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A NITSCHE-TYPE METHOD FOR HELMHOLTZ
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3Department of Mathematics and Mathematical Statistics,
Ume̊a University, Sweden
mats.larson@math.umu.se

We consider the Helmholtz equation of acoustic wave propagation in the situation where
a permeable interface is embedded in the computational domain. The presence of the
interface is represented by a complex-valued impedance function Z that relates the
jump in the solution over the interface to the flux through the interface. Thus, the flux
is assumed to be continuous over the interface whereas the solution may contain jump
discontinuities. Such an interface condition constitutes, for instance, a macro model of
a perforated plate through which sound is leaking. The real part of Z, assumed to be
nonnegative, represents losses in the interface, whereas the imaginary part, which can
be of either sign, corresponds to reactive effects. For low-loss interfaces with negative
imaginary part of Z, so-called surface waves can appear in a layer around the interface.

The straight-forward, standard finite-element discretization of this problem leads
to a variational form in which the impedance function appears in the denominator

of a surface integral along the interface, which means that partly or fully vanishing
impedance functions cannot be handled without this term blowing up. We propose
another formulation, based on a variant of Nitsche’s method, which seamlessly handles
a complex-valued impedance function Z that is allowed to vanish. The method can be
seen as an interpolation between the standard method and a classic Nitsche method
that weakly enforces continuity over the interface.

We show stability of the method, in terms of a discrete G̊arding inequality, for
a quite general class of surface impedance functions, provided that possible surface
waves are sufficiently resolved by the mesh. Moreover, we prove an a priori error esti-
mate under the assumption that the absolute value of the impedance is bounded away
from zero almost everywhere. Numerical experiments illustrate the performance of the
method for a number of test cases in 2D and 3D with different interface conditions,
with and without surface waves.
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FINITE ELEMENT-DISCONTINUOUS GALERKIN METHOD

FOR THE NUMERICAL SIMULATION OF TWO-PHASE FLOW

Miloslav Feistauer

Charles University in Prague,
Faculty of Mathematics and Physics, Czech Republic

feist@karlin.mff.cuni.cz

The subject of the contribution is the numerical simulation of two-phase flow of immis-
cible fluids. Their motion is described by the incompressible Navier-Stokes equations
with piecewise constant density and viscosity. The interface between the fluids is
defined with the aid of the level-set method using a transport first-order hyperbolic
equation. The Navier-Stokes system equipped with initial and boundary conditions
and transmission conditions on the interface between the fluids is discretized by the
Taylor-Hood P2/P1 conforming finite elements in space and the second-order BDF
method in time. The transport level-set problem is solved with the aid of the space-
time discontinuous Galerkin method (DGM). Numerical experiments demonstrate the
applicability, accuracy and robustness of the developed method.

The results were obtained in cooperation with E. Bezchlebová, V. Doleǰśı and P.
Sváček.
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ACCURATE SPATIAL AND TEMPORAL DISCRETISATION

TECHNIQUES FOR INTERFACE PROBLEMS

AND FLUID-STRUCTURE INTERACTIONS

IN EULERIAN COORDINATES

Stefan Frei1 and Thomas Richter2

1 Institute of Applied Mathematics, Heidelberg University, Germany
stefan.frei@iwr.uni-heidelberg.de

2 Department of Mathematics, University of Erlangen-Nuremberg, Germany
richter@math.fau.de

Interface problems pose several challenges for discretisation, especially in the case of
moving interfaces. If the interface is not resolved by the discretisation, one obtains a
reduced order of convergence and possibly stability issues.

In this talk, we present discretisation schemes in both space and time in order to
avoid these issues. The proposed finite element discretisation in space corresponds
to a fitted finite element method that uses a fixed patch mesh that is independent
of the interface location in combination with an interiour refinement that resolves the
interface. For time discretisation, we use a modified time-stepping scheme that is based
on a space-time continuous Galerkin approach (cG(1)). Instead of using polynomials
in direction of time that cross the interface, we define Galerkin spaces on trajectories
that stay within each subdomain. Similar techniques have been used within the fixed-
mesh ALE method by Codina et al. We show second-order convergence for both
discretisation in space and time and give a bound on the condition of the system
matrix. Finally, we illustrate the capability of our approach in the context of fluid-
structure interaction problems.
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A LOCALLY MODIFIED FITTED FINITE ELEMENT METHOD

FOR INTERFACE PROBLEMS IN SHAPE

AND TOPOLOGY OPTIMIZATION

Peter Gangl1 and Ulrich Langer2
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We consider the design optimization of an electric motor by means of PDE-constrained
topology and shape optimization. The goal is to find the optimal distribution of fer-
romagnetic material within a design subregion of the computational domain. In the
course of the optimization procedure, the interface between ferromagnetic material and
air regions evolves.

In every iteration of the optimization procedure, the interface between different
subdomains is updated. On the updated geometry, which is in general not resolved by
the finite element discretization, the state and adjoint equations have to be solved. We
present an easy to implement numerical method that allows us to resolve a piecewise
linear interface exactly in every iteration by only locally modifying the underlying
triangular mesh. Moreover, the chosen mesh adaptation strategy ensures a maximum
angle condition which yields optimal order of convergence independent of the location
of the interface relative to the mesh. The presented method is based on [1].

References
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IMMERSED FINITE ELEMENT METHODS

Luca Heltai1 and Nella Rotundo2

1SISSA - International School for Advanced Studies, Trieste, Italy
luca.heltai@sissa.it

2WIAS - Weierstraß Institute for Applied Analysis and Stochastics,
Berlin, Germany
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Immersed Finite Element Methods (IFEM) are an evolution of the original Immersed
Boundary Element Method (IBM) developed by Peskin [6] in the early seventies for
the simulation of complex Fluid Structure Interaction (FSI) problems. In the IBM, the
coupled FSI problem is discretised using a single (uniformly discretised) background
fluid solver, where the presence of the solid is taken into account by adding appropriate
forcing terms in the fluid equation. Dirac delta distributions are used to interpolate
between the Lagrangian and the Eulerian framework in the original formulation by
Peskin, while a variational formulation was introduced by Boffi et al. [1], and later
generalised in Heltai and Costanzo [4] that does not require any Dirac delta approxi-
mation.

One of the key issues that kept people from adopting IBM or IFEM techniques is re-
lated to the loss in accuracy attributed to the non-matching nature of the discretisation
between the fluid and the solid domains, leading to only formally optimal solvers (see,
for example, Lai and Peskin [5]). In this work we exploit some techniques introduced
by D’Angelo and Quarteroni [2, 3], to show that, for variational formulations, the loss
in accuracy is only restricted to a thin layer of elements around the solid-fluid interface,
and optimal error estimates in all norms are recovered if one uses appropriate weighted
norms, or by removing the layer of non-matching cells from the error estimates.
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CONVERGENCE RESULTS WITH NATURAL NORMS:

STABILIZED LAGRANGE MULTIPLIER METHOD

FOR ELLIPTIC INTERFACE PROBLEMS
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A stabilized Lagrange multiplier method for second order elliptic interface problems is
presented in the framework of mortar method. The requirement of LBB (Ladyzhenskaya-
Babuška-Brezzi) condition for mortar method is alleviated by introducing penalty terms
in the formulation. Optimal convergence results are established in natural norm which
is independent of mesh. Error estimates are obtained with an assumption that: the
multiplier space satisfies the strong regularity property in the sense of Babuška (see,
[1]). Numerical experiments are conducted in support of the theoretical derivations.
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