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HIGH-ORDER DISCONTINUOUS GALERKIN METHODS
IN TIME FOR THE WAVE EQUATION

Fatima Al-Shanfari

Department of Mathematics, Brunel University, UK
fatima.al-shanfari@brunel.ac.uk

In this paper, we analyse the high-order in time discontinuous Galerkin finite element
method (DGFEM) for second-order in time evolution problems. We use a general-
ization of C Johnson (CMAME, 1993), with high orders in time, non-homogeneous
boundary data; leading to an abstract Hilbert space variational formulation. Based
on our abstract Hilbert space variational formulation we re-write the second order in
time problem as a first-order system in time and we apply the discretization approach
in time for the variational formulation of abstract parabolic problems introduced by
D Schötzau (PhD Thesis, 1999).

We prove a priori error estimates and unconditional stability estimates within our
abstract framework for finite polynomial degrees in time. Finally we apply our abstract
framework to the acoustic wave equation.

EXTENSION OF LINEAR TIME-PARALLEL
ALGORITHMS TO NON-LINEAR PROBLEMS

Martin J. Gander

Section of Mathematics, University of Geneva, Switzerland
martin.gander@unige.ch

Once an evolution problem has been disretized in space-time, it is of interest due to its
size to solve it on a large scale parallel computer. Several recent time parallel methods
have been developed only for linear problems, and they use linearity in essential ways,
for example the ParaExp algorithm, or the parallelization method based on diagonal-
ization of the time stepping matrix. I will use the latter to explain how one can use
such an essentially linear method also in the context of a non-linear evolution problem.
I will first explain the method for a scalar model problem, and then give a formulation
for a non-linear partial differential equation based on tensorization. I will also illustrate
the methods with numerical experiments.
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TIME-DOMAIN BOUNDARY ELEMENT METHODS
FOR INTERFACE PROBLEMS

Heiko Gimperlein1,2, Ceyhun Özdemir3, David Stark1 and Ernst P. Stephan3

1Maxwell Institute for Mathematical Sciences and Department of Mathematics,
Heriot-Watt University, Edinburgh EH14 4AS, UK,

h.gimperlein@hw.ac.uk

2Institute for Mathematics, University of Paderborn,
Warburger Str. 100, 33098 Paderborn, Germany

3Institute for Applied Mathematics, Leibniz University Hannover,
Welfengarten 1, 30167 Hannover, Germany

We consider well-posedness, convergence and a posteriori error estimates for fluid-
structure interaction and contact problems in time-domain.
In the case of an elastic body immersed in a fluid, a Galerkin time-domain boundary
element method (TDBEM) for the wave equation in the exterior is coupled to a finite
element method for the Lamé equation. Based on ideas from the time–independent
coupling formulation and its a posteriori error analysis, we give a priori and a posteriori
error estimates, which demonstrate the convergence and give rise to adaptive mesh
refinement procedures.
We then discuss a first error analysis for dynamic Signiorini problems with flat contact
area, a variational inequality involving the Dirichlet-Neumann operator for the wave
equation. Here refined information about the Dirichlet-Neumann operator allows to
prove well-posedness as well as a priori and a posteriori error estimates for the TDBEM
solutions.
The talk concludes with a survey of recent computational work on TDBEM in our
group.
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SPACE-TIME AND REDUCED BASIS METHODS

Silke Glasa and Karsten Urbanb

Institute for Numerical Mathematics, University of Ulm, Germany
asilke.glas@uni-ulm.de, bkarsten.urban@uni-ulm.de

Parametrized parabolic problems often occur in industrial or financial applications,
e.g. as pricing of options on the stock market. If we want to calibrate an option pric-
ing model, we need several evaluations for different parameters. Fine discretizations,
that are needed for these problems, resolve in large scale problems and thus in long
computational times. To reduce the size of those problems, we use the Reduced Basis
Method (RBM) [2, 1]. The ambition of the RBM is to efficiently reduce discretized
parametrized partial differential equations given in a variational form. Using space-
time formulations, we do not use a time-stepping scheme, but take the time as an
additional variable in the variational formulation of the problem.

