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FITTED ALE SCHEME FOR TWO-PHASE NAVIER–STOKES FLOW

Marco Agnesea and Robert Nürnbergb

Department of Mathematics, Imperial College London, UK
am.agnese13@imperial.ac.uk, brobert.nurnberg@imperial.ac.uk

We present a novel fitted ALE scheme for two-phase Navier–Stokes flow problems that
uses piecewise linear finite elements to approximate the moving interface. The meshes
describing the discrete interface in general do not deteriorate in time, which means
that in numerical simulations a smoothing or a remeshing of the interface mesh is not
necessary.

ESTIMATING ERRORS IN QUANTITIES OF INTEREST IN

THE CASE OF HYPERELASTIC MEMBRANE DEFORMATION

Eleni Argyridou

Department of Mathematics, Brunel University, Uxbridge, UB8 3PH, UK.
Eleni.Argyridou@brunel.ac.uk

The implementation of the finite element method is described for the inflation of a
thin sheet modelled as a membrane. The thin sheet is assumed to be a hyperelastic
material. As well as describing how to approximately solve this problem for a sequence
of increasing pressures we also outline work in progress to attempt to estimate a given
quantity of interest J(u) to a given accuracy where J(.) denotes a functional and where
u denotes the exact solution. In the application u denotes the displacement of the mid-
surface of the membrane. With uh being our finite element approximation of u and
with J(uh) being our estimate of J(u) we outline how to estimate J(u) − J(uh) by
solving a dual problem. We consider this in the case of a quasi-static deformation
when we only have space discretization errors and we also consider this in the dynamic
case when we have time discretization errors as well. Results will be presented in the
case of axisymmetric deformations.
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CROSS-DIFFUSION SYSTEMS FOR IMAGE PROCESSING

Adérito Araújo1, Śılvia Barbeiro1, Eduardo Cuesta2 and Ángel Durán2

1 CMUC, Department of Mathematics, University of Coimbra, Portugal
alma@mat.uc.pt, silvia@mat.uc.pt

2Department of Applied Mathematics, E.T.S.I. of Telecomunication, University of
Valladolid, Spain

eduardo@mat.uva.es, angel@mac.uva.es

Diffusion processes are commonly used in image processing [3]. In particular, complex
diffusion models have been successfully applied in medical imaging denosing [1], [2], [4].
The interpretation of a complex diffusion equation as a cross-diffusion system motivates
the introduction of more general models of this type and their study in the context of
image processing. In this talk we will discuss the use of nonlinear cross-diffusion systems
to perform image restoration. The use of two scalar fields has the goal of distributing
the features of the image and governing their relations. In this talk, special attention
will be given to the well-posedness, scale-space properties and long time behaviour of
the models. From a numerical point of view, a computational study of the performance
of the models is carried out, suggesting their diversity and potentialities to treat image
filtering problems. Examples of application will be highlighted.

References
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Vaz, Improved adaptive complex diffusion despeckling filter, Optics Express, 18,
pp. 24048-24059, 2010.

[3] J. Weickert, Anisotropic Diffusion in Image Processing. B.G. Teubner, Stuttgard,
1998.

[4] G. Gilboa, N. Sochen, Y. Zeevi, Image enhancement and denoising by complex
diffusion processes, IEEE Trans Pattern Anal Mach Intell, 26(8), pp. 1020-1036,
2004.

Acknowledgments
This work was partially supported by: the Centre for Mathematics of the University

of Coimbra – UID/MAT/00324/2013, funded by the Portuguese Government through
FCT/MEC and co-funded by the European Regional Development Fund through the
Partnership Agreement PT2020; project MTM2014-54710-P.

