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RATE-DEPENDENT COHESIVE-ZONE MODELS

BASED ON FRACTIONAL VISCOELASTICITY

Giulio Alfanoa and Marco Mustob

Department of Mechanical, Aerospace and Civil Engineering,
Brunel University London, UK

agiulio.alfano@brunel.ac.uk, bmarco.musto@brunel.ac.uk

We present a recently developed rate-dependent cohesive-zone model which simulates
crack growth along rubber interfaces. Postulating the existence of a rate-independent
rupture energy, associated with the rupture of bonds, a damage variable is introduced,
which is assumed to evolve as a rate-independent function of part of the elastic energy.
The overall rate-dependent response is retrieved by introducing additional internal
variables associated with viscous dissipation. The approach was validated against
test results for a DCB made of two steel arms bonded along a rubber interface, with
prescribed cross-head opening speeds ranging 5 logarithmic decades. Using a Mittag-
Leffner relaxation function for the undamaged interface resulted in the first cohesive-
zone model based on fractional viscoelasticity, which provides excellent correlation of
experimental and numerical results across the entire range of tested speeds [3, 4].

We also discuss the accuracy and the computational cost of the numerical time inte-
gration of the fractional differential equations, which we determine via the Grünwald-
Letnikov expression of the fractional derivative [2, 5].

Finally, we revisit a recently proposed thermodynamical derivation of our model
[1], discussing alternative choices for the damage evolution law and how they can be
physically justified for different polymeric materials.
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ENERGY EQUIVALENCE FOR THE HORIZON INDEPENDENT

BOND-BASED PERIDYNAMIC SOFTENING MODEL ACCORDING

TO CLASSICAL THEORY

Patrick Diehl1, Robert Lipton2 and Marc Alexander Schweitzer1,3

1Institute for Numerical Simulation, University of Bonn, Germany
diehl@ins.uni-bonn.de

2Department of mathematics , Lousiana State University, USA

3Meshfree Multiscale Methods, SCAI, Fraunhofer, Germany

We focus on the bond-based Peridynamic Softening [1] model with respect to small
deformations. In this model the material parameters are obtained by the Γ-convergence
and are independent of the size of the interaction zone. Thus, the length scale of the
nonlocal interaction is not a discretization parameter and instead describes a length
scale associated with the process zone of the material. We present how to connect
the model parameters with energy equivalence to common material parameters from
classical theory.

[1] R. Lipton, Dynamic Brittle Fracture as a Small Horizon Limit of Peridynamics,
Journal of Elasticity, 2014, Volume 117, Issue 1, pp 21-50.

TIME STEPPING SCHEMES FOR FRACTIONAL DIFFUSION

Bangti Jin1, Raytcho Lazarov2 and Zhi Zhou3

1Department of Computer Science, University College London, UK
bangti.jin@gmail.com

2Department of Mathematics, Texas A&M University, USA

3Department of Applied Mathematics and Applied Physics,
Columbia University, USA

Fractional diffusion arises in a number of practical applications, e.g., flow in hetero-
geneous media, thermal diffusion in fractal domains. One mathematical model to
describe the physical process is the subdiffusion equation, which involves a Caputo
fractional derivative in time. The nonlocality of the fractional derivative leads to lim-
ited smoothing property, which poses significant challenge in the design and analysis of
robust numerical schemes. In this talk, I shall discuss some recent progresses, e.g., the
convolution quadrature and L1 scheme, for discretizing such equations in time. Error
estimates and qualitative properties will be discussed.
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PETROV-GALERKIN FINITE ELEMENT METHOD FOR

FRACTIONAL CONVECTION-DIFFUSION EQUATIONS

Bangti Jin1, Raytcho Lazarov2 and Zhi Zhou3

1Department of Computer Science, University College London, UK
bangti.jin@gmail.com

2Department of Mathematics,
Texas A&M University, College Station, USA

lazarov@math.tamu.edu

3Department of Applied Physics and Applied Mathematics,
Columbia University, New York, USA

zhizhou0125@gmail.com

In this work, we develop variational formulations of Petrov-Galerkin type for one-
dimensional fractional boundary value problems involving either a Riemann-Liouville
or Caputo derivative of order α ∈ (3/2, 2) in the leading term and both convection and
potential terms. This type of problems arise in mathematical modeling of asymmetric
super-diffusion processes in highly heterogeneous media. The well-posedness of the
formulations and sharp regularity pickup of the weak solutions are established.
A novel finite element method is developed, which employs continuous piecewise linear
finite elements and “shifted” fractional powers for the trial and test space, respectively.
The new approach has a number of distinct features as it allows deriving optimal error
estimates in both L2- and H1-norms and produces well conditioned linear systems,
since the leading term of the stiffness matrix is diagonal matrix for uniform meshes.
Further, in the Riemann-Liouville case, an enriched FEM is proposed to improve the
convergence. Extensive numerical results are presented to verify the theoretical analysis
and robustness of the numerical scheme.
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SUBDIFFUSION IN A NONCONVEX POLYGON

