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MA3951/MA5352:
Numerical and Variational Methods for PDEs
Exercise sheet 1 and Answers

1. Let 2 be a domain, let L denote a linear differential operator and let Dy be an inner
product space of functions defined on €2 for which L is defined.

Define what it means for L to be symmetric on D, and define what it means for L to
be positive definite on Dy,.

ANSWER

L is symmetric on Dy if (Lu,v) = (u, Lv) for all u,v € Dy.
L is positive definite on Dy if (Lv,v) > 0 for all v € Dy with v # 0.

In each of the following cases, determine whether or not the given differential operator
L is symmetric on the function space D;. For the differential operators which are
symmetric determine whether or not they are positive definite.

(a) Q=1(0,1), Dy = C?0,1], Lu = —u".

(b) 2=(0,1), D ={v e C?0,1]: v(0) =0}, Lu = —u"

(c) Q=(0,1), Dy, ={v e C?0,1]: v(0)=0, v(1) =0}, Lu= —u".
) =1(0,1)

Dy ={veC?0,1]: v(0)=0, v(1) =0}, Lu=—u"+ q(x)u,

where ¢ € C10,1] and ¢(z) > 0 on [0, 1].
(e) ©=(0,1),

D ={veC?0,1]: v(0)=0, v'(1)+Bv(1) =0}, L=—u"+q(x)u,

where 3 > 0 and where ¢ € C0,1] and ¢(z) > 0.
(f) 2=1(0,1),

Dy ={veC?0,1]: (0)=0,v(1)=0}, L=-u"
(g) 2=1(0,1),
Dy ={veC?0,1]: v (0)=Fv(0) =0, v'(1)+ Bv(1) =0}, L=—u"+q(x)u,

where 3; > 0 and [ > 0 and where ¢ € C|0, 1] and ¢(z) > 0.
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ANSWER

All the above are second order ODEs and the main identity being used throughout
is

(—u" v) = —/01 u'v dr = —[u'v] + /Olu'v' dx
= () + o)+ [t

Whether or not we have symmetry depends on the boundary term and this in turn
depends on the boundary conditions, if any, which are part of the definition of the
space Dy,.

(1a), (1b), (1c). These all correspond to Lu = —u”.

When Dy, = C?[0, 1] or when Dy, = {C?[0,1] : v(0) = 0} the boundary term is not
symmetric for all u,v € Dy. As an example, take v = x and v = 22 and observe
that —u/(1)v(1) = —1 and —v'(1)u(l) = —2.

When D;, = {C?0,1] : v(0) = v(1) = 0} the boundary term is 0 and we have
symmetry,

1
(—u",v) = / uw'v' dx for all u,v € Dry.
0

L is also positive definite on Dy, and this is shown below.

(1d). When Lu = —u” + qu and Dy, = {C?[0,1] : v(0) = v(1) = 0} we similarly
get

1
(Lu,v) = / u'v' + quu dx
0

and we have symmetry. L is also positive definite on D and this is shown below.
(1e). When v(0) =0 and u/(1) = —fu(1) we have

—u'(1)v(1) + 4/ (0)v(0) = —u'(1)v(1) = +LBu(1)v(1).

When u,v € Dy, = {v € C?0,1] : v(0) =0, v'(1)+Bv(l) = 0} and Lu = —u" +qu
we hence have

1
(Lu,v) = / u'v" + quu do + Bu(1)v(1)
0

and thus L is symmetric on Dy. L is also positive definite on D, and this is shown
below.

(1f). When «/(0) = «/(1) = 0 and Lu = —u" the boundary term is 0 and
1
(Lu,v) :/ u'v' dz
0

for all u,v € Dy, = {v € C?[0,1] : v/(0) =v/(1) = 0}, and we have symmetry. L is
NOT positive definite on Dy. This is because if v(z) = 1 then v'(z) =0, v € Dy,

— 92—
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and (Lv,v) = 0. L is positive semi-definite on D but as we have a non-zero
function giving (Lv,v) = 0 it follows that L is not positive definite on Dy,.

(1g). When «/(0) = S1u(0) and /(1) = —Fou(l) we have
—d/(1)(1) + w(0)0(0) = Bru(0)o(0) + Gru(1)o(1).
Thus if D, = {v € C?0,1] : ' (0) — Bv(0) = 0, v'(1) + Bov(1) = 0}, and

L =—u"+ q(z)u then

(Lu, v) = /0 W + quo dz + (Buu(0)0(0) + Bau(1)v(1))

and we have symmetry. L is also positive definite on Dy and this is considered
next with all the positive definite cases.

Verifying the positive definite property.
We consider the expression

(Lv,v) = / v+ qu? dz + (B10(0)* + Brv(1)?)
0

which covers all the cases if we allow ¢ = 0 or 81 = 0 or B = 0. As 5, > 0
and (3 > 0 and ¢(z) > 0 we have a sum of non-negative terms and the only way
(Lv,v) = 0 is if each term individually is 0. With the spaces involved the integrand
is continuous and thus we must have v'(z) = 0, 0 < z < 1 and hence v(z) = ¢
where c is a constant. In (1f) there was no condition to force ¢ = 0 but (1c), (1d)
and (le) all contain the condition v(0) = 0 to give ¢ = 0. For (1g) the condition
(Lv,v) = 0 also implies that

B1v(0)* + Bu(1)* = 0

and the condition here that 5; > 0 and (5 > 0 is sufficient to imply that v(0) =
v(1) =0 and we get ¢ = 0 as required.

Q=1(0,1),
Dy ={veC¥0,1]: v(0)=2(0)=v(l)=2'(1)=0}, L=u"—(pu') +qu,

where p € C*0,1], ¢ € C[0,1] and p(z) > py > 0 and g(z) > 0 for all z € (0,1).

ANSWER

For the second order term and the property that v(0) = v(1) = 0 we get

1 1
—/ (pu')'v do = / pu'v' dx.
0 0
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For the fourth order term we integrate by parts twice and we use all the boundary
conditions.

1 1 1
/ u"'vdr = [u"v] — / v dz = —/ u""v" dz because v(0) = v(1) = 0,
0 0 0
1 1
= —[u"); +/ u'v" doe = / u"v" dz, because v'(0) = v'(1) = 0.
0 0
Putting everything together gives
1
(Lu,v) = / u"v" + pu'v + quu dx
0

for all u,v € Dy and we have symmetry. We also have the positive definite property
as

1
(Lv,v) = / 0" 4 pu”? 4 qu® dz >0
0

and for (Lv,v) = 0 we must have v”(z) = 01in (0,1). v” = 0 implies that v is linear
and because v(0) = v(1) = 0 we must have v(z) = 0 as required.

2. The following relates to problems in R2. This will be only briefly covered at the start
of the module but if you already know results such as the divergence theorem then you
could try this now.

As in the previous question in each of the following cases, determine whether or not the
given differential operator L is symmetric on the function space Dy. For the differential
operators which are symmetric determine whether or not they are positive definite.

(a)

(b)

(c)

Q={(z,y): 0<zr<2 0<y<l}
Dy =C*Q), Lu=—Au.

Q={(z,y): 0<zr<2 0<y<l}
Dp={veC*Q): v=00n0d0}, Lu=—Au.

Let
Q={(z,y): 0<z<2 0<y<l}

let 0€; denote the 3 sides on 92 corresponding to z =0, x =2 and y = 1 and let
08y denote the other side corresponding to y = 0. Also let

Dy ={veC*Q): v=0on0dQ and —g—;(x,O)Jrﬁv(m,O):O, 0 <z <2},

where 0 > 0, and let L = —A.
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ANSWER
(2a), (2b) and (2c).

V- (vVu) =vAv+Vu-Vov gives —vAv=Vu-Vv—-V.(vVu).

The divergence theorem then gives

—//UAU dxdy://Vu-Vv dady — v% ds.
Q Q a0 on

The double integral on the right hand side is symmetric in v and v and thus
symmetry depends on whether the boundary integral term is symmetric.

In (2a) there is no condition on u, v on Q2 and L is NOT symmetric on D, = C*(Q).
This can be confirmed by taking u = 1 and v = 2%2. As Lu = —Au = 0 and
Lv = —Av = =2 we have (Lu,v) = 0 and (u, Lv) = —2 x (area of 2) # 0. Hence
(Lu,v) # (u, Lv).

In (2b) we have v = 0 on 09 and

(Lu,v) = // Vu - Vv dzdy
0

for all u,v € Dy and hence L is symmetric on Dy. It is also positive definite on

Dy, since
(Lv,v) = // Vo - Vo dedy = //(Vv)2 dzdy > 0.
Q Q

If (Lv,v) = 0 then the continuity of the integrand implies that Vv = 0 which in
turn implies that v is constant. The condition that v = 0 on 9€) implies that the
constant is 0.

In (2¢) we have v =0 on 0 and

@ = Bu on 0.
Ay

Now on the side y = 0 the outward normal direction is (0, —1)7 and thus

ou ou
o _8_y = —fu.
Hence
—/ va—ud:s:—l— Buv ds.
00, On Q0
Thus

—//vAvdxdy://Vu-Vvdxder/ Buv ds
Q Q Ion

and we have symmetry. It is also positive definite on Dy, by a similar argument to
the above where we now need to use the condition v = 0 on 9.
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(d) Q c R?
)

Dy ={C*Q): v= g_v =00n 00}, Lu=A%u=A(Au).
n

ANSWER

Let w = Awu and note the vector identities

—vAw = Vv-Vw -V - (vVuw),
—wAv = Vv-Vw -V - (wVv).

Integrating over {2 for a function v satisfying v = dv/dn = 0 on 92 we have

—//vAwdxdy://Vv-de:cdy:—//wAv dxdy.
Q Q Q
(Lu,v) = // vA*u dzdy = // AuAv dxdy.
Q Q

for all u,v € Dy. Hence L is symmetric on Dy,. It is positive definite on D[, because

Thus

(Lv,v) = //Q(AU)Q dady > 0.

If (Lv,v) = 0 then the continuity of the integrand gives Av = 0 in Q. Then by
using the boundary condition v = 0 on 0f) we similarly get

- //Q vAv dady = //Q(vv)2 dzdy = 0

and as before this gives Vo = 0 in € which in turn implies that v = ¢ where ¢ is a
constant. The boundary condition v = 0 on 92 implies that v = ¢ =0 in 2.

3. Derive the expressions involved in the weak forms for the following problems stating in
each case the appropriate function space involved and classify each boundary condition
as an essential boundary condition or as a natural boundary condition.

(a)
—(pu) +qu=f, 0<z<1l, u0)=u(l)=0,
where p € C'0,1], q, f € C[0,1] and p(z) > 0 and ¢(z) > 0.