2



A-POSTERIORI ERROR ESTIMATION OF DISCONTINUOUS

GALERKIN METHODS FOR APPROXIMATELY-DIVERGENCE-FREE

CONVECTION-DIFFUSION PROBLEMS

Samuel P. Cox1a, Andrea Cangiani1b and Emmanuil H. Georgoulis1,2

1Department of Mathematics, University of Leicester, UK,
aspc29@leicester.ac.uk, bAndrea.Cangiani@le.ac.uk

2Physical Sciences, National Technical University of Athens, Zografou 15780, Greece.
Emmanuil.Georgoulis@le.ac.uk

Mantle convection is often modelled by a stationary Stokes system coupled to a time-
dependent convection-diffusion equation for the temperature variable. Given the size
of the resulting models, a posterori error estimators are highly desirable for the control
of adaptive FE schemes in order to reduce the solution cost.

In a system containing some reaction, the reaction can typically be used to handle
the convective term. However, since we have no reactive term, this option is not
open to us, and so we proceed with an exponential-fitting method. Meanwhile, the
numerical solution of the Stokes system may yield a convection field that is only app-

roximately divergence-free. We present a derivation of an a posteriori error estimator
for the discontinuous Galerkin discretisation of a time-dependent convection-diffusion
equation with varying, nearly-divergence-free convection, based on an exponential-
fitting method, along with numerical experiments to show the suitability of the error
estimator.
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FINITE ELEMENT MODELING FOR

COLD ROLLING OF ALUMINIUM A1200

Oluleke Oluwole1, Aworinde A. Kehinde2,
Emagbetere Eyere3a and Ahiedu I. Festus3b

1 Department of Mechanical Engineering, University of Ibadan, Ibadan, Nigeria
oluwoleo2@asme.org

2 Department of Mechanical Engineering,
Covenant University, Canaan Land, Ota, Nigeria

patientkenny@gmail.com

3 Department of Mechanical Engineering,
Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
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Sequel to losses of sheet surface integrity and dimensional accuracy observed in the
cold rolling of aluminium A1200, the effect of tensional forces at mandrel, roll velocity
and contact angle; on the stress distribution of the Aluminium strips and roll torque
were investigated. Experiments were conducted at a four-high reversible Aluminium
rolling mill. Thereafter, the Aluminium sheet was modelled for three passes of cast coil
reduction from 7.0mm to 2.2mm using the Elastoplastic model with Von-Mises yield
criteria and Perfectly Plastic model for hardening. The geometries were finely meshed
using free quadrilateral. The roll velocities were applied as prescribed velocities and
the tensional force as boundary load. The models were run on the COMSOL GUI to
determine stress distributions and hence the roll force and roll torques. Simulation
results compared favourably with that of experiments. Results showed that tensional
forces applied at the mandrels during rolling, were higher than required as the sheet
inlet thickness got smaller. The magnitudes of the roll torque were found to be strongly
dependent on the amounts of draft and roll velocity for each passes. The arc length of
contact was also found to be a strong leading parameter. Finite element analysis was
effectively used to determine the effect of tensional forces at mandrel and roll velocities
on the stress distribution in the Aluminium model during cold rolling.

4



HYBRID NUMERICAL ASYMPTOTIC BOUNDARY ELEMENT

METHOD FOR MULTIPLE SCATTERING PROBLEMS

Andrew Gibbsa, Simon Chandler-Wilde, Steve Langdon and Andrea Moiola

Department of Mathematics and Statistics, University of Reading, UK,
aa.j.gibbs@pgr.reading.ac.uk

Standard numerical schemes for scattering problems have a computational cost that
grows at least in direct proportion to the frequency of the incident wave. For many
problems of scattering by single obstacles, it has been shown that a careful choice of
approximation space, utilising knowledge of high frequency asymptotics, can lead to
numerical schemes whose computational cost is independent of frequency. Here, we
extend these ideas to multiple scattering configurations, focusing in particular on the
case of two scatterers, with one much larger than the other.