Well-posedness for the space-time variational approach has been shown for a wide
range of problems. For the general case of a parabolic variational equation, see [3].

Combining the RBM with the space-time formulation, we derive a possibly noncoer-
cive Petrov–Galerkin problem, where improved error estimators for parabolic equations
could be achieved [4].

In this talk we consider a comparison between space-time methods and the often
used time-stepping scheme for the RBM. We conclude with an overview where the
space-time methods has been successfully applied to RBM.

References

[1] Jan S. Hesthaven, Gianluigi Rozza, and Benjamin Stamm. Certified reduced basis

methods for parametrized partial differential equations. Springer Briefs in Mathe-
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1615, 2014.
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MULTILEVEL APPROACHES IN SPACE AND TIME

Rolf Krause1a, Pietro Benedusi1b, Xiaozhou Li1c, Daniel Hupp2d and Peter Arbenz2e

1Institute of Computational Science, USI, Lugano, Switzerland,
bpietro.benedusi@usi.ch, arolf.krause@usi.ch, cxiaozhou.li@usi.ch

2Computer Science Department, ETH Zurich, Switzerland,
dhuppd@inf.ethz.ch, earbenz@inf.ethz.ch

Time parallel algorithms are more and more a promising strategy to extend the scala-
bility of PDEs solvers. In fact the sequential time integration limits the parallelism of
a solver to the spatial variables.

In this context, firstly we present a space-time multilevel algorithm for the nonlinear
systems arising from the discretization of Navier-Stokes (N-S) equations with finite
differences. In particular we study the incompressible, unsteady N-S equations with
periodic boundary condition in time.

Time periodic flows, that we find, for example, in biomechanics or engineering,
can be conveniently discretized in space-time, where adding parallelism in the time
direction is natural.

To achieve fast convergence, we used a multigrid algorithm with parallel box smooth-
ing, the properties of which are studied using local Fourier analysis. We used numerical
experiments to analyze the scalability and the convergence of the solver, focusing on
the case of a pulsatile flow in three dimensions.

We also present some recent results for an iterative time integrator based on Dis-
continuous Galerkin (DG) and the Spectral Deferred Correction method (SDC). The
DG approach can improve stability, convergence and flexibility of SDC, preserving its
structure. This algorithm may find application as a smoother in time-parallel multi-
level solvers, as the popular PFASST [Emmett, M. and Minion, M., Toward an Efficient
Parallel in Time Method for Partial Differential Equations, Comm. in App. Math. and
Comp. Science, 2012, v. 7, pp. 105–132].
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A TREFFTZ POLYNOMIAL SPACE-TIME
DISCONTINUOUS GALERKIN METHOD FOR

THE SECOND ORDER WAVE EQUATION

Lehel Banjai1a, Emmanuil Geogoulis2 and Oluwaseun Lijoka1b

1Department of Mathematics,
Heriot Watt University EH14 4AS, Edinburgh, UK.

aL.Banjai@hw.ac.uk, bofl1@hw.ac.uk

2Department of Mathematics,
University of Leicester, University Road Leicester, LE1 7RH UK.

Emmanuil.Georgoulis@le.ac.uk

A new space-time discontinuous Galerkin (dG) method utilising special Trefftz poly-
nomial basis functions is proposed and fully analysed for the scalar wave equation in
second order formulation. The dG method considered is motivated by the class of in-
terior penalty dG methods, as well as by the classical work of Hulbert and Hughes [4].
The choice of the penalty terms included in the bilinear form is essential for both the
theoretical analysis and for the practical behaviour of the method for the case of lowest
order basis functions. A best approximation result is proven for this new space-time
dG method with Trefftz-type basis functions. Rates of convergence are proved in any
dimension and verified numerically in spatial dimensions d = 1 and d = 2. Numerical
experiments highlight the effectiveness of the Trefftz method in problems with energy
at high frequencies.