(b)
—(pu')Y +qu=f, 0<z<1, u0)=0, u'(1)+u(l)=0,

where p € C'0,1], q, f € C[0,1] and p(z) > 0 and ¢(z) > 0.
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ANSWER

(3a), (3b). When we multiply the ODE by a test function v and integrate from 0
to 1, one of the terms is

1 1
—/ (pu')v dz = —[puv]§ + / pu'v' du.
0 0

In (3a) we require u(0) = u(1) = 0 and if we also insist that v(0) = v(1) = 0 then
we eliminate the boundary term. Hence we take the function space

V={veC?0,1: v(0)=0v(1)=0}

One version of the weak form is as follows. Find v € V such that

1 1
/ pu'v' + quv do = / fvdr forallveV.
0 0

The boundary conditions at * = 0 and at x = 1 are both essential boundary
conditions and need to be part of the specification of the function space V.

This derivation gets the correct expressions. To weaken the continuity requirements
on the space we can replace the space V given by V = H}(0,1).

In (3b) we require that u(0) = 0 and thus if v(0) = 0 then we have that the solution
u satifies

—[pu'v]s = —p(L)u'(1)v(1) = p(L)u()v(1).

This leads us to now define
V={veC?0,1: wv(0)=0}.

One version of the weak form is as follows. Find v € V such that

1 1
/ pu'v' + quu dz + p(1)u(1)v(l) = / fodx forallvelV.
0 0

The boundary condition at x = 0 is an essential boundary conditions and needs
to be part of the specification of the function space V. The boundary condition
u'(1) + u(1) = 0 is a natural boundary condition for this particular weak form.
Again, to weaken the continuity requirements on the space we can replace the space
V' just given by

V ={ve H'(0,1): v(0)=0}.

(c)

(d)

" =f, 0<x<l1l, u(0)=1u(0)=u(l)=1u(1)=0,
where f € C0,1].

4" = f, 0<x<l, U(O) = u//(o) — u(l) = u’/(l) =0,
where f € C0,1].
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ANSWER
(3c) and (3d). As in (1h) we have
1 1 1
/ u"vdr = [u"v]} —/ v do = —/ v dx if v(0) =v(1) =0,
0 0 0
1
— _[ I/UI](1]+/ u/lvl/ dz.
0
In (3c) we need v'(0) = u/(1) = 0 and if we restrict to v'(0) = v’(1) = 0 then the
boundary term in the last expression is 0. However in (3d) we are given u”(0) =

u”(1) = 0 and we do not need to place any such condition on v’ at the end points.
This leads to the following weak problems.

For (3c) we take
V={veC!0,1]: wv(0)=1v(0)=v(1)=72'(1) = 0}.

The problem is find v € V such that

1 1
/ u'v" do = / fvdx forallvelV.
0 0

All the boundary conditions u(0) = »'(0) = u(1) = /(1) = 0 are essential boundary
conditions.

We can weaken the continuity conditions on the space V' by taking instead

V={ve H*0,1): v(0)=12'(0)=0(1) =2'(1) = 0}.

For (3d) we take
V ={veC0,1] v(0)=uv(1)=0}.

The problem is find v € V such that

1 1
/ uv" do = / fodx forallvelV.
0 0

All the boundary conditions u(0) = u(1) = 0 are essential boundary conditions but
the conditions u”(0) = «”(1) = 0 are natural boundary conditions for this weak
form.

We can weaken the continuity conditions on the space V' by taking instead

V={ve H*0,1): v(0)=uv(1) =0}
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4. This was question 1 of the June 2004 MA3951 paper.

(a) Obtain the weak form expressions corresponding to each of the following boundary
value problems. In your answer you should give in each case the space of functions
involved and you should indicate if any of the boundary conditions are essential
boundary conditions.

(i)
—((1+2)) =1, 0<z<l, u(0)=u(l)=0.
[2 MARKS]

—u" +2u=2* 0<wz<l1, wu0)=u(1)+2u(l)=0.

[2 MARKS]

W — ! = 17 0< 1< 1’ U(O) — u'(O) — u’(l) = u”/(l) = 0.
[3 MARKS]

(b) In the following the ordinary differential equation
—u"+2u=2z, O0<z<l1, u0)=0, u(1)=0,

is to be approximately solved using Galerkin’s method.

(i) Derive the weak form for this problem in the form a(u,v) = (f,v).

[1 MARK]

(ii) Let ¢;(z) = 2%, i = 1,2,--- and let V,, = span{t,--- ,1,}. Determine the
Galerkin approximation from V; and determine a linear system for ¢; and ¢y
in the Galerkin approximation ¢,z + cox? from the space V5. You do not need

to solve these equations.
[5 MARKS]

(iii) Let M > 1 be a natural number and let h = 1/M, and x; = ih, i =0,1,--- , M,
denote equally spaced mesh points in [0, 1]. Also, on the ith element [z;_1,x;],

let
T;i — X T — Ti—1

él(l’): n <132(56’):T7

denote the standard linear basis functions defined on [z;_1,x;]. Show that the
element matrix K; and the element vector b, are given by

171 -1 h (2 1 h 1 h (1
fmg (G )5 () me =g (1) 45 ()

(In your answer you may assume that

/1 g?)%dxz/z gz;%dx:ﬁ and /z gz~51gz~52dx:ﬁ.)
Ti—1 Ti—1 3 Ti—1 6

[4 MARKS]
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(iv)

Let U denote the Galerkin finite element approximation to this problem using
piecewise linears defined on the mesh in part (iii) in the case M = 2 and let
Uy = U(zy) and Uy = U(zy). By using the results of part (iii) determine
the linear equations that U; and U, satisfy. You do not need to solve these
equations.

[3 MARKS]

(iii)

ANSWER

—/0 (1+2)uYvde = —[(1+ :c)u'v](l) + /0 (1+z)u'v do

1
= /(1+x)u’v' dz
0

if v(0) =v(1) =0. Let V={v e H(0,1): v(0) =wv(1) = 0}. For the weak
problem we have the following. Find v € V such that

1 1
/ (14 x)u'v" doe = / vdr forallveV.
0 0

Both boundary conditions which are part of the specification of the space V'

are essential boundary conditions.
2 MARKS

For the function u satisfying the ODE
1 1 1
—/ u'vdr = — [u’v]é+/ u'v' dw :/ v dor — o/ (1)v(1)
0 0 0
1
= / u'v" dx + 2u(1)v(1)
0

provided v(0) = 0. Let V = {v € H'(0,1) : v(0) = 0}. For the weak problem
we have the following. Find v € V such that

1 1
/ (u'v" + 2uw) dz + 2u(1)v(1) = / v*v dz forallv e V.
0 0

The boundary condition u(0) = 0 is an essential boundary condition.

1 1
/ (u//// _ u//)v dx — [(u/// _ u/)v:lé _ / (u/// _ ul)vl dx
0 0
1
— / (_u///v/+ulvl) dx
0
1
= — [u”v’]é - / (u"v" +u'') da
0

— 10—
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provided v(0) = v'(0) = /(1) = 0 and by using the boundary conditions
uw'(1) = w”"(1) = 0 that the exact solution u satisfies at x = 1. Let

V ={ve H*0,1): v(0)=v'(0)=v(1) =0}
For the weak problem we have the following. Find u € V' such that

1 1
/ (u"v" +u'v") dz = / vdr forallvelV.
0 0

The 3 boundary conditions in the specification of V' are essential boundary

conditions.
3 MARKS

We let V = {v e H'(0,1): v(0) = 0}. The weak form involves finding v € V'
such that for all v € V' we have

1 1
a(u,v) = / (u'v" + 2uv) doe = / v dz =: (f,v).
0 0
1 MARK

For any function
V= Z Oéilpl' € Vn
1
the bilinearity gives
a(v,v) =o' Ka.
As a(.,.) is a positive definite bilinear form
a’Ka = a(v,v) > 0.

We only get 0 when v = 0 and as the basis functions are linearly independent
this only occurs when a = 0. Thus the matrix K is positive definite.

When n = 1 we have
a(wla wl)cl = (f7 2/}1)

In the case n = 2 we have instead that ¢; and ¢, satisfy

(i) ot} () = (o)

Now ] = 1 and ¢}, = 2z. For the integrals

1 2 5
o, br) = /<1+2x2)dx:1+_:_,
0 3 3
' 3 2 3
a(a, 1) = /(2x+2x)dx:1+_:_7
0 4 2
! 4 2 2
= A2 420 dep = -+ 2 = 2
a(ta, o) /O(x +22*) dz 3+5 =
! 1
(xuwl) == / .TQ dx = -,
0 3
! 1
(x,10) = /x?’dx:—.
0 4
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Thus when n =1 we have ¢; = 1/5. When n = 2 we have
5/3 3/2 a) _ (1/3
3/2 26/15) \co) \1/4)"°

(ili) Let ¢1(s) =1 — s and ¢o(s) = s and let x = x;_1 + hs so that
o1(x) = ¢1(s) and  ga() = ¢a(s).

We have dz/ds = h. Also let

6 MARKS

a(u,v); = / (uW'v' +2uv) dz  and (z,v); :/ v dz.
Ti—1 Ti—1

KZ-:(a(él’qu)i a(gl’%)’:) and Q:(
Now ¢, = —1/h and ¢, = 1/h.

(Y (1)

/ (sb’zcb’l op ) T \-1 1)

The result for K; follows using the integrals given in the question.
On [z;_1,x;] we have z(s) = z;_1 + hs = x;_101(s) + z;¢P2(s), 0 < s < 1 and

thus
1 1
b — :c“h/ <1_5) ds+h2/ (S“;S)) ds
0 S 0 S
oWt
ZL‘Z_12 1 +6 2 .

(iv)
KU =10

where using K; and K, with h = 1/2 we have
2 -1 174 1
K:Q(_l 1)+6<1 2).
1 /1
bl_ﬁ<2>7 QQ_

ool —
VR
— =
~_
+
IHG"
Il

)

4>|"
R
(G2 QTN
~__

Thus

3 MARKS

— 12—
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5. Question 1 of the June 2004 MA5352 paper had some parts in common with question 1
of the MA3951 paper. These are some of the parts which were different. MA3951 students
had to answer 3 questions (from a choice of 4) in 3 hours. MA5352 students had to answer
4 questions (from a choice of 5) in 3 hours. The extra question on the MA5352 paper
was from the finite element material taught by Simon Shaw.

(a) Obtain the weak form expressions corresponding to each of the following boundary
value problems. In your answer you should give in each case the space of functions
involved and you should indicate if any of the boundary conditions are essential
boundary conditions.

—u" +2u=2* 0<wz<l1, wu0)=u(1)+2u(l)=0.

[3 MARKS]

u//// N ul/ — 17 0<x< 1’ U(O) — u/(O) — u’(l) = ul//<1> =0.
3 MARKS]

(b) In the following the ordinary differential equation

" +2u=2z, O0<xz<l1, u0)=0, «(1)=0,

is to be approximately solved using Galerkin’s method.

(1)

Derive the weak form for this problem in the form a(u,v) = (f,v) where a(.,.)
is a symmetric and positive definite bilinear form defined on an appropriate
space of functions V.