A DTN FINITE ELEMENT METHOD FOR AXISYMMETRIC

ELASTICITY IN SEMI-INFINITE DOMAINS

Eduardo Godoy1 and Mario Durán2

1INGMAT R&D Centre, Chile
eduardo.godoy@ingmat.com

2INGMAT R&D Centre, Chile
mario.duran@ingmat.com

In some problems arising in geophysical applications, the solid earth is mathemati-
cally modelled as an elastic semi-infinite domain. In general, to solve numerically a
boundary-value problem formulated in an elastic domain, the finite element method
appears to be very convenient. However, it cannot be directly applied if the involved
domain is unbounded. A good alternative to overcome this drawback is to use the
Dirichlet-to-Neumann (DtN) map in order to deal with the unboundedness. The DtN
map provides, on an artificial boundary of regular shape, exact boundary conditions,
which may be combined with a finite element discretisation of the bounded computa-
tional domain lying inside the artificial boundary. Such a procedure is known as the
DtN finite element method, and it has been successfully applied to different problems
formulated in infinite exterior domains, since in this case it is usually possible to com-
pute an explicit closed-form expression for the DtN map. However, in the case of a
semi-infinite elastic domain this is not, in general, possible. For this reason, the use of
the DtN finite element method in geophysical applications has been rather limited.

In this work, we present a DtN finite element method for solving boundary-value
problems of elasticity formulated in a locally perturbed half-space with axisymmetry
about the vertical axis. The lack of a closed-form expression for the DtN map is reme-
died by employing an approximation procedure that combines numerical and analytical
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computation techniques. Firstly, the locally perturbed half-space is truncated by means
of a semi-spherical artificial boundary, dividing it into a bounded computational do-
main and a semi-infinite residual domain. Then, a finite element formulation of the
elasticity problem is established in the computational domain, taking into account the
exact boundary conditions on the artificial boundary provided by the DtN map. As it
is not possible to obtain a closed-form expression for the DtN map, we approximate
only those boundary integral terms occurring in the finite element formulation that
involve precisely the DtN map. To do so, the boundary-value problem in the residual
domain is solved by a semi-analytical technique, just for the required Dirichlet data on
the artificial boundary. By applying Boussinesq potentials and separation of variables,
the solution is expressed as a series with unknown coefficients, which are approximated
by minimising a quadratic energy functional appropriately chosen. The minimisation
yields a symmetric and positive definite linear system of equations for a finite number
of coefficients, which is efficiently solved by exploiting its particular block-structure, in
such a way that the coefficients of the series are in practice computed by mere forward
and backward substitution. This procedure allows an approximate but very effective
coupling of the DtN map with the finite element method for the semi-infinite elastic
problem under study. The procedure is validated by solving a particular case where an
exact solution is available, using structured triangular meshes of different sizes. The
relative error between the numerical and the exact solution is calculated for each mesh
size considered, corroborating the effectiveness and accuracy of the proposed procedure.
Indeed, the numerical evidence shows that it achieves second-order accuracy.

EQUIVALENT OPERATOR PRECONDITIONING

FOR ELLIPTIC FINITE ELEMENT PROBLEMS

János Karátson1 and Owe Axelsson2

1Institute of Mathematics, ELTE University Budapest, Hungary
karatson@cs.elte.hu

2Institute of Geonics AS CR, IT4 Inovations, Ostrava, The Czech Republic
owea@it.uu.se

A class of efficient preconditioners for discretized elliptic problems can be obtained via
equivalent operator preconditioning. This means that the preconditioner is chosen as
the discretization of a suitable auxiliary operator that is equivalent to the original one,
see, e.g., [1, 2, 3]. Under proper conditions one can thus achieve mesh independent
convergence rates. Hence, if the discretized auxiliary problems possess efficient optimal
order solvers (e.g. of multigrid type) regarding the number of arithmetic operations,
then the overall iteration also yields an optimal order solution, i.e. the cost O(N) is
proportional to the degrees of freedom.

