
MAFELAP

2016

Conference on the Mathematics

of Finite Elements and Applications

14–17 June 2016

Mini-Symposium: DPG theory and prac-

tice

Organisers:

Leszek Demkowicz and Norbert Heuer

Abstracts in alphabetical order



Contents

The double adaptivity algorithm

Leszek Demkowicz and Norbert Heuer
Mini-Symposium: DPG theory and practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Robust coupling of DPG and BEM for a singularly perturbed transmission problem

Thomas Führer and Norbert Heuer
Mini-Symposium: DPG theory and practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Minimum residual methods applied to linear thermoviscoelasticity

Federico Fuentes
Mini-Symposium: DPG theory and practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A DPG method for the heat equation

Thomas Führer, Norbert Heuer and Jhuma Sen Gupta
Mini-Symposium: DPG theory and practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Some recent progress with the DPG method

Brendan Keith, Federico Fuentes, Leszek Demkowicz, Philipp Knechtges, Marek Behr,
Stefanie Elgeti and Patrick Le Tallec

Mini-Symposium: DPG theory and practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The nonlinear Petrov–Galerkin method in Banach spaces: yet another improvement of
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THE DOUBLE ADAPTIVITY ALGORITHM

Leszek Demkowicza and Norbert Heuerb

aInstitute for Computational Engineering and Sciences (ICES)
University of Texas at Austin, USA

leszek@ices.utexas.edu

bFacultad de Matematicas
Pontificia Universidad Catolica de Chile, Santiago, Chile

nheuer@mat.puc.cl

The ideal DPG method [2] reproduces the stability of the continuous problem and
guarantees optimal convergence for any well posed problem. The broken test spaces
methodology makes it computationally efficient and can be applied to any well posed
variational formulation [2]. The practical DPG method approximates the Riesz (error)
representation function ψ using an enriched test space. Needless to say, the ultimate
success of the practical DPG method hinges on controlling the error in resolving ψ.
For standard, ”mathematician” test norms, the resolution of ψ is relatively easy and
the damage due to the error in ψ can be estimated via the construction of appropriate
Fortin operators [2,3]. For challenging singular perturbation problems, and test norms
involving the perturbation parameter, resolution of ψ is challenging but not because
of stability (as for the original problem) bur rather approximability issues.

The double adaptivity idea of Cohen, Dahmen and Welper [1] calls for introducing
an inner adaptivity loop to control the error in ψ. The adaptively determined enriched
test space is “custom made” for the particular load and the trial space, and it does not
imply the discrete stability. And yet the ultimate method converges.

I will present a series of 1D and 2D double adaptivity experiments for convection
dominated diffusion. Out of many possible variational formulations, the ultraweak
formulation stands out as the corresponding optimal test norm is known explicitly,
and it is robustly equivalent to the adjoint graph norm (with a properly scaled L2-
term). Consequently, the DPG method delivers an orthogonal projection in an energy
norm robustly equivalent to the trial L2-norm. The adjoint graph norm, however, is
difficult to resolve, and the double adaptivity comes in as a natural means to cope with
the problem.

The inner adaptivity loop requires a robust a-posteriori error estimate for the dis-
cretization of Riesz representation function ψ. A residual estimate seems to be a
natural (if not the only possible) option. For a broken test space, the residual is equal
to the sum of element residuals, so the residual estimation is naturally reduced to a
single element K. Cumbersome construction of Clement-like interpolation operators,
necessary for standard conforming methods, reduces to a simple orthogonal projection
in the test norm. The element residual estimate leads to a number of multiscale gen-
eralized eigenvalue problems involving the test norm, L2(K), L2(∂K) and H−1(∂K)
norms. The eigenvalue problems are solved off line, harvesting appropriate “interpo-
lation” constants for different values of diffusion ǫ, element size h, enriched element
order r, and advection vector components. The precomputed constants enter then the
residual estimate.
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Ideally, one should use two independent meshes, one for the original unknown u,
and the second for Riesz representation ψ. The dynamically determined mesh for ψ
depends upon approximate solution uh (and, therefore, the first mesh). For practical
reasons, we attempt to use the same mesh for both unknowns, enriching only the order
of approximation for ψ. If the maximum order is reached, we force h-refinements and
restart the whole problem. 1D and 2D numerical experiments indicate that, for small
diffusion, the adaptivity process is driven entirely by the resolution of ψ, i.e. the inner
adaptivity loop. This is rather disappointing as we would like to see a robust solution
for very coarse meshes (which is critical for nonlinear problems).