References

[1] A. Macia̧g, and J.Wauer, Solution of the two-dimensional wave equation by using
wave polynomials, Journal of Engineering Mathematics 339–350, 2005.
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HIGH-ORDER MARCHING-ON-IN-TIME (MOT) FOR 2D TIME
DOMAIN BOUNDARY ELEMENT METHODS (TD-BEM)

Matthias Maischak

Department of Mathematics, Brunel University London, UK
matthias.maischak@brunel.ac.uk

In this talk we study the transient scattering of acoustic waves by an obstacle in an
infinite two dimensional domain, where the scattered wave is represented in terms of
time domain boundary layer potentials. The problem of finding the unknown solution
of the scattering problem is thus reduced to finding the unknown density of the time
domain boundary layer operators on the obstacle’s boundary, subject to the boundary
data of the known incident wave. Using a Galerkin approach, the unknown density
is approximated by a piecewise polynomial function, the coefficients of which can be
found by solving a linear system. The entries of the system matrix of this linear system
involve, for the case of the two dimensional scattering problem under consideration,
integrals over four dimensional space-time manifolds. An accurate computation of
these integrals is crucial for the stability of this method.

Using piecewise polynomials of arbitrary order, the two temporal integrals can
be evaluated analytically, leading to kernel functions for the spatial integrals with
complicated domains of piecewise support.

These spatial kernel functions can be generalised into a class of admissible kernel
functions which, as we prove, belong to countably normed spaces [1].

Therefore, a quadrature scheme for the approximation of the two dimensional spa-
tial integrals with admissible kernel functions converges exponentially [3]. Similar
results for the three dimensional case can be found in [2, 4].

This talk concentrates on an efficient scheme to evaluate the integrals with high
order polynomials and stability results for the Galerkin scheme We also show numerical
experiments underlining the theoretical results, cf. [1].

References
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PARALLEL TIME-DOMAIN BOUNDARY ELEMENT METHOD
FOR 3-DIMENSIONAL WAVE EQUATION

Michal Mertaa, Alexander Veit, Jan Zapletal and Dalibor Lukas

Centre of Excellence IT4Innovations, VŠB-TU Ostrava, Czech Republic.
amichal.merta@vsb.cz

We present a boundary element method for 3-dimensional sound-hard scattering. It
relies on an indirect formulation for the retarded double-layer potential introduced
by Bamberger and Ha Duong in 1986 and on smooth time ansatz functions recently
proposed by Sauter and Veit. The latter allows for an efficient use of Gauss quadrature
within the assembly of the resulting boundary element system matrix. The assembling
process is implemeted in parallel and we numerically document its scalability. Further,
a heuristical preconditioner, which accelerates flexible GMRES iterations, is presented.
The efficiency of our approach is documented for a problem on a sphere with known
analytical solution as well as for a scattering from a real-world geometry.

SPACE–TIME TREFFTZ DISCONTINUOUS
GALERKIN METHODS FOR WAVE PROBLEMS

Andrea Moiola1 and Ilaria Perugia2

1Department of Mathematics and Statistics,
University of Reading, UK
a.moiola@reading.ac.uk

2Faculty of Mathematics, University of Vienna, Austria
and

Department of Mathematics, University of Pavia, Italy
ilaria.perugia@univie.ac.at

We present a space–time discontinuous Galerkin method for linear wave propagation
problems. The special feature of the scheme is that it is a Trefftz method, namely that
trial and test functions are solution of the partial differential equation to be discretised
in each element of the (space–time) mesh. The method considered, described in [2]
and [4], is a modification of the schemes of [3] and [5].

The DG scheme is defined for unstructured meshes whose internal faces need not be
aligned to the space–time axes. The Trefftz approach can be used to improve and ease
the implementation of explicit schemes based on “tent-pitched” meshes, cf. [1] and [5].

