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In electromagnetic theory, the effective response of specifically designed materials can
be modeled by strictly negative coefficients: these are the so-called negative materials.
Transmission problems with discontinuous, sign-changing coefficients then occur in the
presence of negative materials surrounded by classical materials. For general geometries,
establishing Fredholmness of these transmission problems is well-understood thanks to
the T-coercivity approach [3].
Let σ be a parameter that is strictly positive in some part of the computational domain
(characterizing a classical material), and strictly negative elsewhere (characterizing the
negative material). We focus on the scalar source problem in two dimensions: find u such
that div(σ∇u)+ω2u = f plus boundary condition, where f is some data and ω is the
pulsation. Denoting by σ+ the strictly positive value, and by σ− the strictly negative
value, one can prove that there exists a critical interval, such that the scalar source
problem is well-posed in the Fredholm sense if, and only, if, the ratio σ−/σ+ lies outside
the critical interval. The bounds of this critical interval depends on the shape of the
interface separating the two materials.
When the ratio σ−/σ+ lies inside the critical interval, the problem is ill-posed due to
hyper-singular solutions appearing at the corners of the interface. One can recover a well-
posed formulation by taking into account those singularities in an extended framework.
We present two approaches to approximate the solution in the extended framework using
finite element method. The first approach consists in rescaling the mesh according to
the singularities’ oscillations, and using Perfectly Matched Layers at the corners [2]. The
second approach consists in explicitly computing the singularities, and subtract them from
the solution to use standard meshes (Singular Complement Method, [1]).

The case where the ratio σ−/σ+ lies outside the critical interval is addressed in the
talk given by P. Ciarlet ”How to solve problems with sign-changing coefficients: part I.
Classical theory”.
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In electromagnetic theory, the effective response of specifically designed materials can
be modeled by strictly negative coefficients: these are the so-called negative materials.
Transmission problems with discontinuous, sign-changing coefficients then occur in the
presence of negative materials surrounded by classical materials. For general geometries,
establishing Fredholmness of these transmission problems is well-understood thanks to
the T-coercivity approach [2].
Let σ be a parameter that is strictly positive in some part of the computational do-
main (characterizing a classical material), and strictly negative elsewhere (characteriz-
ing the negative material). We focus on the scalar source problem: find u such that
div(σ∇u) + ω2u = f plus boundary condition, where f is some data and ω is the pulsa-
tion. Denoting by σ+ the strictly positive value, and by σ− the strictly negative value,
one can prove that there exists a critical interval, such that the scalar source problem is
well-posed in the Fredholm sense if, and only, if, the ratio σ−/σ+ lies outside the critical
interval. The bounds of this critical interval depends on the shape of the interface sepa-
rating the two materials [2, 1].
When the ratio σ−/σ+ lies outside the critical interval, one can apply the T-coercivity
approach at the discrete level to solve the problems numerically. We propose a treatment
which allows to design meshing rules for an arbitrary polygonal interface and then recover
standard error estimates. This treatment relies on the use of simple geometrical trans-
forms to define the meshes.

The case where the ratio σ−/σ+ lies inside the critical interval is addressed in the talk
given by C. Carvalho ”How to solve problems with sign-changing coefficients: part II.
When hyper-singular behaviors appear”.
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Electromagnetic wave propagation in complex dispersive media is governed by the time
dependent Maxwell’s equations coupled to equations that describe the evolution of the
induced macroscopic polarization, so-called Auxiliary Differential Equations (ADE). We
consider “polydispersive” materials represented by distributions of dielectric parameters
in a polarization model. The work focuses on the novel computational framework for
such problems introduced in [1], involving Polynomial Chaos Expansions as a method to
improve the modeling accuracy of the ADE model and allow for easy simulation using
standard numerical methods. We discuss generalizations of the approach and stability
and dispersion analyzes of the resulting fully discrete schemes.
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In this paper, we continue our study of the equivalent Berenger’s PML model formulated
by Bécache and Joly in 2002. Here we will focus on developing and analyzing both
finite element and high-order finite difference methods for solving the model. Numerical
stability similar to the continuous model for both methods are established. Numerical
examples implementing both methods are presented.
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NONLINEAR MAXWELL SOLVER

Jinjie Liu

Delaware State University, USA,

In this talk, we report our recent progress on the development of a hybrid spectral and
time domain method for solving Maxwell equations in complex media. Our goal is to
be able to accurately model the electromagnetic wave propagation in general nonlinear
media over a distance longer than hundreds or thousands of wavelengths. We apply
the unidirectional pulse propagation equation (UPPE) to propagates the optical wave in
spectral domain. The UPPE is derived from the Maxwell equations by assuming that the
backward-scattered field can be neglected. In the region where we want to consider the
backward-scattered field, we apply the finite difference time domain (FDTD) method. The
FDTD method is a full vector Maxwell solver in time domain. To test the performance
of our method, we simulate the optical pulse propagation in complex media with Lorentz
dispersion and Kerr nonlinearity.
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