[1 MARK]
Let ;(x) = ', 1 = 1,2,--- and let V,, = span{t,--- ,1,}. The coefficients
c1,C2, -+, ¢y in the Galerkin approximation U, = > 7 ¢;); satisfy the linear

System
Kc=1»

where ¢ = (¢;), K = (a(¢4,v;)) and b = ((f,¢:)). Explain why the matrix K
is positive definite.
[3 MARKS]

Determine the Galerkin approximation from V; and determine a linear system
for ¢; and ¢, in the Galerkin approximation ¢;x + co2? from the space V. You
do not need to solve these equations.

[6 MARKS]

— 13—
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(a) (i)

(i)

ANSWER

For the function u satisfying the ODE
1 1 1
—/ u'vdr = — [u/v]é +/ u'v dr = / v dor — /' (1)v(1)
0 0 0
1
= / u'v" dz 4 2u(1)v(1)
0

provided v(0) = 0. Let V = {v € H'(0,1) : v(0) = 0}. For the weak problem
we have the following. Find v € V such that

1 1
/ (u'v" + 2uw) dz + 2u(1)v(1) = / 2*v dz forallv e V.
0 0

The boundary condition u(0) = 0 is an essential boundary condition.

3 MARKS

1 1
/ (u////_u//)v dr = [(u///_u/)v](l)_/ (u///_u/>v/ dz
0 0
— /1(—u”’v'+u’v') dz
0
1
_ _[u//v/]é+/ (u”v”+u'v’) dz
0

provided v(0) = v'(0) = /(1) = 0 and by using the boundary conditions
u'(1) = w""(1) = 0 that the exact solution u satisfies at x = 1. Let

V ={ve H*0,1): v(0)=v'(0)=v(1) =0}.
For the weak problem we have the following. Find u € V' such that

1 1
/ (u"v" +u'v") doe = / vdr forallveV.
0 0

The 3 boundary conditions in the specification of V' are essential boundary

conditions.
3 MARKS

We let V = {v e H(0,1): v(0) = 0}. The weak form involves finding u € V'
such that for all v € V' we have

a(u,v) := /Ol(u'v' + 2uv) doz = /01 v dz =: (f,v).

— 14—
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(ii) For any function
v = Z Oéilpl' € Vn
1

the bilinearity gives
a(v,v) =o' Ka.

As a(.,.) is a positive definite bilinear form

a"Ka =a(v,v) >0

We only get 0 when v = 0 and as the basis functions are linearly independent
this only occurs when o = 0. Thus the matrix K is positive definite.

When n = 1 we have

a(r, P1)er = (f, ).

In the case n = 2 we have instead that ¢; and ¢, satisfy

(st st (2) = (o).

Now ] = 1 and ¢}, = 2z. For the integrals

1

W) = /0<1+2x2>dx:1+§=§,
1

a(e, 1) = /0(233+2x3) dx:1+§:§’

1
a(hg,1hg) = /o (42 + 22") doz = % + % =15
1
('Ia,lvbl) = / '12 d[L‘ = )
0
1
@ie) = [ atdo=
0

Thus when n =1 we have ¢; = 1/5. When n = 2 we have

(3 a0s) ()= (12)-

— 15—
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6. The following was question 1 of the June 2003 MA3056S paper.

Obtain the weak form expressions corresponding to each of the following ODEs. In
your answer you should give in each case the space of functions involved and you should
indicate if any of the boundary conditions are natural boundary conditions.

—u'(x)=2%, 0<z<1, u(0)=u(l)=0.
(2 MARKS]

—u"(x)+u(z) =1, 0<z<l1l, u(0)=7d'(1)=0.
[2 MARKS]
(iii)
—u"(z) +6u(x) =z, O0<z<l, «(0)=0, o'(1)+u(l)=0.
(2 MARKS]
(iv)
u"(x) =cos(z), O0<z<1, u(0)=u(0)=u(l)=1u'(1)=0.
3 MARKS]

(b) Suppose that a weak problem is of the form:
find u € V' such that a(u,v) = F(v) forallveV

where V' is an appropriate space of functions, a(.,.) is a symmetric and positive
definite bilinear form on V' x V" and F'(.) is a linear functional on V. Let ¢1,--- , ¢,
denote linearly independent functions in V. Describe the Galerkin method for
constructing an approximation U, € span{¢i,---,¢,} C V and explain why the
linear system which is obtained involves a matrix which is symmetric and positive
definite.

[5 MARKS]

(c) Let ¢i(x) =a', i =1,2,---, let V,, = span{¢y,- -, d, } and consider the problem
—u"(z) +6u(z) =1, O0<z<l1l, wu(0)=1d(1)=0.

Obtain the Galerkin approximation U; € V;.

Also obtain the linear system K¢ = b for the coefficients ¢ = (c1,co)? of the
approximation Us(x) = iz + c2x%. You do not need to solve this system.

[6 MARKS]

— 16—



20-4-2005 9:15 @ M. K. Warby MA3951/MA5352 Numerical and Variational Methods for PDEs exercises 17

ANSWER

1 1 1
—/ u'"v dz = —[u'v]§ + / u'v' dz = / u'v' dx
0 0 0

if v(0) =wv(1) =0. Let V.= {v € C?[0,1] : v(0) = v(1) = 0}. The exact
solution u € V' satisfies

1 1
/ v dr = / 2?vdz forallveV.
0 0

2 MARKS

1 1 1
—/ u"v dz = —[u'v]§ + / u'v' dz = / u'v' dx
0 0 0

if v(0) = 0 and using «/(1) = 0. Let V = {v € C?[0,1] : v(0) = 0}. The exact
solution u € V satisfies

1 1
/ u'v 4 uv d:v:/ vdr forallvelV.
0 0

The boundary condition «/(1) = 0 is a natural boundary condition for this

weak form.
2 MARKS
(iii)

1 1
—/ u'vdr = —[uv]) +/ u'v' dx
0 0
1
= / v do —u'(1)v(1)
o
= / u'v" dz 4+ u(1)v(l)
0

using v/(0) = 0 and —u/(1) = u(1). Let V = C?[0, 1]. The exact solution u € V
satisfies

1 1
/ u'v" + 6uv dz + u(1)v(l) = / rvdr forallveV.
0 0

The boundary conditions »'(0) = 0 and «/(1) + u(1) = 0 are natural boundary

conditions for this weak form.
2 MARKS

1 1 1
/ "o dr = [u///v](l) . / Z" dr = _/ @ dr
0 0 0

1 1
— —[u”v']éjt/ u"v" dx:/ UHU” dx
0 0

— 17—
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if v(0) =/(0) = v(1) = /(1) = 0. Let V = {v € C*0,1] : v(0) = 2'(0) =
v(1) =v'(1) = 0}. The exact solution u € V satisfies

1 1
/ u"v" dr = / veos(x) dr forallv e V.
0 0

(b) With the Galerkin method we obtain U,, € V,, = span{¢y, - - - , ¢, } such that
a(U,,v) = F(v) forallveV,.

As U, € V,, it is of the form U, = > 7, ¢;¢; and by taking v = ¢;, i = 1,--- ,n we
get the n equations

j=1 j=1
In matrix-vector form this is

Kc=1b where K = (a(¢j,¢:)), c=(¢;) and b= (F(¢)).

The matrix K is symmetric because the symmetry of a(.,.) gives a(¢;, ;) =
a(¢i, ¢;). The matrix is positive definite because if v = Z?Zl d;¢; then

d"Kd = a(v,v) >0

and we get 0 only if v = 0 by the positive definite property of a(.,.). Since the
functions ¢4, - - , ¢, are linearly independent this is only possible if d = 0.

(c¢) From (a)(ii) the weak form expression is

1 1
a(u,v) = / uw'v' 4 6uv de = / v dz = F(v).
0 0

For the linear system K¢ = b we have

1
kll = a(¢17¢1>:/<1+6x2) dx:1+2:37
0
! 4 6 38
_ _ 2 1 _4 6 38
koo = a(¢2,¢2)—/0(4x +6x)dx—3+5 e
! 5 6 5
ko1 = a(¢2,¢1):/(2:c+61:)d:c—1+1:§,
0
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Now Uy = ¢1¢1 = c1x where ¢; = by /ky; = 1/6.

The approximation Us = c1¢1 + oy = 10 + cox? where

5 1
3 5 ) /e (3
5 38 ) |1
5 15 3

7. The following were parts of question 1 of the June 2003 MA5156S paper.

(a) Obtain the weak form expressions corresponding to each of the following ODEs. In
your answer you should give in each case the space of functions involved and you
should indicate if any of the boundary conditions are natural boundary conditions.

(i)

—u"(z) +12u(z) =1, O0<z<1, u(0)=u(1)=0.
[2 MARKS]
(i)
u""(z) —u"(z) = cos(z), 0<x<1l, u0)=u"(0)=u(l)=1u"(1)=0.
[3 MARKS]

ANSWER

1 1 1
—/ u'v do = —[u'v]§ + / u'v' dr = / u'v' dx
0 0 0

if v(0) = 0 and using «/(1) = 0. Let V = {v € C?[0,1] : v(0) = 0}. The exact
solution u € V' satisfies

1 1
/u'v'+12uvdx:/ vdr forallveV.
0 0

The boundary condition u/(1) = 0 is a natural boundary condition for this

weak form.
2 MARKS

1 1 1
/ "o dr = [u///v](l]_/ Z" dr = _/ @ " dr
0 0 0
1 1
_ _[u//v/](l)_'_/ u"v" dx:/ u"v" dr
0 0

if v(0) = v(1) = 0 and using the boundary conditions u”(0) = u”(1) = 0. Let
V ={ve C%0,1]: v(0) =v(1) = 0}. The exact solution u € V satisfies

1 1
/ u"v" + ' da = / veos(x) dz forallv e V.
0 0

— 19—
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The boundary conditions u”(0) = u”(1) = 0 are natural boundary conditions

for this weak problem.
3 MARKS

(b) In the following the problem,

—u"+12u=1, 0<z<1, u(0)=d(1)=0,

given in part (7a)(i), is to be approximately solved using the Galerkin finite ele-
ment method using a piecewise linear approximating function defined on a mesh
0=z¢9<x1 <---<uzpr = 1. Do the following.

(1)

(i)

(iii)

(iv)

When the finite element method is implemented in an element-by-element way
an actual element [z;_i,z;] is mapped to a standard element such as [0, 1].
State the linear basis functions ¢;(s), ¢2(s), 0 < s < 1 defined on the standard
element [0, 1] and express both the mapping and the form of the approximation

in terms of these functions.
[2 MARKS]

For the ith element [z;_1,x;] describe what is meant by the element matrix K;
and the element vector b; for this problem and determine K; and b;.

[4 MARKS]

Let QAﬁi, i = 0,1,---, M denote the piecewise linear hat functions associated
with the points 0 = 7y < 71 < -+ < 2y = 1 with the property ¢;(r;) = 1,
¢i(xj) =0, j # i. In the case M = 2 and uniformly spaced points z; = i/2,
i =0,1,2 determine the 3 x 3 global matrix K = (a(qgl-,qgj)), 0<i,7<2and
the 3 x 1 global vector b = ((f, $:)), 0 <4 < 2 where f(x) = 1.

