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THE RATIONAL SPDE APPROACH FOR GAUSSIAN
RANDOM FIELDS WITH GENERAL SMOOTHNESS

David Bolina, Kristin Kirchner and Mihály Kovács

University of Gothenburg and Chalmers University of Technology
adavid.bolin@chalmers.se

A popular approach for modeling and inference in spatial statistics is to represent Gaussian
random fields as solutions to stochastic partial differential equations (SPDEs) of the form
Lβu = W , where W is Gaussian white noise, L is a second-order differential operator,
and β > 0 is a parameter that determines the smoothness of u. However, this approach
has been limited to the case 2β ∈ N, which excludes several important covariance models
and makes it necessary to keep β fixed during inference.

We introduce a new method, the rational SPDE approach, which is applicable for any
β > 0 and therefore remedies the mentioned limitation. The presented scheme combines
a finite element discretization in space with a rational approximation of the function x−β

to approximate u. For the resulting approximation, an explicit rate of strong convergence
to u is derived and we show that the method has the same computational benefits as in
the restricted case 2β ∈ N when used for statistical inference and prediction. Numerical
experiments are performed to illustrate the accuracy of the method, and an application
to climate reanalysis data is presented.
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ON NUMERICAL APPROXIMATIONS OF THE SPECTRAL
FRACTIONAL LAPLACIAN VIA THE METHOD OF SEMIGROUPS

F. del Teso1,a, N. Cusimano1, L. Gerardo-Giorda1,
G. Pagnini1, J. Endal2 and E. R. Jakobsen2

1Basque Center for Applied Mathematics.
afdelteso@bcamath.org

2Norwegian University of Science and Technology.

As it is well-known, there are several (non-equivalent) ways of defining fractional opera-
tors in bounded domains. In this talk we will focus on the so-called spectral fractional
Laplacian. Following the heat semi-group formula we consider a family of operators which
are boundary conditions dependent and discuss a suitable approach for their numerical
discretizations. We will also discuss the numerical treatment of the associated homoge-
neous boundary value problems. In the end we will talk about possible extensions that
can be treated with our approach such as non-homogeneous boundary conditions and
discretizations of fractional operators in the whole space.
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NONLOCAL (AND LOCAL) NONLINEAR DIFFUSION EQUATIONS.
BACKGROUND, ANALYSIS, AND NUMERICAL APPROXIMATION

Félix del Teso1, Jørgen Endal2a and Espen R. Jakobsen2

1Basque Center for Applied Mathematics (BCAM), Bilbao, Spain

2Department of Mathematical Sciences,
Norwegian University of Science and Technology (NTNU),

N-7491 Trondheim, Norway
ajorgen.endal@ntnu.no

We will consider finite-difference schemes for nonlocal (and local) nonlinear diffusion equa-
tions posed in R

N × (0, T ). Properties needed to perform numerical analysis are going
to be discussed. The numerical approximations will converge to the solutions of the
equations studied under minimal assumptions including assumptions that lead to very
irregular solutions. In other words, the schemes we introduce are robust in the sense that
they converge under very unfavourable conditions. Numerical simulations will also be
presented.

NUMERICAL ANALYSIS OF SUBDIFFUSION
WITH A TIME-DEPENDENT COEFFICIENT

Bangti Jina, Buyang Li and Zhi Zhou

Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

ab.jin@ucl.ac.uk

In the past few years, the numerical analysis of the subdiffusion equation has witnessed im-
pressive progress. However, most works are concerned with the case of a time-independent
diffusion coefficient, and the analysis techniques are not directly applicable to the case of
a time-dependent coefficient. In this talk, we present some recent works on the error anal-
ysis for the case of a time-dependent coefficient, and illustrate the theory with numerical
experiments.
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NUMERICAL APPROXIMATION OF SEMILINEAR SUBDIFFUSION
EQUATIONS WITH NONSMOOTH INITIAL DATA

Mariam Al-Maskari and Samir Karaaa

Department of Mathematics, Sultan Qaboos University, Oman
askaraa@squ.edu.om

We consider the numerical approximation of a semilinear fractional order evolution equa-
tion involving a Caputo derivative in time of order α ∈ (0, 1). Assuming a Lipschitz
continuous nonlinear source term and an initial data u0 ∈ Ḣν(Ω), ν ∈ [0, 2], we discuss
existence, stability, and provide regularity estimates for the solution of the problem. For a
spatial discretization via piecewise linear finite elements, we establish optimal L2(Ω)-error
estimates for cases with smooth and nonsmooth initial data, extending thereby known
results derived for the classical semilinear parabolic problem. We further investigate fully
implicit and linearized time-stepping schemes based on a convolution quadrature in time
generated by the backward Euler method. Our main result provides pointwise-in-time
optimal L2(Ω)-error estimates for both numerical schemes. Numerical examples in one-
and two-dimensional domains are presented to illustrate the theoretical results.