In the end, we will present experiments based on the ideas of Broersen and Steven-
son [4] based on evolving a pure convection to a convection-diffusion problem. With
a proper selection of a variational formulation, the underresolved Riesz representation
function ψ for the confusion problem, represents a perfect approximation for the cor-
responding Riesz representation function for the pure convection problem. The game
involves also relaxing the full stop outflow boundary conditions which must evolve with
the mesh. The numerical results are promising but, at the moment, we do not have
a full understanding of the underlying mathematics. We hope to understand it better
by the time of the conference.
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ROBUST COUPLING OF DPG AND BEM FOR A

SINGULARLY PERTURBED TRANSMISSION PROBLEM

Thomas Führera and Norbert Heuerb

Facultad de Matemáticas, Pontificia Universidad Católica de Chile,
Vickuña Mackenna 4860, Santiago, Chile

atofuhrer@mat.puc.cl, bnheuer@mat.puc.cl

In this talk we present our recent work [Führer, Heuer: Robust coupling of DPG and
BEM for a singularly perturbed transmission problem, arXiv:1603.05164], in which
we consider a transmission problem consisting of a singularly perturbed reaction dif-
fusion equation on a bounded domain and the Laplacian in the exterior, connected
through standard transmission conditions. We establish a DPG scheme coupled with
Galerkin boundary elements for its discretization, and prove its robustness for the field
variables in so-called balanced norms. Our coupling scheme is the one from [Führer,
Heuer, Karkulik: On the coupling of DPG and BEM, arXiv:1508.00630], adapted to
the singularly perturbed case by using the scheme from [Heuer, Karkulik: A robust
DPG method for singularly perturbed reaction diffusion problems, arXiv:1509.07560].
Essential feature of our method is that optimal test functions have to be computed
only locally. We report on various numerical experiments in two dimensions.

MINIMUM RESIDUAL METHODS APPLIED

TO LINEAR THERMOVISCOELASTICITY

Federico Fuentes

The Institute for Computational Engineering and Sciences,
The University of Texas at Austin, U.S.A.

federico@ices.utexas.edu

The motivation is to study void formation inside thermoset polymers used as matri-
ces for composite materials that act as electrical insulators inside form-wound coils
of large medium-voltage electromachinery. A full derivation of the linear first order
system of thermoviscoelastic equations in the time and frequency domain is presented.
Compatible variational formulations with unbroken test spaces and broken test spaces
are deduced for the thermoviscoelasticity equations in the frequency domain. A mini-
mum residual method with broken test spaces, i.e. the discontinuous Petrov-Galerkin
(DPG) methodology, is applied to the “broken” variational formulation to solve the
equations. Expected convergence rates for p = 1, 2, 3 are observed for a manufactured
setting with a smooth solution. Preliminary results used to validate experimental data
are also shown.
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A DPG METHOD FOR THE HEAT EQUATION

Thomas Führera, Norbert Heuerb and Jhuma Sen Guptac

Facultad de Matemáticas,
Pontificia Universidad Católica de Chile, Santiago, Chile

atofuhrer@mat.uc.cl, bnheuer@mat.uc.cl, cjsengupta@mat.uc.cl

We present and analyse a time-stepping DPGmethod for the heat equation. Motivation
of this work is to develop a DPG framework that can lead to robust approximations of
singularly perturbed parabolic problems.

We use the backward Euler scheme as time discretisation and propose a DPG space
approximation of the time-discrete scheme. Well-posedness and stable approximation
properties are obtained from a precise analysis of the underlying time-discrete vari-
ational formulation at every time step. Appropriate convergence properties for field
variables are proved. We present numerical experiments that underline our theoretical
results.

This work has been partially supported by CONICYT-Chile through Fondecyt
grants 1150056, 3150012, and Anillo ACT1118 (ANANUM).