William McLean1a, Kim-Ngan Le1b and Bishnu P. Lamichhane2

1School of Mathematics and Statistics,
The University of New South Wales, Sydney 2052, AUSTRALIA

aw.mclean@unsw.edu.au, bn.le-kim@unsw.edu.au

2School of Mathematics and Physical Sciences,
University of Newcastle, Callaghan, NSW 2308, AUSTRALIA

blamichha@gmail.com

We consider the spatial discretisation of a time-fractional diffusion equation in a polyg-
onal domain Ω using continuous, piecewise-linear finite elements. If Ω is convex, then
the method is known to be second-order accurate in L2(Ω), uniformly in time, but if
the domain has a re-entrant corner then the error analysis breaks down because the
associated Poisson problem is no longer H2-regular. For a quasi-uniform family of tri-
angulations with mesh parameter h, the error is of order h2β if largest re-entrant corner
has angle π/β with 1/2 < β < 1, but a suitable local refinement strategy restores h2

convergence.
Analogous results for the classical heat equation were proved in 2006 by Chatzi-

pantelidis, Lazarov, Thomée and Wahlbin.

FINITE ELEMENT METHODS FOR

FRACTIONAL DIFFUSION PROBLEMS

Kassem Mustapha1, Samir Karaa2 and Amiya Pani3

1Department of Mathematics and Statistics,
King Fahd University of Petroleum and Minerals, Saudi Arabia

kassem@kfupm.edu.saa

2Department of Mathematics and Statistics, Sultan Qaboos University, Oman,
skaraa@squ.edu.om

3 Department of Mathematics, Indian Institute of Technology Bombay, India,
akp@math.iitb.ac.in

The Galerkin (piecewise linear) finite element method is applied to approximate the
solution of a time fractional diffusion equation with variable diffusivity. By a delicate
energy analysis, a priori error bounds in L∞(Hj), j = 0, 1 and L∞(L∞)-norms are
derived for both smooth and nonsmooth initial data. Our analysis is based on a
repeated use of an integral operator and use of a tm type of weights to take care of the
singular behavior at t = 0. The generalized Leibniz formula for fractional derivatives
is found to play a key role in our analysis. Numerical experiments are presented to
illustrate the theoretical results.
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NUMERICAL APPROXIMATION OF A VARIATIONAL

PROBLEM ON BOUNDED DOMAIN INVOLVING

THE FRACTIONAL LAPLACIAN

Joseph E. Pasciaka, Andrea Bonitob, and Wenyu Leic

Department of Mathematics,
Texas A&M University, College Station TX, USA

apasciak@math.tamu.edu, bbonito@math.tamu.edu,
cwenyu@math.tamu.edu

The mathematical theory and numerical analysis of non-local operators has been a
topic of intensive research in recent years. One class of applications come from replacing
Brownian motion diffusion by diffusion coming from a symmetric α-stable Levy process,
i.e., the Laplace operator is replaced by a fractional Laplacian.

In this talk, we propose a numerical approximation of equations with this type of
diffusion terms posed on bounded domains. We focus on the simplest example of an
elliptic variational problem coming from the fractional Laplacian on a bounded domain
with homogeneous Dirichlet boundary conditions. Although it is conceptually feasible
to study the Galerkin approximation based on a standard finite element space, such a
direct approach is not viable as the exact computation of the resulting stiffness matrix
entries is not possible (at least in two or more spatial dimensions).

Instead, we will develop a non-conforming method by approximating the action of
the stiffness matrix on a vector (sometimes referred to as a matrix free approach). The
bilinear form is written as an improper integral involving the solution of parameter
dependent elliptic problems on Rd. We compute an approximate action of stiffness
matrix by applying a SINC quadrature rule to the improper integral, replacing the
problems on Rd by problems on parameter dependent bounded domains, and the ap-
plication of the finite element method to the bounded domain problems. The entire
procedure can be implemented using standard finite element tools, e.g., the DEAL-II
library. The analysis of the resulting algorithm is discussed. In addition, the results of
numerical computations on a model problem with known solution are given.
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A PDE APPROACH TO THE FRACTIONAL OBSTACLE PROBLEM

Ricardo H. Nochetto1, Enrique Otárola2 and Abner J. Salgado3

1Department of Mathematics, University of Maryland,
College Park, MD 20742, USA

rhn@math.umd.edu

2Departamento de Matemática,
Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile

enrique.otarola@usm.cl

3Department of Mathematics, University of Tennessee,
Knoxville, TN 37996, USA

asalgad1@utk.edu

We study solution techniques for the elliptic and parabolic obstacle problem with
fractional diffusion. The fractional diffusion operator is realized as the Dirichlet-to-
Neumann map of a nonuniformly elliptic problem posed on a semi-infinite cylinder.
This allows us to localize the problem and consider instead a thin obstacle problem.
We present, for the elliptic case, optimal error estimates based on recent regularity
results. For the parabolic case we present an error analysis with minimal smoothness
and one using the best regularity results available to date.

