticles [0l [1]. With these examples, I will show the important contribution of the numerical
simulation in the understanding and control of wave propagation in strongly scattering
media.
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A STUDY OF LIGHT-MATTER INTERACTION AT THE
NANOSCALE: THEORETICAL AND NUMERICAL CONSIDERATIONS
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Nikolai Schmitt! and Jonathan Viquerat!
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Nanophotonics is the area of physics that tries to exploit the interaction of light with
nanoscaled structures. By using metallic nanostructures, one is able in particular to
obtain impressive exaltation of light and subwavelength confinement. This opens up new
possibilities for controlling and enhancing optical wave-matter interactions and leads to
a lot of interesting applications such as (to cite but a few) efficient design of nanolasers,
nanoantennas, solar cells or biosensing.

In this domain, numerical modelling is fundamental in order to envisage any expensive
experimental scenario. The deep understanding of the phenomenon itself is also essential
for physicists. A precise study of the possible models are thus essential. The modelling
relies on the accurate description of the propagation of an optical wave in a dispersive
metallic medium. At the scales and frequencies considered, several effects have to be taken
into account. In particular, a correct characterization of the response of the electrons in
the metal to the applied electromagnetic field is crucial and can lead to new models. In
this work, we propose to focus on a model that incorporates some quantum effects. It
consists of a linear coupling between the time domain Maxwell’s equations and a linearized
hydrodynamic model with a quantum pressure term. Both theoretical and numerical
interesting challenges emerge from this PDE model.

We are especially interested in providing a complete study in this context: from theo-
retical issues of well-posedness and stability, to the development of adapted and efficient
numerical algorithms (here we choose to use a discontinuous Galerkin numerical frame-
work) and the study of their academic properties, to finally, efficient numerical simulations
on realistic test cases. We will go through several results that we recently obtained for
this particular model.



SCATTERING PROBLEMS WITH OSCILLATING,
NON-PERIODIC AND DISCONTINUOUS WAVE SPEED

Céline Torres® and Stefan Sauter

University of Zurich
%celine.torres@math.uzh.ch

We study the Helmholtz equation in heterogeneous media in RY, d = 1,2, 3 modelled in
the frequency domain. For a class of oscillatory discontinuous coefficients with spherical
symmetry, we present a new theoretical approach to bound the norm of the solution
operator by a term which is exponential in the frequency and independent of the number
of discontinuities. We present examples of coefficients showing that our estimates are
sharp. In particular our examples in 3D differ from the wave localisation effects appearing
at a single discontinuity in the geometry or the material (“whispering gallery” modes).
Instead, the growth of the stability constant is caused by a highly varying wave speed.

COMPUTATIONAL HIGH-FREQUENCY WAVE PROPAGATION
IN HETEROGENEOUS HIGH-CONTRAST MEDIA

Daniel Peterseim and Barbara Verfiirth

Institute for Mathematics, University of Augsburg, Germany.

(Wave) scattering and propagation in heterogeneous high-contrast media experiences a
rising interest because such materials can develop unusual optical or acoustic properties,
such as a negative refractive index or wave guiding, which are important in practical
applications. From the numerical side, the solution of such problems exhibits several
challenges: (i) spatially rough PDE coefficients and (ii) the high-frequency regime of wave
propagation. Through the high contrast in the coefficients even moderate wave numbers
can suddenly imply a high-frequency regime in certain parts of the computational domain,
thereby even amplifying the aforementioned numerical challenges.

In this talk, we discuss a computational multiscale method in the spirit of the Lo-
calized Orthogonal Decomposition to deal with the combination of rough high-contrast
coefficients and high-frequency regime. The method does not require additional structures
in the coefficients, such as periodicity or scale separation. In the spirit of a generalized
finite element method, special multiscale and problem-adapted basis functions are con-
structed based on the solution of local fine-scale problems. For the global computation,
however, only coarse meshes are used, which do not need to resolve the oscillations and
discontinuities of the coefficients. Rigorous numerical analysis allows to estimate the
discretization error a priori and is confirmed by numerical examples. Furthermore, the
numerical experiments also illustrate some astonishing effects of wave scattering in het-
erogeneous high-contrast media, such as band gaps, flat lenses, or wave guides.
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