[3 MARKS]

Determine the finite element approximation at z = 1/2 and at z = 1 using

this mesh.
[2 MARKS]

(i)

ANSWER

The basis functions are ¢1(s) = 1 — s, ¢o(s) = s. Let = : [0,1] — [x;_1, 7]
denote the map, let U denote the approximation and let U; = U(x;).

x(s) = wi101(8) +xida(s) = w1 + hys,  hy =1 — 244,
U(x(s)) Ui_1¢1(8) + Uqug(s) = Ui—l + (UZ — Ui_l)s.

(ii) Let

a(u,v); = / w'v' 4+ 12uv de and  (f,v); = / v da.
Ti—1 Ti—1

— 20—
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Also let ¢; be such that ¢;(x(s)) = ¢;(s). The element matrix and element

vector are
_ (4l a@l,@)@-) . b,;((f,{n)i)
B <a(¢2 )i alga, d2); e (f.02)i)
dg;  dsdg;  1dg

dr  dvds h;ds
As ¢} = —1 and ¢}, = 1 we have

K = hi <_11 _11) +12h, /0 1 @1—_8; 5(182 8)) ds

! ! 1 ! 1 1 1
[as=[a-ras=5 [sa-sga=3-1-2
0 0 3 0 2 3 6

The element matrix is

1/1 1\ 12k (2 1
Ki_E<—1 1)+ 6 (1 2)'

The element vector is

1 . hz
o[ () w-5()
0 s 2 \1
4 MARKS
(iii) The element matrices and the element vectors are the same for all the elements.
With M =2, h; =1/2, 1/h; = 2 and

9 9 92 1 4 -1
Kl_K?‘(—Q 2)+<1 2)“(—1 4)’

01
7¢1

A 4 -1 0
K=|-1 8 -1
0 -1 4
1
-1
b=712
1

(iv) At the node zo = 0 the approximation satisfies the essential boundary condi-
tions and thus U(zg) = 0.

Ulw) = U(1/2)é1(x) + U(1)a(x)

() () -10)

— 21—
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U1/2)\ 1 (4 1\1(2) 1 (9
Ul1) ) 31\1 8/4\1) 124 \10)°

8. The following was question 2 of the June 2003 MA3056S paper.

We get

2 MARKS

In the following the ordinary differential equation
—u"+12u=1, 0<z<1, u(0)=u(l)=0

is to be approximately solved using the Galerkin finite element method using a contin-
uous piecewise linear approximating function defined on a mesh 0 = 2y < z; < --- <

(a) Derive the weak form for this problem in the form a(u,v) = (f,v).

[2 MARKS]

(b) When the finite element method is implemented in an element-by-element way an
actual element [z;_1,x;] is mapped to a standard element such as [0, 1]. State the
linear basis functions ¢1(s), ¢2(s), 0 < s < 1 defined on the standard element [0, 1]
and express both the mapping and the form of the approximation in terms of these
functions.

[2 MARKS]

(c) Let ¢;(x), i =0,1,---, M denote the piecewise linear hat functions with the prop-
erty ¢;(z;) = 1 and ¢;(z;) = 0 for j # i. On the element [z;_;, ;] indicate which
of these functions are non-zero and indicate how the non-zero functions are related
to ¢1 and ¢, given in (b).

[2 MARKS]

(d) For the ith element [x; 1, ;] describe what is meant by the element matrix K; and
the element vector b, for this problem and determine K; and b;.

[5 MARKS]
(e) In the case M = 3 and uniformly spaced points z; = i/3, i = 0,1,2,3 do the
following.

(i) Give the 3 element matrices K7, K,, and K3 and the 3 element vectors b, by
and bs.
[2 MARKS]

(ii) Determine the 4 x 4 global matrix K = (a(¢;, gzgj)), 0<4i,j <3 and thed x1
global vector b = ((f, ¢:)), 0 < i < 3 where f(x) = 1.

[4 MARKS]

(iii) Determine the finite element approximation at x = 1/3 and at z = 2/3 ob-
tained using this mesh of 3 elements.

[3 MARKS]

— 29—
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ANSWER

1 1
—/ uv dx :/ u'v dz.
0 0

The weak form involves finding v € V = H}(0,1) such that

(a) If v € H}(0,1) then

1 1
a(u,v):/ u'v + 12uv dx:/ vdx = (f,v) forallveV
0 0

with f(z) = 1.
2 MARKS

(b) The basis functions are ¢1(s) = 1 — s, ¢o(s) = s. Let x : [0,1] — [z;_1, 7]
denote the map, let U denote the approximation and let U; = U(x;).

x(s) = wi101(8) +xida(s) = w1 + his,  hy =1 — 244,
U(x(s)) = Ui_1¢1(8) + Uqug(s) = Ui—l + (UZ — Ui_l)s.

2 MARKS

(¢) On [z;_1, ;] the functions ¢;_(z) and ¢;(x) are the only non-zero basis func-
tions.

éz‘il(fc@)) = ¢1(s),
gi(z(s)) = oa(s).

(d) Let ' '
a(u,v); = / w'v' +12uv de and  (f,v); = / v du.
Ti—1 Ti—1

Also let ¢; be such that ¢;(z(s)) = ¢(s). The element matrix and element
vector are

dp; _ dsdei _ 1 do;
de  dxds h; ds’
As ¢ = —1 and ¢4 = 1 we have

K = hi (_11 _11) +12h, /0 1 (2%1_—85 3<1S§ 8)) ds,

! ! 1 ! 1 1
/Oszds:/o(l—s)Qd:s:g, /08(1_5>d‘9:§_§:6'

The element matrix is

1 1 -1 12h; (2 1
Ki_Ei(—l 1)+ G (1 2).

— 23—
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The element vector is

1 .
bi:hi/ (1_5) d82&<1).
0 S 2 \1
5 MARKS
(e) (i) The element matrices and the element vectors are the same for all the
elements. With M =3, h; =1/3, 1/h; = 3 and

3 -3\, 2(2 1) (B —=\ 1/13 -7
_ _ _ - — 3 3 — _
ams=r (G )5 (0)- (5 )55 %)

1/1
91:92293_6<1)-
2 MARKS
(ii)
13 -7 0
. 1=7 26 -7 0
K_§ 0 -7 26 -7
0 0 -7 13
1
.12
1
4 MARKS

(iii) At the nodes zy = 0 and z3 = 1 the approximation satisfies the essential
boundary conditions and thus U(zy) = U(x3) = 0.

U(x) = U(1/3)¢1(x) + U(2/3)0s(x)
1 (% ) (o) =5 ().
(o) = (7 20) () = ()

3 MARKS

where

— 24—
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9. Apart from a few minor changes and re-typing this was question 3 of the 1999 MA3056S
paper.

The two point boundary value, with solution u(x),
—u"(z) +6u(z) =2, 0<z<1l, u(0)=u(l)=0,

is to be solved via its weak formulation using a Galerkin finite element based on piecewise
linear functions. For test functions v where

v e Hy(0,1):={v: v,v" € Ly(0,1), v(0) = v(1) = 0}, (1)

derive the weak form of problem (1).

ANSWER

1 1 1
—/ u"v do = —[u'v]} +/ u'v' de = / u'v' dz for all v € Hy(0,1).
0 0 0

The weak form involves finding u € H}(0, 1) such that

1 1
a(u,v) = / u'v' + 6uv dz = / rv dr =: F(v) forall v e Hj(0,1).
0 0

In the case of the partition 0 = zg < 1 < 29 < - < z,, = 1, show that the weak form
can be expressed in the form

ne ne

Za(u,v)i = Z(:p,v)i for all v € H}(0,1), (2)

i=1 i=1

where

a(u,v)i:/ uw'v' 4+ 6uvdr  and (m,v)i:/ v dx.
Ti—1 Ti—1

ANSWER

Because of the properties of the integral we have for any function g € Ly(0,1) that

/01 g(x) da = ; / o(z) da.

Thus

ne ne

a(u,v) = Za(u,v)i and (x,v) = Z(az,v)i.

i=1 i=1

The result then follows

— 25—
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Explain what is meant by an isoparametric finite element method.

ANSWER

Let S denote a standard element and let I; = (x;_1, ;) denote an actual element and
let z : S — I; be a mapping which is one-to-one and onto. Also let U denote the finite
element approximation and let ¢, - - - , ¢, denote the basis functions defined on S. An
isoparametric finite element method is a method in which on each element the mapping
and the approximation are both of the form

10 ().
Umm::z@w>

A linear isoparametric finite element, based on the equally spaced points x; = i/3, i =
0,1,2,3 is used to approximate the solution of (2). Let U(z) denote the approximation
and let U; = U(z;). With s = s(z) denoting the linear mapping of [x;_y, z;] onto [0, 1]
and with a(s) = u(z(s)) and 0(s) = v(z(s)) for z;_1 < x < z; show that

L /dadv ds _dx
R LLnvee d
alu, v); /O<dsdsd:c+6 ds) >
1 dx
;= o
@ = [ al)it s

Then show that the element matrix for the element [x; 1, x;] is,

1/11 -8
3\-8 11)°

Assemble the 3 element matrices to form a 4 x 4 global matrix. Also compute the 3
element constant vectors and assemble these to create a 4 x 1 global vector. Then,
by taking account of the homogeneous boundary conditions obtain the 2-by-2 system
satisfied by U; and Us. You do not have to solve the system.

ANSWER
We have
i(s) = ula(s)), o= CU0T CL_ CLCS
N ' ds  drds dxr dsdr
Thus
L[ rds\? da do dx
a(u,v); = u'v' 4 6uv) dx—/o ((%) ££+6u Eds

0

(x,v); = /OSL’

[
-/ (@d_ud_v an

+ 6uv—

dx ds ds ds

—ds

— 26—
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The linear basis functions on [0, 1] are $1(s) =1 — s and ¢o(s) = s. For the derivatives
¢, = —1 and ¢, = 1. The mapping is

dx ds 1
.[L'(S) :xi—1+hs, h:'ri_l‘i—la % :h’ %:E

The element matrix K; and the element vector b, are

K, = (a(pp, d1)i), 1<k,1<2 and b, = ((z,¢r)i), 1<k<2

where ¢p(z(s)) = ¢i(s).

