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STABILITY ANALYSIS OF THE SPACE-TIME DISCONTINUOUS

GALERKIN METHOD FOR NONSTATIONARY

PROBLEMS IN TIME-DEPENDENT DOMAINS

Monika Balázsová

Charles University in Prague,
Faculty of Mathematics and Physics, Czech Republic

balazsova@karlin.mff.cuni.cz

In this talk we will present our results concerning the stability of the space-time discon-
tinuous Galerkin method (STDGM) for the solution of nonstationary, linear convection-
diffusion-reaction problem in time-dependent domains. In the first part of the talk
we formulate the continuous problem using the arbitrary Lagrangian-Eulerian (ALE)
method, which replaces the classical partial time derivative with the so called ALE-
derivative and an additional convective term. After that we discretize our problem
using the space-time discontinuous Galerkin method. In the formulation of the numer-
ical scheme we use the nonsymmetric, symmetric and incomplete versions of the space
discretization of the diffusion term and interior and boundary penalization. Finally in
the third part of the talk we present our results concerning the unconditional stability
of the method.
The results were obtained in cooperation with M. Feistauer.
The contribution will be presented in the mini-symposium ”Finite Element methods
for PDEs in time-dependent domains”.

A HAMILTONIAN FINITE ELEMENT METHOD FOR

NONLINEAR POTENTIAL FLOW FREE SURFACE WAVES

Freekjan Brinka and Jaap J. W. van der Vegtb

Department of Applied Mathematics, University of Twente, The Netherlands
af.brink@utwente.nl, bj.j.w.vandervegt@utwente.nl

An important mathematical model to describe nonlinear water waves is provided by
the potential flow equation in combination with nonlinear free surface boundary condi-
tions. This model assumes that the flow field is inviscid and irrotational and is suitable
for large amplitude, non-breaking water waves away from boundary layers, where the
Navier-Stokes equations are required to account for viscous effects. Computing large
amplitude potential flow water waves is, however, non-trivial since the mesh deforma-
tion, necessary to accommodate for the free surface motion, and the nonlinearities can
easily result in numerical instabilities. Many numerical discretisations include there-
fore additional stabilisation terms, but this results in unphysical wave damping that
seriously reduces the numerical accuracy.

In this presentation we will present an alternative approach. The nonlinear free
surface potential flow equations, when written in terms of the free surface potential and
wave height, have a Hamiltonian structure. Preserving this Hamiltonian structure in
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the finite element discretisation results in an energy preserving numerical discretisation
with superior (long time) accuracy and no artificial wave damping.

The finite element discretisation is based on Luke’s variational formulation [J. Fluid.
Mech. 27(02):395–397, 1967], expressed in terms of the Lagrangian functional

L(φ, η) = −
T∫

0

∫

Ωt

g · x+ ∂tφ+
1

2
|∇φ|2 dΩdt,

where g denotes gravity, x is the coordinate vector, φ the potential velocity. The free
surface height η appears only implicitly as part of the boundary of the domain Ωt.
The Lagrangian functional can be rewritten as a Hamiltonian, where the restriction of
φ to the free surface takes the role of generalised momentum and η takes the role of
generalised position.

The Lagrangian functional is used to obtain a system of ordinary differential equa-
tions for the nodal values in the finite element discretisation. After introducing a
suitable transformation and a lengthy computation we can rewrite these ordinary dif-
ferential equations as a Hamiltonian system. This Hamiltonian structure can be proven
even for time-dependent, unstructured, moving and deforming meshes, including a wave
maker and general bottom surface. Combined with a symplectic time integrator this
results in a numerical discretisation with extraordinary stability properties, no artificial
wave damping, and very good long time accuracy. We will demonstrate the preservation
of the discrete energy and the accuracy of the finite element discretisation, including
simulations of strongly interacting waves resulting in a large, highly nonlinear splash.
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AN ASSESSMENT OF TIME DISCRETIZATIONS

FOR SCALAR PDES IN TIME-DEPENDENT DOMAINS

Sashikumaar Ganesana and Shweta Srivastavab

Department of Computational and Data Sciences,
Indian Institute of Science, Bangalore 560012, India.

