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A-POSTERIORI ERROR ESTIMATES FOR

PRESSURE-PROJECTION SCHEMES

Andreas Brennera and Eberhard Bänschb

Applied Mathematics III, University Erlangen–Nuernberg, Germany
abrenner@math.fau.de, bbaensch@math.fau.de

We give a short introduction and the historical development of pressure-correction
methods for time discretization of the incompressible Stokes equations and discuss
advantages and disadvantages of the different schemes. Further we present a-posteriori
error estimates for the two-step backward differential formula method (BDF2) for the
pressure-correction scheme in rotational form.

BEST APPROXIMATION ERROR ESTIMATES

FOR THE ALLEN-CAHN EQUATION

Konstantinos Chrysafinos

Department of Mathematics,
National Technical University (NTUA), Athens, Greece,

chrysafinos@math.ntua.gr

Fully-discrete approximations of the Allen-Cahn equation are discussed. In particular,
we consider schemes of arbitrary order based on a discontinuous Galerkin (in time)
approach combined with standard conforming finite elements (in space). We prove best
approximation a-priori error estimates, with constants depending polynomially ypon
(1/ǫ). We also prove that these schemes are unconditionally stable under minimal
regularity assumptions on the given data. The key feature of our approach is an
appropriate duality argument, combined with a boot-strap technique.
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TIME AND SPACE ADAPTIVITY FOR THE WAVE EQUATION

DESCRETIZED IN TIME BY A SECOND ORDER SCHEME

Olga Gorynina1a, Alexei Lozinski1b and Marco Picasso2

1Laboratoire de Mathématiques de Besançon, University of Franche-Comté, France
aolga.gorynina@univ-fcomte.fr, balexei.lozinski@univ-fcomte.fr

2Mathematics Institute of Computational Science and Engineering,
École Polytechnique Fédérale de Lausanne, Switzerland

marco.picasso@epfl.ch

We develop a posteriori error estimates of optimal order in time for the wave equation
in the fully discrete situation discretized with the Newmark scheme in time and with
finite elements in space. We look for a posteriori upper bounds in the L∞-in-time-
energy-in-space norm of the error. We adopt a particular choice for the parameters
in the Newmark method, namely β = 1/2, γ = 1/4. This is a popular choice since it
provides a conservative method with respect to the energy norm. Another interesting
feature of this variant of the method, which is in fact essential for analysis, is the
fact that the method can be reinterpreted as the Crank-Nicolson discretization of a
reformulation of the governing equation as a first-order in time system of equations as
in [C. Bernardi, E. Süli, Time and space adaptivity for the second-order wave equation,
Math. Models Methods Appl. Sci. 15, 2 (2005), pp. 199–225]. We are thus able to use
the techniques from [A. Lozinski, M. Picasso, V. Prachittham, An anisotropic error
estimator for the Crank-Nicolson method: application to a parabolic problem, SIAM
J. Sci. Comput. 31, 4 (2009), pp. 2757–2783], i.e. a piecewise quadratic polynomial in
time reconstruction of the numerical solution, which leads to optimal a posteriori error
estimates in time and also allows us to recover the estimates in space easily as well.
We shall present the technical proofs and illustrate them by numerical results.
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MAXIMUM-NORM A POSTERIORI ERROR

ESTIMATION FOR CLASSICAL AND SINGULARLY

PERTURBED PARABOLIC PROBLEMS

Natalia Kopteva1 and Torsten Linß2

1Department of Mathematics and Statistics, University of Limerick, Ireland
natalia.kopteva@ul.ie

2Fakultät für Mathematik und Informatik,
FernUniversität in Hagen, Universitätsstr. 1, 58095 Hagen, Germany

torsten.linss@fernuni-hagen.de

Consider a semilinear parabolic equation in the form

Mu := ∂tu+ Lu+ f(x, t, u) = 0 for (x, t) ∈ Q := Ω× (0, T ],

with a second-order linear elliptic operator L = L(t) in a spatial domain Ω ⊂ Rn

with Lipschitz boundary, subject to u(x, 0) = ϕ(x) for x ∈ Ω̄ and u(x, t) = 0 for
(x, t) ∈ ∂Ω × [0, T ]. We assume that f satisfies 0 ≤ γ2 ≤ ∂zf(x, t, z) ≤ γ̄2 for
(x, t, z) ∈ Ω̄× [0, T ]×R. We are particularly interested in the case L := −ε2△ in the
regular (ε = 1) and singularly peturbed (ε ≪ 1) regimes.

For this equation, we give computable a posteriori error estimates in the maximum
norm. Semidiscrete and fully discrete versions of the backward Euler, Crank-Nicolson
and discontinuous Galerkin dG(r) methods are addressed. For their full discretizations,
we employ elliptic reconstructions that are, respectively, piecewise-constant, piecewise-
linear and piecewise-quadratic for r = 1 in time. We also use certain bounds for the
Green’s function of the parabolic operator.