1 1
a’((bh (bl) = /; <% -+ 6(1 — S)2h) dS = % + 6h |:(S _31)3:| — % + Qh’
0
1
a(p2, p2) = /0 <% + 632h) ds = % + 2,
1 - h— —

As h =1/3 we have

1/1 -1 2 1\ _1/11 -8
K"_ﬁ(—1 1)+h<1 2>_§<—8 11)'

If ngSk, k = 0,1,2,3 denote the piecewise linear hat functions defined for all x € [0, 1]
then the 4 x 4 global matrix is K = (a(¢x, ¢;)), 0 < k,I < 3. The nodes z; = 1/3 and
xo = 2/3 are both on two elements and thus the 2,2 and 3, 3 entries of the global matrix
get contributions from two elements. Assembling gives

11 -8
. 1| -8 22 -8
K‘§ -8 22 -8

-8 11

For the element vector we have

1 & 1 1— 1 1
b, = h/ x(s) (gbl) ds = h/ (i—1 + hs) ( . S) ds = hx;—y (i) + h? (?) .
° ’ 0 2 3
Thus
L (%
Ql = § 1]
3
oo Lz 1fs)_1(s
= gl o) 7o)
2 3 6
oo 2z 1fs) _1(s
U3 = § 1 +§ 1 :§ e
2 3 3

[
)
¥
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Assembling these element vectors gives the global vector

Ne)
W DN ol

The approximation U(z) = Uy () + Usde(x) where Uy and U, satisfy

(ol wee () =5 (5% ) () = (22 =5 ()

10. Let V' be an inner product space, let a(.,.) be a symmetric and positive definite bilinear
form on V' x V and let f € V. Show that a function u € V satisfying
a(u,v) = (f,v) forallveV
uniquely minimises the functional
1
I(U) = 50’(7]7 U) - <fa U)'
ANSWER

This is a standard book work question.
As we are attempting to show that u minimises I(.) over V we compare I(u + v) with
I(u) for any v € V, v # 0. We have

1

I(utv) = I(u) = glalutv,utv)—a(u,u) = ((futv)=(fu),
1
= 5(261’(“7 U) + CL(U, U))) - (f7 U)a
1
= §a(v,v) >0
using the properties of a(., .) to expand the a(u+v, u+v) term, using a(u, v)—(f,v) =0
and using the positive definite property. This tells us that u uniquely minimises the
functional
11. (a) After first reformulating the two-point boundary value problem

—u" +6u=1, u(0)=u(l)=0

into weak form, calculate the Galerkin method approximation U(x) = c1¢(x)
where ¢1(x) = (1 — x).

— 28—
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ANSWER

We have essential boundary conditions at x = 0 and at x = 1. Let
V={veC?0,1: wv(0)=uv(1)=0}.

The exact solution u € V satisfies

1 1
a(u,v) = / u'v' + 6uv dz = / vdr=(1,v) foralwvelV.
0 0

The Galerkin approximation U = ¢, ¢, satisfies

a(U, 1) = a(¢p1, ¢1)c1 = (1,¢1) giving ¢ = %.

o =x—2% ¢ =1-2u.

| —
Wl
D

(1,(;51):/1:5—372 dz =
0

1 1
a(pr, ¢1) = /0 <]5/12 + @2 do = /0 (1 —2z)* 4+ 6(x — 2*)? dz.

The integrand is
(1 — 4a + 42?) + 6(2? — 22° + 2*)

Thus

4 4 1 2 1
— 1__ — _ —_— = — et
Thus
1/6 15 5

TS5 48 16

After first reformulating the two-point boundary value problem

—u" +6u=21z, u(0)=0, u'(1)+u(l)=0

into weak form, calculate the Galerkin method approximation U; € span{¢;} and

U, € span{¢y, 2} where ¢1(z) =1 and ¢o(x) = x.

ANSWER

Let Lu = —u” + 6u and let f(x) = x. Then

1
(Lu,v) = —[u'v]§ + / u'v' + 6uv dz.
0
Using the boundary conditions we have

—[u'v)y = —u/(1)v(1) + ' (0)v(0) = u(1)v(1).
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Let V = C?[0,1]. The exact solution u € V satisfies

1 1
a(u,v) = / u'v" + 6uv dz + u(l)v(l) = / fvdr forallveV.
0 0
Both the boundary conditions are natural boundary conditions for this weak form.

Ui = c1¢1, where a(¢1,¢1)c1 = (f, ¢1).
With ¢; = 1, ¢} = 0.

1 1
a(¢17¢1)=/0 6¢7 do +¢1(1)> =6+1=7, (f,gbl):/o xdx:%.

Thus
1 o 1
cp = T giving U; = 7R

=c c where now a(é1,01) a(¢r, d2) ) = (f, 1)
Uy = c1¢1 + co¢2 wh (a(¢2,¢1) a(¢2,¢2)) (02) ((f, ¢2))

Now ¢ = x, ¢, = 1. Thus

1
(f,¢2) = /0372d$:%7
1 1
a(¢r, ¢2) = /6¢1¢2 dx+¢1(1)¢2(1):/ 6rdr+1=3+1=4,
0 0
1
a(pg, ¢2) = /1+6x2dx+1:1+2+1:4.
0

The linear system is

Solving

()= )

Hence Uy = (24 2)/36.

QO [

12. Let 0 =29 <21 < -++ < Tpe = 1 and let le(x) denote the piecewise linear ‘hat’ function
which takes the value 1 at © = ;. Describe mathematically ¢;(z) and ¢}(z), 0 <z < 1.
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ANSWER

The graph of a hat function is

Let hy = x; — 251, hiy1 = 21 — 5.

r — T;_
( .Z 1)7 ri1 < v < a, %, Tiol < T < Ty,
i i
b = T; — X 2 _ —1 _ A
gbl(l‘) - 7< ;ZliJrl >7 Z; S X S Tit1, and QZSZ(.I’) - hi-i-l’ T, <x < Tit1,
0, otherwise. 0, T < Ty 1 Or T > T,

¢L(x) is not defined at © = x; 1, v = x; and = x;,1.

If .
a(u,v) = / w'v' + quu dux,
0

where ¢(z) > 0, then explain why the matrix K = (a(¢s, ¢;)), 1 < i,j < ne—1 is banded
and state the band width.

ANSWER

(ﬁi is only non-zero in (z;_1, x;+1) and if ¢ and j are such that (z;_1, x;11) N (21, 2j41) =
empty set then a(¢;, ¢;) = 0. If we keep i fixed then we get non-zero entries only if
j=1t—1,5=17and 7 =i+ 1. Hence K is a tri-diagonal matrix, i.e. a matrix with band
width=3
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Let
ne—1
N
U= c;iQ;
Jj=1

and consider the case of equally spaced points with spacing h = 1/ne.

(a) In the case ¢ = 0 show that

a(U, ;) = /01 ¢i(z) da

gives
2
—Ci—1 +2¢; — i1 = h”.

32

ANSWER
For the right hand side and using h; = h;11 = h we have

LA Yo — iy Tl ri —x h h
(z) do = - d T “dr=—+—-=h.
/0¢’(x) o /m I x+/m. A

i—1 i

For the left hand side

a(U, ng) = a(qgi—la Qgi)ci—l + a(ﬁf;z‘, ng)cz + a(qgi-i-l? Qgi)ci-i-l-

For the integrals note that the derivatives of the basis functions are constant on

each element.

A A L —1
a(gbi—la gbl) = / ) dl’ = 5
- h? h
A A Tirl —1
a(Giy1, i) = / 2 dr = 70

A il Tkl ] 2
a(di, ¢i) = /a; ﬁdx+/mi ﬁdx:ﬁ'
The equation is

1
E(—Cz‘q +2¢; — ciy1) = h.

(b) In the case ¢ = a > 0 is constant on [0, 1] show that the equation

1
a(U, ¢;) :/ ¢; dx
0
leads to a relation of the form
kii—1cio1 + kici + ki ipicipr = h.

In your answer you should give k;;_1, k;; and k; ;41 in terms of h and o.
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ANSWER

We again have

~

G(U, ¢i) = a(ﬁlgi—l, Qgi)ci—l + a(ﬁf;z‘, ng)cz + a(qgi+1a Qgi)ci-i-l =h
where now .
a(u,v) = / u'v' + auv dz.
0

We consider the integrals of terms such as quéj

/l‘z bi(2) i1 (x) da = % xl (r —xi_1)(x; — x) d.

To evaluate the integral let y = z—x;_1 so that z;—z = —(z—z;) = —(y—h) = h—y.

T; h h2 h3 h3
/x“(x —zi1) (2 —x)da. = /0 y(h—y)dr = h? 5=
Similarly
Ti+1 R R 1 Tit1 h3
/ Pul@)din(z) do = h? (= 2i)(ip1 —x)do = 6
Hence

N N 1
kiici = algi—1,¢i) = 7 +a
N N 1
kiivi = al¢izr, ¢i) = 7 + 066-

For the a(q@i, gzgl) term we have to consider the following.

T; ~o Ti+1 ~o 1 T 9 Tit1 9
o; do + ¢;dr = 73 (x —xi—1) do + (x — x441) da

S S G U -
- m2\3 3) 3°

PN 2 2h
ki = a(¢i, ¢s) = 7 + Oé?-

Thus

)

An alternative way of organising the computations here is to get the terms k;;_1,
k;; and k; ;1 after first computing the element matrices which is part of the next
question. The details of calculating the element matrices are given in the answer
to the next question. To summarise the results we have for (z;_1,z;) an element
stiffness matrix corresponding to the derivative terms and an element mass matrix

corresponding to integrating the basis functions of respectively

1/1 -1 G b2
-1 1) % Gl 2/
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Combining these appropriately we get the element matrix associated with the weak

form of . )
1 -1 i (2 1
Ki:h_i<—1 1)”5(1 2)-

The terms k; ;1 and k; ;41 only have a contribution from one element in each case.
As h; = h for all elements we get

1 h
Kiio1 = Kiip1 = 7 + 046-

The k;; term involves combining the contributions from elements (z;_1,x;) and
(2;, 2;+1) which in turn involves adding the appropriate diagonal terms of K; and

K, 1. We have

2 4h
ki,i = -4+ a—.

h 6

13. Apart from a few minor changes and re-typing this was question 1 of the 2001 MA3056S
paper.

The weak form of the two point boundary value problem
Liu(@) = f(z), 0<z<1, u(0)=A u(l)=5, 1)

where L is a linear differential operator, f(x) is a given function and A and B are
given values, is set up by multiplying (1) by a test function v € H}(0,1) := {v: v €
H'(0,1), v(0) = v(1) = 0}, and integrating the product over [0, 1]. After integrating
the weak form of problem (1) is of the form:

1
find v € H such that a(u,v) = / fvdz Yve Hj(0,1), (2)
0

where H := {w: w € H'(0,1), w(0) = A, w(1) = B} and where a(.,.) is a symmetric
bilinear form.

(a) Explain how you would apply the Galerkin technique using polynomial basis func-
tions over [0, 1] to derive an approximation U to w € H, the solution of (2).

[6 MARKS]

ANSWER

The problem as given has non-homogeneous boundary conditions but can be con-
verted to one with homogeneous conditions by defining

ui(x) = A+ (B — A)x which satisfies u1(0) =A and wu(1) = B.
The solution u € H is of the form u = u; + @ where @ € H}(0,1). We have

a(u,v) = a(u; + u,v) = (f,v) giving a(a,v) = (f,v) — aluy,v) =: F(v).
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With polynomial basis functions ¢y, ¢o, - in Hg(0,1) we define

V,, :=span{¢q, -+, dn}.