The talk is based on the joint work of the authors, see, e.g., [4, 5, 6]. First some
theoretical background is summarized, including both linear and superlinear mesh in-
dependent convergence, then various applications are shown. The results can be ap-
plied, among other things, for parallel preconditioning of transport type systems, for
streamline diffusion preconditioning of convection-diffusion problems, and to achieve
superlinear convergence under shifted Laplace preconditioners for Helmholtz equations.
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A COUPLED WAVE-DIFFUSION MODEL

FOR ENHANCED DRUG DELIVERY

José Augusto Ferreiraa, Daniela Jordãob and Lúıs Pintoc

CMUC, Department of Mathematics, University of Coimbra, Portugal
aferreira@mat.uc.pt, bdaniela.jordao@hotmail.com,

cluisp@mat.uc.pt

Enhanced and controlled delivery of molecules (e.g. drug, proteins, DNA) into cells
with the aid of electric fields is a hot topic in molecular medicine. In this context, the
role of the electric field is two-fold: one, to permeabilize the cellular membrane allowing
the introduction of the molecules into the cell, a process known as electroporation; two,
to advance and control the migration of the charged molecules into the cell. This last
technique, known as electrophoresis, is particularly crucial when the cells have a short
resealing time or when large molecules need to be loaded into cells.

The mathematical modeling of these biological and physical processes involves two
main equations, a parabolic convection-diffusion equation that describes the evolution
of the concentration of molecules, in and outside the cell, and Maxwell’s equations for
the electromagnetic waves. Ignoring the magnetic field, the Maxwell system can be
reduced to a wave equation for the electric field.

In this work we study a finite difference method for the wave-diffusion coupled
problem that is based on piecewise linear finite element approximations. Second order
error estimates with respect to a discrete H

1-norm are established provided that, for
each time level, the solution of the coupled problem is in H3(Ω) ×H3(Ω), where Ω is
the spatial domain.
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A FINITE ELEMENT FORMULATION FOR MAXWELL

EIGENVALUE PROBLEM USING CONTINUOUS

LAGRANGIAN INTERPOLATIONS

Önder Türk1, Ramon Codina2 and Daniele Boffi3

1Gebze Technical University, Gebze/Kocaeli, Turkey
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ramon.codina@upc.edu
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In this work, we consider the stabilized finite element formulation based on the subgrid
scale concept for solving the Maxwell eigenvalue problem. The application of a stabi-
lization technique based on a projection of the residual to an eigenproblem, leads to a
system resulting in a quadratic eigenvalue problem. As a consequence, eigenpairs which
are not solutions of the original problem are introduced, and a considerable increase
in complexity of the problem is involved. In this study, the unresolved subscales are
taken to be orthogonal to the finite element space. Thus, the components leading to a
quadratic structure vanish, the residual is simplified, and the implementation of term
by term stabilization is allowed. Moreover, the method allows the use of continuous La-
grangian interpolations. Apart from its novelty, we show that the approach is essential
to establish the original structure of the eigenproblem. We present the problem formu-
lation, and provide some numerical results from the solution of the Maxwell eigenvalue
problem on two-dimensional regions. The numerical results we have obtained from the
formulation described above, demonstrate a very good agreement with the previously
published results.
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NUMERICAL SOLUTION OF NONLOCAL PROBLEMS

Andrea Živčákováa and Václav Kučerab

Department of Numerical Mathematics, Faculty of Mathematical and Physics,
Charles University in Prague, Czech Republic

azivcakova@karlin.mff.cuni.cz, bkucera@karlin.mff.cuni.cz

Classical differential equations are formulated using derivatives of various orders which
are local operators, i.e. defined using only local properties of the function. The solution
process is then nonlocal, where e.g. a local change of boundary conditions affects the
solution in the entire domain or an open subset thereof. However there are equations,
where even the problem formulation is nonlocal. A classical example are fractional
differential equations. More recently, a nonlocal differential calculus was devised by
Gunzburger which gives a description of various nonlocal phenomena such as nonlocal
diffusion or convection-diffusion with interesting applications. Efficient solution of such
problems is very challenging. Our interest in this subject originally comes from the
solution of a model of flocking dynamics using the discontinuous Galerkin method.
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