BARRIER FUNCTIONS IN THE ERROR ANALYSIS FOR
FRACTIONAL-DERIVATIVE PARABOLIC PROBLEMS

ON QUASI-GRADED MESHES

Natalia Kopteva

Department of Mathematics and Statistics, University of Limerick, Ireland
natalia.kopteva@ul.ie

An initial-boundary value problem with a Caputo time derivative of fractional order
α ∈ (0, 1) is considered, solutions of which typically exhibit a singular behaviour at
an initial time. For this problem, building on [N. Kopteva, Error analysis of the L1
method on graded and uniform meshes for a fractional-derivative problem in two and
three dimensions, Math. Comp., 2019], we give a simple and general numerical-stability
analysis using barrier functions, which yields sharp pointwise-in-time error bounds on
quasi-graded temporal meshes with arbitrary degree of grading. L1-type and higher-
order discretizations in time are considered in combination with finite element spatial
discretiztions. In particular, those results imply that milder (compared to the optimal)
grading yields optimal convergence rates in positive time. Our theoretical findings are
illustrated by numerical experiments.
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STABLE AND CONVERGENT FULLY DISCRETE
INTERIOR–EXTERIOR COUPLING OF MAXWELL’S EQUATIONS

Balázs Kovács and Christian Lubich

Mathematisches Institut, University of Tübingen,
Auf der Morgenstelle 10, 72076 Tübingen, Germany

kovacs@na.uni-tuebingen.de, lubich@na.uni-tuebingen.de

Maxwell’s equations are considered with transparent boundary conditions, for initial con-
ditions and inhomogeneity having support in a bounded, not necessarily convex three-
dimensional domain or in a collection of such domains. The numerical method only
involves the interior domain and its boundary. The transparent boundary conditions are
imposed via a time-dependent boundary integral operator that is shown to satisfy a co-
ercivity property. The stability of the numerical method relies on this coercivity and on
an anti-symmetric structure of the discretized equations that is inherited from a weak
first-order formulation of the continuous equations. The method proposed here uses a
discontinuous Galerkin method and the leapfrog scheme in the interior and is coupled to
boundary elements and convolution quadrature on the boundary. The method is explicit
in the interior and implicit on the boundary. Stability and convergence of the spatial
semi-discretisation are proven, and with a computationally simple stabilization term, this
is also shown for the full discretization.
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OPTIMAL CONTROL IN A BOUNDED DOMAIN FOR
WAVE PROPAGATING IN THE WHOLE SPACE:

COUPLED THROUGH BOUNDARY INTEGRAL EQUATIONS

Wei Gong, Buyang Li and Huanhuan Yang

Department of Applied Mathematics, The Hong Kong Polytechnic University
abuyang.li@polyu.edu.hk

This paper is concerned with an optimal control problem in a bounded-domain Ω0 un-
der the constraint of a wave equation in the whole space. The problem is regularized
and then reformulated as an initial-boundary value problem of the wave equation in a
bounded domain Ω ⊃ Ω0 coupled with a set of boundary integral equations on ∂Ω taking
account of wave propagation through the boundary. The well-posedness and stability of
the reformulated problem are proved. A fully discrete finite element method is proposed
for solving the reformulated problem. In particular, the wave equation in the bounded
domain is discretized by an averaged central difference method in time, and the boundary
integral equations are discretized in time by using the convolution quadrature generated
by the second-order backward difference formula. The finite and boundary element meth-
ods are used for spatial discretization of the wave equation and the boundary integral
equations, respectively. The stability and convergence of the numerical method are also
proved. Finally, the spatial and temporal convergence rates are validated numerically
in 2D.