The Galerkin technique involves computing U, € V,, such that

a(U,,v) = F(v) forallveV,
from which we get U, = uy + U,. With U, = > cio; the coefficients ¢ = (¢;)
satisfy K¢ = b where

K = (a(¢i,9;)), b= (F(¢)).

(b) Derive the weak form of the problem
—u’(x) =2, 0<axz<1, wu(0)=1, wu(l)=0. (3)

[4 MARKS]

ANSWER

1 1
—/ u'vdr = / uw'v" dz for v satisfying  v(0) =v(1) = 0.
0 0

The weak form can be written as find v € {v € H'(0,1) : v(0) =0, v(1) = 1}
such that

1 1
a(u,v) = / v dr = / r'v dz for all v € Hy(0,1).
0 0

(c) Using the Galerkin technique with trial function
Ulr)=(1—2)+cz(l — 2) + ce2*(1 — )
containing the unknown parameters ¢; and ¢y, and the respective test functions
vi(z) =2(1 —2) and wvy(z) = 2*(1 — 2),

set up the 2 x 2 system of linear equations for ¢; and c,.

[Do not attempt to evaluate the integrals involved and do not attempt to solve the

system. |
[5 MARKS]
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ANSWER

u =1-—ux,
U(z) = w1 + c191(x) + c2d2(z), with  ¢i(z) = z(1 — x),
¢a(x) = 2*(1 — x).

The integrands in the a(.,.) expression involves derivatives of the basis functions
¢ and ¢5. We have

() =1—2r and ¢h(z) =2z — 322

Ko — ((5’347%)) B (a(uh%))
- (@' é) a(u1, ¢2)
where
fo [ ) o [ oS ) o

14. The following was question 3 of the June 2003 MA3056S paper.

Let V' denote a Hilbert space with inner product (.,.), let a(.,.) denote a symmetric and
positive definite bilinear form defined on V' x V and let F(.) denote a linear functional
defined on V. Also let V;, € V and suppose that there exists v € V and U, € Vj
satisfying

The equations are

a(u,v) = F(v), forallveV,
a(Up,v) = F(v), forallveV,.

(a) Define what it means for a(.,.) to be positive definite on V' x V.
[1 MARK]

(b) If e = u — Uj, then show that a(e,v) = 0 for all v € V},.

[1 MARK]

(c) Let ||v||z = a(v,v)"/? denote the energy norm on V.

State the Cauchy Schwarz inequality as applied to a(v,w) and show that
Hu - Uh”E S Hu — ’UHE forallv € Vh.

Comment on this property of Uy,.
[4 MARKS]
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(d) Show that v € V and U, € V}, uniquely minimise the functional

I(v) = %a(v,v) — F(v) (%)

over the spaces V' and V}, respectively.

[5 MARKS]

(e) For the functional I(.) defined in (x) in part (d) show that
1
](Uh) = I(U) + §a(u — Uh,u - Uh)

[2 MARKS]

(f) Let ||.|| denote the usual norm of V given by |[v| = (v,v)"2. Suppose that the

bilinear form a(.,.) and the linear functional F'(.) satisfy the coercive and bounded
properties that

fillol? < a(v,v),  la(v,w)] < saflvllwll,  [F(v)] < ssloll

for all v,w € V where 0 < k1 < Ko and k3 > 0 are constants. Show that under
these conditions we have the following.

(i)

K
Ju— Uy? < H—2||u —v|? forall v € V.
1

[2 MARKS]
(i)
e AR
[2 MARKS]
(iii) y
I(v) > —2—;
for all v € V, where I(v) is defined in (x) in part (d).
3 MARKS]

ANSWER
(a) a(.,.) is positive definite on V' x V' if a(v,v) > 0 for all v € V with a(v,v) = 0 only

when v = 0.

(b) Subtracting the two relations when v € V}, and using the properties of the bilinear
form we have

0 = a(u,v) — a(Up,v) = a(u — Uy, v).
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(¢) The Cauchy Schwarz inequality is |a(v, w)| < ||v| g||w] &-
Using the result in (b) we have for all v € V},

lu=Tnl* = a

a

(u—Uh,u—Uh)
(u—Uh,u—Uh)—l—a(u—Uh,Uh—v)
= a(u—Up,u—v)

< llu=Unllpllu =l

using the Cauchy Schwarz inequality. Dividing by ||u — Uy||r # 0 gives the result.
This result tells us that U}, is the best approximation to u from the space V), in the

energy norm.
4 MARKS

(d) Let v € V and consider I(u+ v).

Iu+v) = %a(u+v,u+v)—F(u+v)
— %(a(u, w) + 2a(u,v) + a(v,v)) — (F(u) + F(v))
1

= I(u)+ (a(u,v) — F(v)) + ia(v,v).

From the property of u we have a(u,v) — F(v) = 0 and thus
1
Iu+v)=1I(u) + éa(v,v) > [(u)

for all v # 0 using the positive definite property of a(.,.). u hence uniquely min-
imises the functional over V.

Similarly if v € V}, and v # 0 then we have
1
I(Uy +v) =I1(U,) + éa(v, v) > I(Up)

showing that U, uniquely minimises the functional over V},.

(e) From the derivation used in (d) we take v = Uj, — u to immediately get the result.

2 MARKS

(f) (i) If we use the coercive and bounded properties on the terms in the best approx-
imation result in part (c) we get for all v € V' that

fullu = Unll* < llu = Unll < flu = vl < sallu — o]

The result then follows.

2 MARKS
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(ii)
Fallull* < alu,u) = F(u) < rglull
giving [Ju|| < k3/kK1.

Similarly
k1| Unl1? < a(Uy, Uy) = F(Uy) < k3]|Uy||

giving ||Un|| < k3/k1.
2 MARKS

(iii) Using the coercive property of a(v,v) and the bounded property of F(v) we
have !
R1
I(w) = loll” = sllvll = 5 (s lloll® = 2xs]l0])

Now the quadratic

g(t) = rit? — 2kst
= K (t2 — 2—%)
R1
2 2
_— (t - @t) 5
R1 R1
(2
> —2 forallt e R.
R1
Hence
K3
I(v) > ——.
(v) Gy

3 MARKS

15. Apart from a few minor changes and re-typing this was question 5 of the 2001 MA3056S
paper.

(i) Let V denote a Hilbert space with inner product (.,.) and let a(., .) denote a bilinear
form which is such that a(v,v) > 0 for allv € V with v # 0. Also let V}, C V denote
another space of functions such that v € V and U, € V}, minimise the functional

1) = Salv,v) — (£,0)

over the spaces V' and V), respectively where f € V. Show the following:
(a) a(u,v) = (f,v) for all v € V and a(Up,v) = (f,v) for all v € V},.
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ANSWER

As u € V minimises I(v) over V it follows that for all v # 0 the quadratic
g(t) = I(u+ tv) — I(u) has a minimum at ¢t = 0, i.e. ¢’(0) = 0. Now

o0) = Slalut to,ut ) = afu,w)) = ((f,u+ 1) = (7,0)
= %(2a(u,v)t + a(v,v)t?) — (f,v)t

= (a(u,v) — (f,v))t+ ga(v,v)

v
and ¢'(0) = a(u,v) — (f,v). Thus for all v € V' we have a(u,v) = (f,v).

Similarly if v € V}, v # 0 and we now let g(t) = [ (U, +tv) — I(Uy) then g has
a minimum at ¢t = 0 with

0=9g'(0) = a(Up,v) = (f,v)
and we have a(Up,v) = (f,v).

If e =u — Uy, then a(e,v) =0 for all v € V.

ANSWER

This follows immediately from
(f,v) =a(u,v) = a(Uy,v) forallvel,

and the properties of the bilinear form, i.e. a(u—Up,v) = a(u,v)—a(up,v) = 0.

I(Uy) = I(u) + 3ale, e).

ANSWER

From the answer to part (a) (with ¢ = 1) we have
1
Iu+v)=1(u)+ aa(v,v).
Taking v = U, — u = —e gives

I(Up) = I(u) + %a(—e, —e) = I(u) + %a(e, e).

ale,e) < a(u —v,u —wv) for all v € V3. Comment on this result.

ANSWER
Let v € V},. We have
ale,e) = ale,u—Up,) =ale,u—U,+ (U, —v))
= ale,u—0)
< ale,e)"?a(u —v,u —v)"?* by the Cauchy Schwarz inequality.
Hence
ale,e) < a(u—v,u —v).
Let ||v||g == a(v,v)1/2 denote the energy norm. The result just given shows

that the Galerkin approximation Uy is the best approximation to u from the
space V4 in the energy norm.
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(ii) Show that the weak form of
u"(x) = f(z), 0<z<1 withu(0)=1u'(0)=u(l)=1u(1)=0,

involves the bilinear form

1
a(u,v) :/ u"v" du.
0

ANSWER

Let v satisfy v(0) = ¢'(0) = v(1) = v'(1) = 0. We use integration by parts twice to
get

1 1
/ u"v de = —/ u""v" dz, using v(0) = v(1) =0,
0 0
1
= +/ u"v" dz, using v'(0) =v'(1) = 0.
0

The weak form involves finding u € V = {v € H?(0,1) : v(0) = v'(0) = v(1) =
v'(1) = 0} such that

1 1
/ u"v" do = / fodx forallveV.
0 0

If the finite element method is used to obtain an approximation U, to w using
piecewise cubic Hermite elements on a mesh 0 = zg < 21 < -+ < x,, = 1 then
it can be shown that the approximate solution and its first derivative are exact at
the point z;. In the case f(x) =1 give the exact solution. Also in the case ne =1
give the finite element solution. Under these conditions of f(x) = 1 and ne = 1
and with e = u — U}, show the following:

(a) €(1/2) =0.
(b) €"(a) = 0 where o =
(c) €"(1/2) = 0.

+

[%

1
2

[10 MARKS]

ANSWER

I have not done much on the module on cubic Hermite elements but there is not
much to know to answer this question.

Firstly, for the exact solution we just need to integrate f(x) four times and apply
the 4 boundary conditions. As f(z) = 1 the exact solution u(z) is a polynomial of
degree 4 with the coefficient of ! being 1/4! = 1/24 and the boundary conditions
imply that u(z) has double roots at x = 0 and at z = 1. Hence

1 , @

= —2%(1 — (2% =2z +1).
241’( ) (x x+1)

u(zx) = o1
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With one cubic element the finite element solution is completely determined by
the boundary conditions and we have U, = 0 and thus the error e = u — U, = u.
Differentiating we have

1
¢(a) = 554’ —6a” +20) = %(zﬁ —3r+1) = 1‘6—2(2;5 — 1)z —1),
1 1
e'(z) = ﬂ(m:2 — 120 +2) = E(6:,;2 — 62+ 1),
1 1
" _ = _ _ = _
e'(x) = 12(12x 6) 2(2:L‘ 1).