We show that the scheme is well-posed, quasi-optimal and dissipative, and prove a
priori error bounds for general Trefftz discrete spaces. A concrete discretisation can be
obtained using piecewise polynomials that satisfy the wave equation elementwise, for
which we show high orders of convergence.
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SPACE-TIME CFOSLS METHODS WITH AMGE UPSCALING

Martin Neumüller1, Panayot S. Vassilevski2 and Umberto E. Villa3

1Institute of Computational Mathematics,
Johannes Kepler University Linz, Austria

neumueller@numa.uni-linz.ac.at

2Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory, U.S.A.

panayot@llnl.gov

3Institute for Computational Engineering and Sciences (ICES),
The University of Texas at Austin, U.S.A.

uvilla@ices.utexas.edu

This work considers the combined space-time discretization of time-dependent partial
differential equations by using first order least square methods. We also impose an ex-
plicit constraint representing space-time mass conservation. To alleviate the restrictive
memory demand of the method, we use dimension reduction via accurate element ag-
glomeration AMG coarsening, referred to as AMGe upscaling. Numerical experiments
demonstrating the accuracy of the studied AMGe upscaling method are provided.
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TIME DOMAIN BOUNDARY ELEMENT FORMULATION
WITH VARIABLE TIME STEP SIZE

Martin Schanz

Institute of Applied Mechanics, Graz University of Technology, Austria,
m.schanz@tugraz.at

The numerical solution of wave propagation problems requires discretizations in space
and time. Latest since the great success of Discontinuous Galerkin methods it is ac-
cepted that adaptive space-time methods are preferable against time stepping tech-
niques. In the context of Boundary Element Methods (BEM) space-time methods are
used from the beginning on [Mansur(1983)]. Using a constant time step size results in
a lower triangular Toeplitz system for the discretized retarded potentials. Hence, the
complexity in time is linear. Also the convolution quadrature method (CQM) in its
initial form requires a constant time step size [Lubich(1988)], which results as well in
a linear complexity in time.

A variable time step size for BEM has been proposed by [Sauter and Veit(2013)]
using a global shape function in time and by [Lopez-Fernandez and Sauter(2013)] with
a generalized convolution quadrature method. The latter approach shares all benefits
of the original CQM but allows a variable time step size. The complexity in time is
O(N logN). This approach is used in this presentation to formulate a BE formulation
for acoustics and elastodynamics. Numerical studies will show the behaviour of this
formulation with respect to temporal discretization. The formulation will be based on
a collocation approach in space.
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MAPPED TENT PITCHING METHOD FOR
HYPERBOLIC CONSERVATION LAWS

Jay Gopalakrishnan1, Joachim Schöberl2a and Christoph Wintersteiger2b

1Portland State University, USA
gjay@pdx.edu

2Institute for Analysis and Scientific Computing, TU Wien, Austria
ajoachim.schoeberl@tuwien.ac.at, bchristoph.wintersteiger@tuwien.ac.at

Tent pitching algorithms construct space-time meshes by vertically erecting canopies
over vertex patches. The main advantage is the ability to advance in time by different
amounts at different spacial locations. These tent pitched meshes are usually combined
with a space-time discretization, which leads to a rather large local problem on each
tent. This talk considers a novel discretization technique, that exploits the structure
of tent pitched meshes to reduce the local problem size. The reduction is obtained
by transforming the tents to a reference domain with a space-time tensor product
structure, which then allows to discretize space and time independently. These Mapped
Tent Pitching (MTP) schemes can be applied to both, linear and non-linear systems.
For linear systems a fully implicit MTP scheme is presented in [1] and this talk will
focus on non-linear systems (see [1, 2]). Numerical results for the Euler equations in
2+1 dimensions and the linear wave equation in 3+1 dimensions will be shown.
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AN ENERGY APPROACH TO TIME-DOMAIN BOUNDARY
INTEGRAL EQUATIONS FOR THE WAVE EQUATION

Marco Zank

Institute of Computational Mathematics, Graz University of Technology, Austria
zank@math.tugraz.at

For the discretisation of the wave equation by boundary element methods the starting
point is the so-called Kirchhoff’s formula, which is a representation formula by means
of boundary potentials. In this talk different approaches to derive weak formulations of
related boundary integral equations are considered. First, weak formulations based on
the Laplace transform and second, time-space energetic formulations are introduced.
In both cases coercivity is shown in appropriate Sobolev spaces.

Finally, some numerical examples are presented and discussed.
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