To give a flavour of our results, in the case of semi-discretizations (in time only)
with the discrete solutions U j ∈ H1

0 (Ω) ∩ C(Ω̄) associated with t = tj , one gets
∥∥Um − u(·, tm)

∥∥
∞,Ω

≤ C1(κ1 ℓm + κ2) max
j=1,...,m−1

∥∥χj
∥∥
∞,Ω

+ C2 κ0
∥∥χm

∥∥
∞,Ω

+ κ0

m∑

j=1

∫ tj

tj−1

e−γ2(tm−s)
∥∥θ(·, s)

∥∥
∞,Ω

ds .

Here κp, p = 0, 1, 2, depend on M (they appear in the bounds for the parabolic Green’s

function), ℓm = ℓm(γ) :=
∫ tm
τm
s−1e−

1

2
γ2s ds ≤ ln(tm/τm). The remaining quantities can

be summarized as follows:
p χj+1 θ C1 C2

backward Euler 1 U j+1 − U j ψ̃ − ψj on (tj−1, tj ] 1 2

Crank-Nicolson 2 τj+1(ψ
j+1 − ψj) ψ̃ − I1,tψ̃

1
8

1
2

dG(1)-Radau 3 3τj+1(2ψ
j − 3ψj+1/3 + ψj+1) ψ̃ − I2,tψ̃

2
81

1
6

For the evaluation of χj+1 and θ we use

ψj+α := L(tj+α)U
j+α + f(·, tj+α, U

j+α), ψ̃ := L(t) Ũ + f(·, t, Ũ),

where α ∈ (0, 1] is any value for which the approximate solution U j+α at time tj+α :=

tj + ατj+1 is available from the definition of the semidiscrete method. Also, Ũ is
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a piecewise-polynomial interpolant of the computed solution of degree p − 1, while
Ip−1,tψ̃ is a piecewise-polynomial interpolant of ψ̃ of the same degree using the same
interpolation points.

[1] N. Kopteva and T. Linß, Maximum norm a posteriori error estimation for parabolic
problems using elliptic reconstructions, SIAM J. Numer. Anal., 51, 2013, pp. 1494–
1524.

ADAPTIVE REGULARISATION

Tristan Pryer

Department of Mathematics and Statistics, University of Reading, UK
t.pryer@reading.ac.uk

The design of numerical schemes for nonlinear PDEs is delicate. In many important
cases, for example when tackling conservation laws, there are infinitely many weak
solutions and it is paramount that the underlying scheme respects certain physically
motivated selection criteria. In the design of numerical methods for linear problems,
high order perturbations tend to be neglected. The main difference in treating nonlinear
problems over their linear counterparts is that high order perturbations cannot just be
dropped, especially in the case when infinitely many weak solutions may exist.

We propose a methodology of introducing regularisation in an a posteriori fashion.
This will allow us to construct numerical approximations of a particularly challenging
set of solution concepts, namely entropy and viscosity solutions. These are appropriate
“weak” solutions of conservation laws and Hamilton-Jacobi equations. In this talk we
illustrate the ideas and application to some simple problems.
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CURVE SHORTENING FLOW COUPLED

TO LATERAL DIFFUSION

Paola Pozzi1 and Björn Stinner2

1Fakultät für Mathematik, Universität Duisburg-Essen,
Thea-Leymann-Straße 9, 45127 Essen, Germany

paola.pozzi@uni-due.de

2Mathematics Institute, Zeeman Building,
University of Warwick, Coventry CV4 7AL, United Kingdom

bjorn.stinner@warwick.ac.uk

A semi-discrete finite element scheme for a system consisting of a geometric evolution
equation for a curve and a parabolic equation on that evolving curve is presented. More
precisely, curve shortening flow with a forcing term that depends on a conserved field
is coupled with a diffusion equation for that field. Such a system can be considered
as a prototype for more complicated problems as they may arise in applications. Our
scheme is based on ideas of Dziuk for the curve shortening flow and Dziuk/Elliott for the
parabolic equation on the moving curve. However, additional estimates particularly
with respect to the time derivative of the length element are required. Numerical
simulation results support the theoretical findings.

FINITE ELEMENT APPROXIMATION OF SEMILINEAR

PARABOLIC REACTION DIFFUSION SYSTEMS

WITH IMEX TIMESTEPPING

Chandrasekhar Venkataraman

School of Mathematics and Statistics, University of St Andrews, UK
cv28@st-andrews.ac.uk

Coupled systems of semilinear parabolic equations arise in a number of applications
in fields such as biology, chemistry and material science. Often the applications are
such that the equations are posed on complex or evolving geometries. In this talk
we address the design and analysis of finite element approximations of such systems
with implicit-explicit time discretisation. The theoretical results will be supported by
examples of application driven numerical simulations.
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