From the factors we immediately have the result for parts (a) and (c). For part (b)
the roots of ¢”(z) are
(62—4(6) 6+v12

1
TEOETT G T T 12 T2

L V3
6

16. The following relates more to what is done in the MA5352 part of the module but anyone
who has done Fourier series before can attempt it.

Let v € C[0,1] be a function satisfying v(0) = v(1) = 0 and let

[e.e]

v(z) = Z ¢k sin ke

k=1

be its Fourier series representation. Show that for all such functions

1 1 ,
/0 v(r)? do < P/o V'(x)” du.

Use this result to determine the values of k for which Lu = —u” — k*u is positive definite
on the space

Dy ={veC?0,1]: wv(0)=wv(1) =0}

ANSWER

Let v,, be the sum of the first n terms. We have
n
vp(z) = Z ¢ sin ke,
k=1

v () = Z ke cos k.

k=1
Then
n n
2 _
() = E g cpe sin kma sin lmx,
k=1 =1
n n
PN
v, ()" = E E klcie cos kma cos lmx.
k=1 =1
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Now from the identities

cos(y +2) = cosycosz —sinysin z,

cos(y —z) = cosycosz + sinysinz
we get
1
cosycosz = §(cos(y + 2) + cos(y — 2)),
1
sinysinz = i(cos(y —z) —cos(y + 2)).
We need to consider integrals of the form

1
1
/0 cos(k + )mx de = W[Sin(k + Dzl = 0,

1
1
/ cos(k —)rr dz = ———[sin(k — )wz]y =0, provided k # I,
0 (k—=0Dm

1
/ dr = 1, corresponding to k =1[.
0

Thus

it k=1,

1 1 1
/ sin krxsinlrr dr = / coskmxcoslme doe =< 2
0 0 0 ifk#L

From this it follows that

As k*c > ¢ for k=1,2,--- it follows that

1 1
/ v (2)* dz > 7r2/ v, (2)? da.
0 0
(In fact we can only have equality here if ¢, = 0 for & > 2 and this corresponds to

v(z) = ¢y sinmzx.) Letting n — oo gives the required inequality.

Using the boundary condition v(0) = v(1) = 0 we have

1 1 1
(Lv,v) = / (—v" — E*v)v do = / v — k2% da > / (7 — k*)v? da.
0 0 0
We have the positive definite property if 72 — k? > 0, i.e. |k| < m. L fails to be
positive definite if £ = 7. In this case the function v(x) = sin7x is non-zero and gives

(Lv,v) = 0.
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As a comment here, if you have taken courses on ODEs which has included sections
on eigenvalues then the above is connected with the eigenvalues and eigenfunctions of
Lu = —u” from a space of functions which includes the conditions u(0) = u(1) = 0.
An eigenvalue \ with corresponding eigenfunction u # 0 of L satisfy Lu = Au, i.e.
—u” — Mu = 0. There are no eigenvalues for A\ < 2. X\ = 72 is the smallest positive
eigenvalue. The complete set of eigenvalues are \;, = k?w2, k = 1,2,--- corresponding
respectively to the eigenfunctions sinkrz. k=1,2,---.

— 44—
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MA3951/MA5352:
Numerical and Variational Methods for PDEs
Exercise sheet 2 and Answers

1. This was question 2 of the June 2004 MA5352B paper.

(a) Let € denote a bounded simply connected domain with a piecewise smooth bound-
ary 02 and consider the Poisson problem

—Au=1inQ, wu =0 on 08y, g—u:gon(‘?QQ
n

where 0€; and 0, give a partition of IS, g is a constant and where 9/9n denotes
partial differentiation in the direction of the outward normal to 0€2s.

Show that if u satisfies this problem then u € V also satisfies the weak formulation

//Vu~Vvdazdy://vd:cdy+g/ vds
Q Q 09

for all v € V where
V={veH(Q): v=0 on o}

[6 MARKS]

(b) Suppose that the domain ) is partitioned into n triangular elements €2y, --- €,
such that

Q= UQT’ 2; N Q) = empty set for ¢ # j
r=1
and let T denote the standard triangle with vertices sI = (0,0), sI' = (1,0) and
53 =(0,1) in the (s,t) plane.

(i) State the three standard linear Lagrange basis functions ¢1, ¢o and ¢3 defined
on T such that ¢;(s;) = 1 and ¢;(s;) = 0 if j # i.

[1 MARK]

(i) Let z; = (w1, 31)7, 2y = (w9,92)T and 23 = (w3,y3)T denote the vertices of €,
let U(x) denote a linear function defined on Q, and let U; = U(z;), i = 1,2, 3.
Describe the mapping x : " — €, which is such that s, — z,, i = 1,2, 3, give
U(z(s,t)) for (s,t) € T and show that the gradient vector VU can be written

as
Liys—y1 y1— e Uy — U
U=—
v J<$1—$3 ro—x1) \Us —Us
where J = (22 — 1) (y3 — y1) — (z3 — 21)(y2 — 1)

[6 MARKS]
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(iii)

exercises 2

MA3951/MAB352 Numerical and Variational Methods for PDEs

Explain what is meant by the element matrix K, for the Poisson problem of
part (a) and show that in the case z; = (0,0)7, z, = (2,0)T and z; = (0,1)7

we obtain
5/4 —1/4 -1
K.=|-1/4 1/4 0
—1 0 1

In the case g = 0 also give the 3 x 1 element vector b,..
[6 MARKS]

Consider the uniform mesh of Q := (0,4) x (0,2) consisting of eight triangles

and nine nodes as shown in the figure below and let ¢i(x), i = 1,2,---,9

denote the piecewise linear basis functions defined on 2 which are such that
if j =1,

) 1,
dilz;) = {o, it j £

Also let Uy = U(z;), j = 1,2,--+,9 denote the Galerkin approximation at the
nodal points. Given the result of part (iii) and given that the element matrices
have an invariance to translation, uniform scaling, reflection and rotations
determine a(qgj, ¢s5), j=1,2,---,9 and (1, ¢5) in the equation

a(¢;, d5)U; = (1, ).

3] 0 ORI
21=(0.1)
31=(02)
4l=(2.0)

2] 8 Bl=2D)
61=(22)
[7]_(470)
[8]:(471)

1] ] w2
(6 MARKS]

ANSWER

(a) From the vector identity

V- (vVu) =vAu+ Vv -Vu



20-4-2005 9:15 © M. K. Warby MA3951/MA5352 Numerical and Variational Methods for PDEs exercises

we have using the divergence theorem that

—//vAudxdy =
Q
= //Vu-Vvdxdy—g/ vds
Q 05

//Vu-Vvd:cdy—/ vVu-n ds
Q o0

if v = 0 on 0§2; and by using the given boundary condition on 9€2y. Thus if v € V

then the exact solution uv € V satisfies

//Vu-Vvdxdy://vdxderg/ vds.
Q Q 09

(b) (i) The basis functions are

O1(s,t) = 1—s—t,
¢a(s,t) = s,
gbg(S,t) =

(i)

z(s,t) = z;01(5,t) + To02(s,t) + z3¢3(s, 1)
=z + (xy —zy)s + (3 — 1)),
U(E(Sv t)) = Ulgbl(svt) + U2¢2(87t) + U3¢3(57t)

= U1 + (U2 — Ul)S + (Ug — Ul)t

By the chain rule of partial differentiation

OU(x(s, 1)) or  oy\ [oU ou
0s _ | 0s ? or | _ jr Ox
oU (z(s,t)) dr 0y ou ou
—oF ot ot oy oy
where J is the Jacobian matrix. Thus
ou U (x(s, 1))
vu= %) =jr| 0 _jr (Y
U AU (x(s,)) Us — U,
dy ot
The Jacobian matrix J is given by
~ To —T1 X3 — 1
J = — s — =
(22— 2, 2:-2) (yz -y Y3 — yl)

and hence the determinant is

J = (zo —21)(ys — y1) — (23 — 1) (2 — ¥1)

r1 — I3
Ty — 1

and the inverse is

- 1 _
-1 Ys —
=t (

T Y1 — Y2
and the result follows.

) |
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(iii)

(iv)

Let ¢, ¢2 and ¢3 be the basis functions defined on €, given by

¢z(£(87t)) = ¢i(87t)7 1= 17273
and let
a(qgh(l;j)r = // V(;gl- . V(ﬁj dxdy

The element matrix is the 3 x 3 matrix (a(¢;, d;),)-
For the specific element given we have x = 2s and y = ¢ so that

- (20 - - (1720
J_<O 1), J=2, Jlt=J _(0 1).

Now let
8<Z~51 0(52 8<Z~53 0p1 Oy 0o
_ |9z Or O | _ jr 851 852 053 _ (T2 20
Ob1 Oy Doy 0p1 0¢y O3 -1 0 1)
oy Oy Oy o ot ot
As B is constant on €2, and as €2, has area 1 we have
5/4 —-1/4 -1
K.=B"B=|-1/4 1/4 0
—1 0 1

The element vector in this case is is the 3 x 1 vector ((1, ¢;),). As the integrand
is linear, this can be computed exactly using the one-point quadrature rule.
At the centroid of the element each basis function has value 1/3 and the area
of the triangle is 1 and thus

6 MARKS

All 8 triangles in the mesh have the same angles as the triangle in part (iii)
and hence all 8 element matrices are the same provided the 3 vertices of each
triangle are taken in the appropriate order. Now

8
(b, d5) = > a(e;, és)r.
r=1

As points 3 and 5 and points 7 and 5 are not on the same element we get

a(¢s, ds) = a(¢r, é5) = 0.
As (K, )23 = 0 we get a(dy, ¢5) = a(%a 5) = 0.
For the connection between <b5 and <;52 we need to consider two contributions

given by (K,)12.

a(ba, ¢5) = a(ds, ds) = o

— 4—
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For the connection between q§5 and g?>4 we need to consider two contributions
given by (K, )1 3.

a(q§4, QEEJ) = a(éf;(;, §Z§5) =—1—-1=-2.

For the diagonal entry we have contributions from 6 triangles. We need to
consider each diagonal entry of K, twice.

o 5 5 1 1
a(¢5,¢5)21+1+1+1+1+1:5.

As ¢5 is non-zero over the 6 triangles which have z, as a node we have

(17§Z§5) = Z(LéS)r = g = 2.

The equation is

1
5U5 - 2(U4 + UG) - §<U2 + Ug) = 2.

2. Derive the weak forms for the following problems involving Poisson’s equation
~Au=f inQCR? feC(Q),

subject to the boundary conditions given below, stating in each case the appropriate
space of functions involved (in terms of Sobolev spaces) and classify each boundary
condition as an essential boundary condition or as a natural boundary condition.

(a) u=0 on .

(b) uw =0 on 0Qp and % = 0 on 0Qy where 00 = 0Q2p U 00y and assuming that
00 p is not empty.

(¢) uw =0 on 0Qp and g—g + fu = g on 9y where G > 0, 002 = 0Qp U 0y and

assuming that 0)p is not empty.

