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We consider a nonlinear system of diffusion-reaction PDEs for the evolution of biofilm and
nutrient. Biofilm is a collection of microbial cells embedded in a protective extracellular
polymer substance (EPS). While the model for biomass-nutrient dynamics is well-known,
we consider the process at a micro-scale at which one recognizes a free boundary between
the biofilm and the surrounding fluid through which nutrient and individual cells migrate.
The model is motivated by the available micro-CT imaging data of the porescale invaded
by microbial growth.

The coupled PDE system involves thus a freee boundary modeled by a variational
inequality. We describe the model and its Finite Element discretizations and present
convergence proof and experiments both in the Galerking and mixed finite element setting.
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We consider a model for precipitation and dissolution in a porous medium. The ions
transported by a fluid through the pores can precipitate at the pore walls. The mineral
formed in this way can dissolve, increasing the amount of dissolved ions in the fluid. These
processes lead to changes in the flow domain, which are not known a-priori but depend
on the concentration of the solute.

One possible approach is to consider the fluid and mineral phases as different phases,
separated by an interface that moves in time depending on the model unknowns. Here we
discuss an alternative approach, based on a phase field variable having a smooth, diffuse
transition of non-zero width from the fluid into the mineral phase. The evolution of the
phase field variable is determined through the Allen-Cahn equation.

We first show that as the width of the diffuse transition zone approaches zero, the
sharp-interface formulation is recovered. Then, considering a periodically perforated do-
main mimicking a porous medium, we employ homogenization techniques to derive an
upscaled model, valid at the Darcy scale. This involves solving so-called cell problems,
providing the effective diffusion and permeability matrices that are depending on the
phase field variable.

Finally, we extend this approach to non-periodic media, and propose an adaptive
upscaling procedure. Coupled with a linearisation scheme, this becomes an efficient nu-
merical homogenisation scheme for simulating such multi-scale processes involving freely
moving interfaces at the micro-scale.
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Poroelasticity, i.e. fully coupled porous media flow and mechanics has many societal
important applications including geothermal energy, enhanced oil recovery or CO2 storage.
A typical mathematical model for poroelasticity is the quasi-static, linear Biot model, see
e.g. [3]. Nevertheless, the linearity assumption is not valid in many practical situations
and extension of the model should be considered.

In this work we present efficient numerical schemes for the linear and nonlinear Biot
models [1]. The Bulk modulus (Lame coefficient) and the fluid compressibility are nonlin-
ear functions satisfying certain assumptions. We use the L-scheme, see e.g. [4, 5] or the
Newton method for linearization, either monolithically or combined with a fixed stress
type splitting [2, 3, 6]. Additionally, the optimisation of the stabilisation parameter in
the fixed-stress scheme will be discussed [7].
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The two-phase tumour growth problem in two dimensions is a coupled system of a hyper-
bolic, elliptic and parabolic partial differential equations that respectively model volume
fraction, velocity and pressure of tumour cells, and nutrient concentration within the tu-
mour tissue. We present a numerical technique that overcomes the challenges associated
with the time-dependent boundary of a growing tumour. The hyperbolic equation is ex-
tended to a fixed domain, which encompasses all time-dependent domains up-to a fixed
time, without applying any domain transformation. This extension correctly embeds the
dynamics of the moving boundary. A finite volume - finite element method is used to
solve the system where the tumour boundary is recovered by locating the discontinuity
in the volume fraction of the tumour cells. The new method overcomes the re-meshing
issues associated with numerically solving similar moving boundary problems. The ability
of the current technique to predict the evolution of irregularly shaped tumours, and thus
relaxing the assumption of radially symmetric growth in previous works, is a novelty and
an advantage.
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