AFEM FOR THE FRACTIONAL LAPLACIAN

M. Faustmann, J.M. Melenka and D. Praetorius

Institute of Analysis and Scientific Computing,
Technische Universität Wien, Vienna, Austria

amelenk@tuwien.ac.at

For the discretization of the integral fractional Laplacian (−∆)s, 0 < s < 1, based on
piecewise linear functions, we present and analyze a reliable weighted residual a posteriori

error estimator. In order to compensate for a lack of L2-regularity of the residual in the
regime 3/4 < s < 1, this weighted residual error estimator includes as an additional weight
a power of the distance from the mesh skeleton. We prove optimal convergence rates for
an h-adaptive algorithm driven by this error estimator in the framework of [Carstensen,
Feischl, Page, Praetorius, axioms of adaptivity, CAMWA 2014]. Key to the analysis of
the adaptive algorithm are novel local inverse estimates for the fractional Laplacian.
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COMPUTATIONAL SOLUTIONS FOR
FRACTIONAL DIFFUSION EQUATIONS

Kassem Mustapha

King Fahd University of Petroleum and Minerals, Saudi Arabia

VARIABLE ORDER, DIRECTIONAL H2-MATRICES
FOR HELMHOLTZ PROBLEMS WITH COMPLEX FREQUENCY

S. Sauter1a, S. Börm2 and M. Lopez-Fernandez3

1Universität Zürich, Switzerland.
astas@math.uzh.ch

2Christian-Albrechts-Universität Kiel, Germany.

3Sapienza Università di Roma, Italy.

The sparse approximation of high-frequency Helmholtz-type integral operators has many
important physical applications such as problems in wave propagation and wave scatter-
ing. The discrete system matrices are huge and densely populated; hence their sparse
approximation is of outstanding importance. In our talk we will generalize the direc-
tional H2-matrix techniques from the “pure” Helmholtz operator Lu = −∆u + z2u with
z = −ik, k real, to general complex frequencies z with Re(z) > 0. In this case, the
fundamental solution decreases exponentially for large arguments. We will develop a
new admissibility condition which contain Re(z) and Im(z) in an explicit way and intro-
duce the approximation of the integral kernel function on admissible blocks in terms of
frequency-dependent directional expansion functions. We present an error analysis which
is explicit with respect to the expansion order and with respect to the real and imaginary
part of z. This allows us to choose the variable expansion order in a quasi-optimal way
depending on Re(z) but independent of, possibly large, Im(z). The complexity analysis is
explicit with respect to Re(z) and Im(z) and shows how higher values of Re(z) reduce the
complexity. In certain cases, it even turns out that the discrete matrix can be replaced
by its nearfield part.

Numerical experiments illustrate the sharpness of the derived estimates and the effi-
ciency of our sparse approximation.
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FAST AND PARALLEL RUNGE-KUTTA APPROXIMATION OF
SUBDIFFUSION EQUATIONS

A. Schädlea and M. Fischer

Heinrich-Heine-Universität, Düsseldorf, Germany.
aachim.schaedle@hhu.de

A highly parallel algorithm for the numerical solution of inhomogeneous linear time-
fractional differential equations of the type

Dα
t u(t) = Au(t) + f(t) for t ∈ (0, T ) and u(0) = 0

is presented. Here Dα
t is a (Caputo) fractional derivative, and (A,D(A)) a closed, densely

defined, sectorial linear operator in some Banach space defined on D(A).
The algorithm requires the solution of O(log(1/h) log(1/ε)) linear systems in parallel,

where h is the time step size required to resolve the inhomogeneity f and ε is the required
accuracy. Additionally the solution ofO(N log(1/h) log(1/ε)) scalar linear inhomogeneous
differential equations ẏ(t) = λy(t) + f(t) on certain time intervals is needed. The basic
ingredients of the algorithm are the variation of constants formula, the Cauchy integral
representation for the approximation of the operator exponential and the discretization
of contour integrals using O(log(1/h)) contours with O(log(1/ε)) quadrature points each.
Details of the basic algorithm can be found in [M. Fischer, Fast and Parallel Runge–Kutta
Approximation of Fractional Evolution Equations. SIAM Journal on Scientific Computing
41:2, 2019, A927-A947].

In the numerical example the operator A will be the Laplacian with appropriate bound-
ary conditions, discretized by the finite element method.