SOME RECENT PROGRESS WITH THE DPG METHOD

Brendan Keith1, Federico Fuentes1, Leszek Demkowicz1, Philipp Knechtges2,
Marek Behr2, Stefanie Elgeti2 and Patrick Le Tallec3

1The Institute for Computational Engineering and Sciences,
The University of Texas at Austin, U.S.A.

brendan@ices.utexas.edu

2Chair for Computational Analysis of Technical Systems,
RWTH Aachen University, Aachen, Germany

3Laboratoire de Mécanique des Solides,
Ecole Polytechnique, Paris, France

A growing interest for the DPG method is developing in our community. In this talk we
reformulate the method as the approximate solution of a convex optimization problem.
We then demonstrate some recent discoveries which stem from the generality of this
formulation.

Topics discussed for the linear theory will include the solution of problems with
more than one variational formulation in the same domain (e.g. mixed + primal + ul-
traweak), inequality constraints, and optimal test norms of primal linear elasticity. We
will also illustrate the built-in adaptivity and stability of the method with a nonlinear
viscoelastic fluid flow benchmark problem.
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THE NONLINEAR PETROV–GALERKIN METHOD IN

BANACH SPACES: YET ANOTHER IMPROVEMENT OF

BABUŠKA’S A PRIORI ERROR ESTIMATE

Ignacio Muga1 and Kristoffer G. van der Zee2

1Instituto de Matemáticas,
Pontificia Universidad Católica de Valparáıso, Chile

ignacio.muga@pucv.cl

2 School of Mathematical Sciences, University of Nottingham, UK
kg.vanderzee@nottingham.ac.uk

In a recent 2015 paper by Stern [1], the author has sharpened the classical Babuška’s
a priori error estimate for Petrov–Galerkin methods in Banach spaces (cf. [2], 1971).
The estimate had been previously sharpened only for the case of Hilbert spaces in a
2003 paper by Xu & Zikatanov [3] (more than 30 years after Babuška’s result!). All
of these estimates rely on a compatibility condition between the discrete trial and test

spaces, known a the discrete inf–sup condition.
From a different point of view, inspired in the residual minimization approach [4]

and the Hilbert-space theory of optimal Petrov-Galerkin methods [5], we address the
question of how to inherit discrete stability from continuous stability in a Banach space
setting. As a result, we deduce the nonlinear Petrov–Galerkin method in [6], whose
implementable (inexact) version consists in a monotone mixed method.

In this talk, we show in detail the error estimates of the method proposed in [6],
which depend explicitly on geometrical constants of the involved Banach spaces.
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GEOMETRIC MULTIGRID FOR SCALABLE

DPG SOLVES IN CAMELLIA

Nathan V. Roberts

Argonne Leadership Computing Facility, Argonne, IL, USA
nvroberts@anl.gov

The discontinuous Petrov-Galerkin finite element methodology of Demkowicz and Gopalakr-
ishnan (DPG) [1, 2] offers a host of appealing features, including automatic stability
and minimization of the residual in a user-controllable energy norm. DPG is, more-
over, well-suited for high-performance computing, in that the extra work required by
the method is embarrassingly parallel; the use of a discontinuous test space allows the
computation of optimal test functions to be done element-wise. Additionally, the ap-
proach gives almost total freedom in the choice of basis functions, so that high-order
discretizations can be employed to increase computational intensity (the number of
floating point operations per unit of communication). Finally, since the method is
stable even on a coarse mesh and comes with a built-in error measurement, it enables
robust adaptivity which in turn means less human involvement in the solution process,
a desirable feature when running large-scale computations.

Camellia [3] is a software framework for DPG with the aim of enabling rapid devel-
opment of DPG solvers both for running on a laptop and at scale. Camellia supports
spatial meshes in 1D through 3D; initial support for space-time elements is also avail-
able. Camellia supports h- and p-adaptivity, and offers distributed computation of
essentially all the algorithmic components of a DPG solve. (One exception, which we
plan to address, is the generation and storage of the mesh geometry; at present, this
happens redundantly on each MPI rank.) Camellia supports static condensation for re-
duction of the global problem, and has a robust, flexible interface for using third-party
direct and iterative solvers for the global solve.