asashi@cds.iisc.ac.in , bshweta@nmsc.serc.iisc.in

Many engineering and industrial processes are modeled using partial differential equa-
tions (PDEs) in time-dependent domains. Since the analytical solutions of these PDEs
are almost impossible to obtain, the numerical approximation of these solutions is the
only viable option, especially when the deformation of the domain is large. Apart from
other challenges associated with the simulations of industrial processes, the presence
of moving boundaries/interfaces makes the computation more complex. Moreover,
the computational domain becomes a part of the numerical solution. Even though
several approaches have been proposed to track/capture the moving boundaries, arbi-
trary Eulerian-Lagrangian (ALE) approach is preferred when the application demands
accurate numerical solution and/or sharp moving boundaries/interfaces.

In ALE finite element schemes, PDEs can be written in (i) conservative and (ii) non-
conservative ALE forms. Although both forms are equivalent in continuous level, these
forms are no longer equivalent in (time) discrete level. Further, appropriate quadrature
formula needs to be used for the time integration when different time discretizations
are applied. This quadrature requirement is imposed as the geometric conservation law
(GCL) in numerical schemes. Moreover, standard time discretizations, e.g., implicit
Euler, Crank-Nicolson, discontinuous Galerkin, need to be modified in order to satisfy
the GCL condition and to derive stability estimates. In this talk, an assessment of
these modified time-discretizations applied to both conservative and non-conservative
ALE forms will be presented. Further, the application of these methods in practical
applications will also be discussed.
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ALE FINITE ELEMENT METHOD FOR

TWO-PHASE FLOWS WITH SURFACTANTS.

Andreas Hahna, Kristin Simonb and Lutz Tobiskac

Institute for Analysis and Numerics,
Otto-von-Guericke University, Magdeburg, Germany,

aAndreas.Hahn@ovgu.de, bKristin.Simon@ovgu.de,
ctobiska@ovgu.de

Surface active agents (surfactants) are of importance in numerous practical applica-
tions. The influence of surfactants on the deformation of droplets and the structure of
the surrounding flow field is an active research area. Local accumulation of surfactants
and the resulting Marangoni forces may lead to a destabilization of the interface with
essential consequences on the flow structure. This is a complex process whose tailored
use in applications requires a fundamental understanding of the mutual interplay.

We present a finite element method for the flow of two immiscible, incompressible
fluids in two and three dimensions. Thereby the presence of soluble and insoluble
surfactants is considered. The finite element method uses the Arbitrary Lagrangian
Eulerian (ALE) technique, which tracks the interface by moving grids. We use second
order finite elements and a second order interface approximation, which allows precise
incorporation of surface tension forces and Marangoni forces.

We consider a bounded domain Ω ⊂ R
d, d = 2, 3, filled with two incompressible,

immiscible fluids, which occupy at time t the domains Ωi(t), i = 1, 2. Let ∂Ωi(t) denote
the boundary of Ωi(t), i = 1, 2, and Γ(t) = ∂Ω1(t) ∩ ∂Ω2(t) the interface of Ω1(t) and
Ω2(t). Our model consists of the Navier-Stokes equations for the flow fields ui and
pressure fields pi in the phases Ωi(t), i = 1, 2, a convection diffusion equation for the
bulk surfactant ci in Ωi(t), i = 1, 2 and a convection diffusion equation on the moving
manifold Γ(t) for the surface surfactant cΓ, completed with various coupling terms.
The full model reads:

̺i(∂tu
i + (ui · ∇)ui)−∇ · S(ui, pi) = f, ∇ · ui = 0 in Ωi(t), (1)

[−S]n = σ(cΓ)κn+∇Γσ(cΓ), [u] = 0, V = u · n on Γ(t), (2)

∂tc
i −Di∆ci + (ui · ∇)ci = 0 in Ωi(t), (3)

[D∂nc] = −S(c1, c2, cΓ) on Γ(t), (4)