ANOMALOUS DIFFUSION WITH RESETTING

Erćı lia Sousa

Department of Mathematics, University of Coimbra, Portugal
ecs@mat.uc.pt

We consider a fractional partial differential equation that describes the diffusive
motion of a particle, performing a random walk with Lévy distributed jump lengths,
on one dimension with an initial position x0. The particle is additionally subject to a
resetting dynamics, whereby its diffusive motion is interrupted at random times and is
reset to x0. A numerical method is presented for this diffusive problem with resetting.
The influence of resetting on the solutions is analysed and physical quantities such as
pseudo second order moments and pseudo fractional order moments will be discussed.
Some comments about what happens in the presence of boundaries will be also included.
This talk is based on joint work with Amal K. Das from Dalhousie University (Canada).
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ACCURATE AND FAST NUMERICAL METHODS FOR

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

Hong Wang

Department of Mathematics, University of South Carolina, USA
hwang@math.sc.edu

Fractional partial differential equations (FPDEs) provide a powerful tool for modeling
challenging phenomena including anomalous transport, and long-range time memory or
spatial interactions in nature, science, social science, and engineering. However, FPDEs
present mathematical and numerical difficulties that have not been encountered in the
context of integer-order PDEs.

Computationally, because of the nonlocal property of fractional differential oper-
ators, the numerical methods for space-fractional FPDEs often generate dense stiff-
ness matrices for which widely used direct solvers have a computational complexity
of O(N3) (per time step for a time-dependent problem) and memory requirement of
O(N2) where N is the number of unknowns (per time step for a time-dependent prob-
lem). This makes numerical simulation of three-dimensional FPDE modeling compu-
tationally very expensive.

What further complicates the scenario results from the fact that the solutions to
fractional elliptic PDEs with smooth data and domain may have boundary layers and
poor regularity. Consequently, a fast numerical scheme discretized on a uniform mesh
cannot be effective. Hence, finite-difference methods, which are obtained via a dis-
cretization of Grünwald-Letnikov fractional derivatives, are out of the question. On
the other hand, a numerical scheme discretized on an adaptively refined unstructured
mesh offers great flexbility in resolving the boundary layers and other singularities, it
destroys the structure of the dense stiffness matrix and so the efficiency of the numerical
scheme.

We derive an accurate and fast numerical scheme by balancing the flexibility and
efficiency: (i) This would use a composite mesh that consists of gridded mesh near
the interface regions and a structured mesh in most of the domain. (ii) This would
utilize the structure of the stiffness matrices on respective subdomains. (iii) This
would use low-rank approximations to the “off-diagonal” dense matrix blocks in the
stiffness matrix. (iv) The resulting fast method has approximately linear computational
complexity (per time step) and optimal memory requirement.

This work was supported in part by the National Science Foundation under Grant
DMS-1216923 and by the OSD/ARO MURI Grant W911NF-15-1-0562.
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AN ANALYSIS OF THE MODIFIED L1 SCHEME FOR THE

TIME-FRACTIONAL PARTIAL DIFFERENTIAL

EQUATIONS WITH NONSMOOTH DATA

Yubin Yana, Monzororul Khanb and Neville J. Fordc

Department of Mathematics, University of Chester, CH1 4BJ, UK
ay.yan@chester.ac.uk, bsohel ban@yahoo.com,

cnjford@chester.ac.uk

We consider the error estimates of the modified L1 scheme for solving time fractional
partial differential equation. Jin et al. (2016, An analysis of the L1 scheme for the
subdiffusion equation with nonsmooth data, IMA J. of Numer. Anal., 36, 197-221)
established an O(k) convergence rate for L1 scheme for both smooth and nonsmooth
initial data. We introduce a modified L1 scheme and prove that the convergence
rate is O(k2−α), 0 < α < 1 for both smooth and nonsmooth initial data. We first
write the time fractional partial differential equation as a Volterra integral equation
which is then approximated by using two convolution quadratures, respectively. The
numerical schemes obtained are equivalent to the L1 scheme and the modified L1
scheme respectively. Laplace transform method is used to prove the error estimates
for the homogeneous time fractional partial differential equation for both smooth and
nonsmooth data. Numerical examples are given to show that the numerical results are
consistent with the theoretical results.
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