FINITE VOLUME METHODS FOR THE
FRACTIONAL KLEIN-KRAMERS EQUATION

Luis Pinto and Ercilia Sousa

Department of Mathematics, University of Coimbra, Portugal

The fractional Klein-Kramers equation describes the process of subdiffusion in the pres-
ence of an external force field in phase space. We present a family of finite volume schemes
for the fractional Klein-Kramers equation, that includes first or second order schemes in
phase space, and implicit or explicit schemes in time. We prove, for the open domain,
that the schemes satisfy the positivity preserving property. For a bounded domain in
space we consider two types of boundary conditions, absorbing boundary conditions and
reflecting boundary conditions. The inclusion of boundary conditions leads to some tech-
nical complications that require changes in the finite volume schemes near the boundary.
Numerical tests are presented in the end.
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UNCONDITIONALLY CONVERGENT L1-GALERKIN FEMS FOR
NONLINEAR TIME-FRACTIONAL SCHRÖDINGER EQUATIONS

Jilu Wanga, Dongfang Li and Jiwei Zhang

Beijing Computational Science Research Center
wangjilu03@gmail.com

In this work, a linearized L1-Galerkin finite element method is proposed to solve the
multi-dimensional nonlinear time-fractional Schrödinger equation. In terms of a temporal-
spatial error splitting argument, we prove that the finite element approximations in L2-
norm and L∞-norm are bounded without any time stepsize conditions. More importantly,
by using a discrete fractional Gronwall type inequality, optimal error estimates of the
numerical schemes are obtained unconditionally, while the classical analysis for multi-
dimensional nonlinear fractional problems always required certain time-step restrictions
dependent on the spatial mesh size. Numerical examples are given to illustrate our theo-
retical results.
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LAPLACE TRANSFORM METHOD FOR SOLVING
FRACTIONAL CABLE EQUATION WITH NONSMOOTH DATA

Yubin Yan1, Yanyong Wang2 and Amiya K. Pani3

1Department of Mathematics, University of Chester, CH1 4BJ, UK;
y.yan@chester.ac.uk

2Department of Mathematics, Lvliang University, Lishi, 033000, P.R.China;

3Department of Mathematics, Indian Institute of Technology Bombay,
Powai, Mumbai-400076, India

We introduce two time discretization schemes for solving time fractional cable equation.
The time derivative is approximated by using the backward Euler method and the second
order backward difference formula, respectively. The Riemann-Liouville fractional deriva-
tives are approximated by using the backward Euler convolution quadrature method and
the second order backward difference convolution quadrature method, respectively. The
nonsmooth data error estimates with the convergence orders O(k) and O(k2) are proved
in detail. Instead of using the discretized operational calculus approach to prove the non-
smooth data error estimates of the time discretization schemes for solving time fractional
cable equation as used in literature, we directly bound the kernel function in the resolvent
and obtain the nonsmooth data error estimates. To the best of our knowledge, this is the
first work to consider the nonsmooth data error estimates for solving time fractional cable
equation by directly bound the kernel function in the resolvent. This argument may be
applied to consider the nonsmooth data error estimates for solving time fractional cable
equation where the Riemann-Liouville fractional derivatives are approximated by using
other schemes, for example, L1 scheme.

FORMULATION OF NONLOCAL BOUNDARY VALUE PROBLEM
AND ITS ASYMPTOTIC ANALYSIS

Chunxiong Zheng

Department of Mathematical Sciences, Tsinghua University
czheng@tsinghua.edu.cn

Nonlocal-type models are a class of emerging mathematical physics equations. A com-
mon feature of these equations is the involving of nonlocal integral operators. This feature
presents some troubles to formulate boundary value problems of nonlocal type. Besides,
conceptually, nonlocal models should be considered some kind of relaxation for the classi-
cal local differential models. In this talk, we propose the formulation of nonlocal boundary
value problems of elliptic type, and study the asymptotic convergence rate between the
nonlocal boundary value problems and their local counterparts.
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CORRECTION OF HIGH-ORDER BDF CONVOLUTION
QUADRATURE FOR FRACTIONAL EVOLUTION EQUATIONS

Bangti Jin, Buyang Li and Zhi Zhoua

Department of Applied Mathematics, The Hong Kong Polytechnic University
azhizhou@polyu.edu.hk

We develop proper correction formulas at the starting k − 1 steps to restore the desired
kth-order convergence rate of the k-step BDF convolution quadrature for discretizing
evolution equations involving a fractional-order derivative in time. The desired kth-order
convergence rate can be achieved even if the source term is not compatible with the
initial data, which is allowed to be nonsmooth. We provide complete error estimates for
the subdiffusion case α ∈ (0, 1), and sketch the proof for the diffusion-wave case α ∈ (1, 2).
Extensive numerical examples are provided to illustrate the effectiveness of the proposed
scheme.
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