∂tcΓ −DΓ∆ΓcΓ +∇Γ · (cΓu|Γ) = S(c1, c2, cΓ) on Γ(t). (5)

for i = 1, 2. Where, S is the usual stress tensor for Newtonian fluids, f describes gravi-
tational forces, [h] := h1−h2 denotes a jump of quantity h across the interface, σ(cΓ) is
the surface tension coefficient, κ denotes the mean curvature of the interface, Di is the
diffusion coefficient for the bulk Ωi(t), DΓ is the surface diffusion coefficient, ∇Γ and
∆Γ are the surface version of the corresponding differential operators, S describes ad-
and absorption of surfactant at the interface and while ∂t denotes the time derivative,
∂n denotes the spatial derivative in normal direction and ̺i the fluid density in phase
i.
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We study the influence of surfactants on the dynamics of two-phase flows. In several
numerical tests we compare cases of soluble and insoluble surfactants and surfactant
free settings.

STABILIZED CUTFEM FOR THE DISCRETIZATION OF

TWO-PHASE INCOMPRESSIBLE FLOWS IN 3D

Thomas Ludeschera, Arnold Reuskenb and Sven Großc

Chair of Numerical Mathematics, RWTH Aachen University, Germany
aludescher@igpm.rwth-aachen.de, breusken@igpm.rwth-aachen.de,

cgross@igpm.rwth-aachen.de

For the mathematical modeling of two-phase flow phenomena we use the incompressible
(Navier-)Stokes equations in each phase. The coupling of the phases is achieved by a
surface tension force at the interface (coupling of the stresses normal to the interface)
and a no-slip condition on the velocity tangential to the interface. For the evolution of
the interface a level set technique is used.
For the finite element discretization of one-phase flow problems the Taylor-Hood P2-P1

pair is a popular choice due to the quadratic convergence and LBB-stability. For two-
phase flow problems however, the P2-P1 discretization with unfitted meshes leads to a
rather poor approximation quality of O(

√
h) as P1 elements are not able to represent

discontinuities in the solution. Enriching the P1 space with Heaviside jump functions
one can recover the optimal approximation property, but numerical experiments indi-
cate that the P2-P1X velocity-pressure pair is not LBB stable.
In [3] the enriched pressure space has been reduced by omitting the extended basis
functions with small supports, which cause the instability. Introducing the so-called
ghost penalty stabilization [1] for the pressure space results in a discrete inf-sup stability
for a modified bilinear form. As opposed to the reduced XFEM space, the ghost penalty
method does not need to reduce the approximation space and thus may lead to smaller
errors in the solution. The added stability terms lead to a modified Schur complement
and therefore the preconditioners have to be adapted in order to solve the system
matrix efficiently. New preconditioning strategies developed in [2] are presented here.
For a constructed Stokes model problem with an analytical solution both stabilization
methods are compared with respect to the discretization errors and convergence rates.
For a realistic, fully coupled Navier-Stokes rising droplet problem the stabilization
methods are compared with respect to the resulting droplet position and velocity.

References

[1] E. Burman. La pénalisation fantôme. Comptes Rendus Mathematique,
348(21):1217–1220, 2010.

[2] S. Gross, T. Ludescher, M.A. Olshanskii, and A. Reusken. Robust precondition-
ing for XFEM applied to time-dependent Stokes problems. Preprint 424, IGPM,
RWTH-Aachen University, 2015. To appear in SIAM Journal on Scientific Com-

puting.
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[3] A. Reusken. Analysis of an extended pressure finite element space for two-phase
incompressible flows. Computing and Visualization in Science, 11(4-6):293–305,
2008.

PARAMETRIC FINITE ELEMENT METHODS FOR THE

DYNAMICS OF FLUIDIC MEMBRANES AND VESICLES

John W. Barrett1a, Harald Garcke2 and Robert Nürnberg1b

1Department of Mathematics,
Imperial College London, London, SW7 2AZ, UK

aj.barrett@imperial.ac.uk, brobert.nurnberg@imperial.ac.uk

2Fakultät für Mathematik,
Universität Regensburg, 93040 Regensburg, Germany

harald.garcke@ur.de

A parametric finite element approximation of a fluidic membrane, whose evolution is
governed by a surface Navier–Stokes equation coupled to bulk Navier–Stokes equations,
is presented. The elastic properties of the membrane are modelled with the help of
curvature energies of Willmore and Helfrich type. Forces stemming from these energies
act on the surface fluid, together with a forcing from the bulk fluid.