Until recently, we have almost always solved the global DPG system matrix using
parallel direct solvers such as SuperLU Dist. This is not a scalable strategy, particu-
larly for 3D and space-time meshes. Both memory and time costs therefore motivate
our recent work, developing and studying iterative solvers in the context of a range of
example problems. Since Camellia’s adaptive mesh hierarchy provides us with rich ge-
ometric information, we focus on hp-geometric multigrid preconditioners with additive
Schwarz smoothers of minimal or small overlap. Preconditioning a conjugate gradient
solve using such preconditioners, we are able to solve much larger problems within the
same memory footprint.

References
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methods. Part I : The transport equation. Comput. Methods Appl. Mech. Engrg.,
199:1558-1572, 2010. See also ICES Report 2009-12.
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FIRST-ORDER SYSTEM LL⋆

USING NONCONFORMING TEST FUNCTIONS

Gerhard Starke

Fakultät für Mathematik, Universität Duisburg-Essen, Germany
gerhard.starke@uni-due.de

The first-order system LL⋆ formulation is based on the ultra weak formulation

〈U, L∗V 〉 = F (V ) ∀ V

of some first-order system of differential equations LU = F and closely related to the
DPG methodology. It is obtained by setting U = L∗W with W being in the test
space, therefore leading to a self-adjoint coercive variational problem. We consider the
H(div) × H1 first-order system LL⋆ formulation studied in [Z. Cai, R. Falgout and
S. Zhang, SIAM J. Numer. Anal. 53 (2015), 405–420] for Poisson-type equations.
The local conservation properties of the method using next-to-lowest-order Raviart-
Thomas spaces for H(div) combined with quadratic nonconforming elements for H1

are investigated in this contribution. This will also be discussed in the context of
conservation of momentum in a stress-velocity formulation of the Stokes system.
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A STABLE DPG FORMULATION OF TRANSPORT EQUATIONS

Rob Stevenson1a, Dirk Broersen1b and Wolfgang Dahmen3

1Korteweg-de Vries Institute for Mathematics,
University of Amsterdam, The Netherlands

aR.P.Stevenson@uva.nl, bD.Broersen@uva.nl

3Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Germany
dahmen@igpm.rwth-aachen.de

We formulate and analyze a Discontinuous Petrov Galerkin formulation of linear trans-
port equations with variable convection fields. We show that a corresponding infinite

dimensional mesh-dependent variational formulation, in which besides the principal
field also its trace on the mesh skeleton is an unknown, is uniformly stable with respect
to the mesh, where the test space is a certain product space over the underlying domain
partition.

Our main result states then the following. For piecewise polynomial trial spaces
of degree m, we show under mild assumptions on the convection field that piecewise
polynomial test spaces of degree m+ 1 over a refinement of the primal partition with
uniformly bounded refinement depth give rise to uniformly (with respect to the mesh
size) stable Petrov-Galerkin discretizations.

Finally we show how rigorously computable a posteriori error bounds can drive a
convergent adaptive algorithm.
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THE NONLINEAR PETROV–GALERKIN METHOD IN

BANACH SPACES: ELIMINATING THE GIBBS PHENOMENA

Ignacio Muga1 and Kristoffer G. van der Zee2

1Instituto de Matemáticas,
Pontificia Universidad Católica de Valparáıso, Chile
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kg.vanderzee@nottingham.ac.uk

Is it possible to obtain near-best approximations to solutions of linear operator equa-
tions in a general Banach-space setting? Can this be done with guaranteed stability?

In this talk we address these questions by considering nonstandard, nonlinear
Petrov–Galerkin discretisations, proposed in [1], which aim to guarantee stability in
general Banach-space settings, and builds on ideas of residual minimisation [2] and the
recent Hilbert-space theory of optimal Petrov-Galerkin methods [3].

We demonstrate that the inexact (implementable) version is naturally related to a
mixed method with a monotone nonlinearity. For this method, optimal a priori error
estimates hold (a la Céa / Babuška), with constants depending on the geometry of the
involved Banach spaces.

As an elementary, but important, application of the nonlinear Petrov–Galerkin
method, we consider the advection equation in dual Sobolev spaces (of integrability p).
It is demonstrated that in the approximation of solutions with discontinuities, the
Gibbs phenomena, which is inherently present in the Hilbert case (p = 2), is eliminated
as pց 1.
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