We introduce a stable parametric finite element method to solve this complex free
boundary problem. Local inextensibility of the membrane is ensured by solving a tan-
gential Navier–Stokes equations, taking surface viscosity effects of Boussinesq–Scriven
type into account. In our approach the bulk and surface degrees of freedom are dis-
cretized independently, which leads to an unfitted finite element approximation of the
underlying free boundary problem. Bending elastic forces resulting from an elastic
membrane energy are discretized using an approximation introduced by Dziuk. The
obtained numerical scheme can be shown to be stable and to have good mesh properties.
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LOCAL PROJECTION STABILIZATION WITH DISCONTINUOUS

GALERKIN METHOD IN TIME APPLIED TO TRANSIENT

SCALAR EQUATION IN TIME DEPENDENT DOMAINS

Shweta Srivastavaa and Sashikumaar Ganesanb

Department of Computational and Data Sciences,
Indian Institute of Science, Bangalore-560012, India

ashweta@nmsc.serc.iisc.in bsashi@serc.iisc.in

In this work, a stabilized finite element scheme combined with the discontinuous
Galerkin(dG) discretization in time for the solution of a transient convection diffu-
sion reaction equation in a time-dependent domain is analyzed. In particular, the local
projection stabilization(LPS) and the higher order dG in time discretization is con-
sidered. Further, arbitrary Lagrangian Eulerian (ALE) is used to handle the domain
deformation. The stability and error estimates are presented for the proposed numeri-
cal scheme.
The stabilization term in local projection method is based on a projection πh : Vh → Dh

of finite element approximation space Vh into a discontinuous space Dh. LPS was orig-
inally given as a two level method in which projection space Dh lies on a coarser grid,
but this approach increases the discretization stencil [1]. In this work, we use the one
level approach, in which the approximation space Yh and projection space Dh are de-
fined on the same mesh, with enrichment of the approximation space Yh [3].
The analysis is mainly based on a quadrature formula for approximating the integrals
in time. We consider exact integration in time which is impractical to implement,
and the Radau quadrature in time, which can be used in practical [2]. The stability
and error estimates are given for both the time integration methods. Analysis reveals
that the numerical scheme for exact in time integration is unconditionally stable, while
Radau quadrature in time is conditionally stable only with time step restriction de-
pending on ALE map. The validation of the proposed local projection stabilization
scheme with higher order discontinuous Galerkin time discretization is demonstrated
with appropriate numerical examples.

References

[1] R. Becker and M. Braack. A finite element pressure gradient stabilization for the
Stokes equations based on local projections. Calcolo, 38:173–199, 2001.

[2] A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formula-
tions: a priori error analysis. Numer. Math., 125:225–257, 2013.

[3] G. Matthies, P. Skrzypacz, and L. Tobiska. A unified convergence analysis for local
projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal.,
41:713–742, 2007.
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ON A PHASE FIELD APPROACH

TO PDES ON BUBBLE CLUSTERS

Oliver Dunbara and Björn Stinnerb

Mathematics Institute, Zeeman Building, University of Warwick,
Coventry CV4 7AL, United Kingdom

ao.dunbar@warwick.ac.uk, bbjorn.stinner@warwick.ac.uk

Modelling surface active agents (surfactants) in multi-phase flow leads to coupled bulk
and interface advection-diffusion equations. Aiming for a phase field description we
present a Cahn-Hilliard-Navier-Stokes system which is coupled to suitable PDEs for
surfactant(s). The challenge is to correctly recover the conditions in the triple junc-
tions if the fluid interfaces are given by thin layers rather than by hypersurfaces as in
classical approaches. We will therefore focus on a diffuse interface approach to partial
differential equations on evolving bubble clusters and network-like structures. Thanks
to smoothing the problem by replacing the interfaces with thin layers we can use stan-
dard bulk finite elements though mesh adaptation is mandatory to make simulations
feasible. Simulation results will be presented which support the theory behind the
modelling approach.
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