ANSWER
From the vector identity
V- (vVu) = vAu+ Vu - Vo

we obtain

—vAu =Vu-Vov—-V - (vVu).
Then by the divergence theorem

—//vAudxdy://Vu~Vvdxdy—/ va—uds,
Q Q a0 on

— 5—
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(a) If we take v = 0 on 02 then the boundary integral term is 0. Hence we define
V={veH(Q): wv=0ond0}.

The weak form is find v € V such that

//Vu-Vvdxdy://fvdxdy Yv e V.
Q Q
du

(b) As o, = 0 on the part 0$2 we only need v to vanish on the other part of 92 to
remove the boundary integral term. Hence we define

V={veH(Q): v=0o0ndp}.

The weak form is find v € V such that

//Vu~Vvdxdy://fvdazdy Yo e V.
Q Q

(¢) On the part 0Qy we have from the mixed boundary condition that

098~ (Bu— g
If we define
V={veH(Q): v=0o0ndQp}
then

ou /
— [ v—ds= (bu — g)vds.
/aQ on Ny
The weak form is find v € V such that

//Vu-Vvdxder ﬁuvds://fv dxdy+/ guvds YveV.
Q Glor Q QN

3. Let T denote the standard triangle with vertices sT = (0,0), s7 = (1,0) and sZ = (0,1)
and let (2, denote an actual triangle with vertices z;, z, and z.

(a) State the linear basis functions ¢, ¢ and ¢3 defined on T" which have the property
that ¢(s;) = 1 and ¢;(s;) = 0 for j # i and give the affine mapping of T" onto (2,
such that z(s;,) = z;, i =1,2,3.

State the Jacobian matrix J of this mapping.



20-4-2005 9:15 © M. K. Warby MA3951/MA5352 Numerical and Variational Methods for

ANSWER

The basis functions are

o1(s,t) = 1—s—1t,
¢2<87t> = S,
¢3(87t) = 1

The affine map is

x(s,t) = 2101(5,1) + Toa(s,t) + 2303(5,t) = 21 + (29 — 21)s + (25 — 1)1

With ng = (z1,%1), £2T =

= (22,y2) and 2l = (z3,y3) the Jacobian matrix (written
in several different ways) is

Oz Oz _ S t] _ B B _ [(r2—71 311
(% _t> % %g (£2 Ly X3 &1) <y2_y1 y3_y1)'
S

Q

J

Let U(z) denote a linear function defined on T and let U; = U(z;), i = 1,2,3.
Show that the gradient vector VU can be written as

Lilys=—y1 vi—we) (U2—Us
VU = —
J <$1—$3 2 —x1) \Us — Uy

where J = (22 — 21)(y3 — 1) — (z3 — 21) (Y2 — 1)

ANSWER
Now
ou
I
dy
By the chain rule of partial differentiation
U (z(s,1)) or  dy\ [9U ou
ds _ | 0s ? dr | _ 57| Oz
oU (z(s,t)) dz 0y ou ou
—oF ot ot Jy dy
Thus
%U U (z(s, 1))
_ x| _ 5T ds
Vo= lau | =7 ovtas.)
dy oi
Now

U(Q)(S,t) = U1 + (UQ — U1)8 + (Ug — Ul)t,
oU(z(s,t))
Js <U2 - U1)
U (z(s, 1)) Us=Uh )"
ot
— -
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As
Jl = l ( Ys — U1 —(373—561)) JT = l < Ys— —(yz—yl))

J (Y2 — 1) Ty — 1 J (g —x1) @3 — 11

where J = det(J) = (w2 — 21)(ys —y1) — (x3 — 21)(y2 — y1) we have the result.

(c) Given that we have reformulated Poisson’s equation —Au = f in £, v = 0 on 92
into weak form involving

a(u,v)://QVu-Vv dxdy://ﬂfv dady = (f,v),

explain what is meant by the 3 x 3 element stiffness matrix K, for the triangle €2,
and show that it can be written in the form

_|‘]|T 7T -1 1 0
r—7BB where B =J 10 1

where, as above, .J is Jacobian matrix and J = det(.J).

ANSWER
Let ¢1, ¢ and ¢z be the basis functions defined on €, given by
Gi(a(s,t)) = ¢ils,t), i=1,2,3.

The element stiffness matrix is the 3 x 3 matrix (a(¢;, d;)).

Let 5 - .
0p1 0¢s 0o
— | 9r Or Or
0p1 0¢y 0o
dy 0Oy 0Oy

which is constant on €2,. We have
Thus
K, = (area of ,)B” B.

The area of the triangle Q, is |.J|/2 = | det(J)|/2.
To obtain an expression for B we use the chain rule of partial differentiation.

0p1 Opy O3 Oxr Oy 061 Ody s
Jds 0O0s 0Os | _|[0s Os Oor Oxr Oz
01 Opy 0o oz Jy Op1 Ody O
o ot o ot ot 5@1 5@2 5@3
Thus
0%, 0y 03 061 Oy s
8g: 8{6 8:}: _ T Os 0s Os
8¢1 8(]52 8¢3 a(bl 8(252 a(bfi
Jdy Jy 0Oy o ot Ot

(-1 10
=7/ (-101)'
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(d)

Explain why the matrix K, given in part (c) is unchanged if we do any of the
following.

We shift the vertices to x;, +¢, i = 1,2, 3, i.e. we do a translation.
We do a uniform scaling, i.e. z; — ax,, i = 1,2, 3 where a > 0.

We rotate the points z; about a point or we reflect the points z; about a line which
corresponds to replacing the Jacobian matrix J by @)J where ) is a 2 X 2 orthogonal
matrix.

ANSWER
From part (c) we have
-1 -1
1 _ o
K==|1 olc(t 1Y) where ¢=|det()j1iT,
2 0 1 -1 0 1

The Jacobian matrix of the map corresponding to the points x, +¢, @ = 1,2, 3 does
not depend on ¢ and hence C' and K, is independent of c.

If we replace x; by az; then the Jacobian matrix J,, is given by

J,=aJ and J '=

«

J L

QIr

As we have a 2 x 2 matrix
det(J,) = o det(J).

Hence C' is independent of o and we have the same element stiffness matrix.
Let Jo = QJ. As QTQ = I we have | det(Q)| = 1 and |det(J)| = | det(J)|. Also

jél =J'Q" and JST =QJ "

so that
1 5-T -1 5-T

and again we get the same matrix C' and element matrix K.

In the case of the isosceles triangle 2, with vertices zI' = (0,0), 2 = (2,0) and

23 = (1,tan ) show that the element stiffness matrix is

sec2a 2—secta —2
2 —sec’a  secta =2
—2 —2 4

B 1
" 4tana

T

[Note that we obtain from this the two specific cases covered in the notes by let-
ting & = 7/2 (for the standard triangle) and letting o = 7/3 (for the equilateral
triangle).|
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2 = (1, tan o)

z{ = (0,0) z3 = (2,0)

ANSWER

The mapping and the Jacobian matrix are

- (21
z(s,t) =z98 +a3t, J= (o tana) '

The determinant is J = 2tan «. The inverse of the Jacobian and its transpose are

= 1 /tana —1 ~ 1 (tana O
-1 -T _
/ _J<0 2) and - J _J(—l 2)'

The matrix B is given by

B—l tana 0 -1 1 0y (—tana tana 0
g -1 2 -1 0 1) —1 -1 2/

Using sec? a = 1 + tan? a we have

sec? v 1—tan’a —2 1 sec? v 2 —secla —2
B'TB=—[1—-tan’a sec?a 2| == [(2=sec?a secta =2
J?2 J?
—2 —2 4 —2 —2 4
As
|J| 11

2J2 2]  4dtana
we have the required result.

4. The following was question 4 of the June 2003 MA3056S paper.

Let € denote a bounded domain with a polygonal boundary 92 and consider the Poisson
equation

—Au=1 in§, wu=0on .

(a) Show that the weak form for this problem involves the expression

//Vu~Vvdxdy://vdxdy
) )

and state an appropriate space of functions in which u and v should lie.

[5 MARKS]

— 10—
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(b) Suppose that the domain 2 is partitioned into n triangular elements €y, ---,€Q,
such that

Q:UQi, ;N Q; = empty set for ¢ # j
i=1

and let T denote the standard triangle with vertices sI = (0,0), sI = (1,0) and
53 =(0,1) in the (s,t) plane.

(i) State the 3 standard Lagrange basis functions ¢1, ¢5 and ¢3 defined on 7" such
that ¢;(s;) =1 and ¢;(s;) = 0 if j # 4.
[1 MARK]

(ii) Suppose that the triangle €2; has vertices x;, x, and z; and let U; = U(z;),
i = 1,2,3 denote the values of the function U(z) which is linear for z € ;.
Describe the mapping z : 7' — €; and describe the function U(z) at any point
x € Q; using ¢1, ¢ and ¢g of part (i). Also give the Jacobian matrix J of the
mapping z : T' — §2; in terms of z,, z, and z5.

[4 MARKS]

(iii) Explain what is meant by the element stiffness matrix K in this case of Pois-
son’s equation and piecewise linear basis functions and show that K; can be
written in the form

= /-1 —1
2 0 1 -1 0 1

[5 MARKS]

(iv) If €; is the equilateral triangle shown below with vertices z1 = (0,0), zI =
(2,0) and 2 = (1,+/3) then give an affine mapping z : T — ©; and show that

1 2 -1 -1

K=——|[-1 2 —1
23\ 1 1 o

[3 MARKS]

zi = (1,V/3)

E{ - (07 O) ig - (27 O)

— 11—
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Suppose that €2 is the hexagonal domain which is the union of the 6 equilateral
triangles shown below. Given that the element contribution to the right hand side
vector for each triangle is

o1(z) 1
)3 ()

where (51, ®» and ¢5 are the linear basis functions on €2;, and that all the element
matrices are the same and are as given above, determine the finite element solution
at the centre (0,0) using piecewise linears on this mesh of 6 triangles.

[2 MARKS]

(_17\/5) (17\/5)

(_17_\/3) (17_\/§>
ANSWER

(a) From the vector identity
V- (vVu) =vAv + Vo - Vu

we have by using the divergence theorem that

—//vAudxdy = //Vu-Vvdxdy—/ vVu-n ds
Q Q o0
= //Vu-Vvdxdy—/ v@ds
Q a0 On
= //Vu-Vvdxdy
Q

if we restrict to functions v such that v = 0 on 9€2. Hence if we take

V={vel*Q): v=0 on I}

— 12—
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then the exact solution u € V satisfies

//Vu-Vvdxdy://vdxdy forallv e V.
Q Q
5 MARKS

(b) (i) The 3 functions are ¢1(s,t) =1 — s —t, ¢o(s,t) = s and ¢3(s,t) = t.

(ii) The mapping and the approximation are given by

z(s,t) = z01(5,1) + 2902(5,1) + 23¢3(s, 1)
= z;+ (2 —2y)5+ @3 —z)t,
U(E(Sv t)) = U1¢1(87 t) + U2¢2(87 t) + U3¢3(87 t)
= U1—|—(U2 —Ul)S—i-(Ug—Ul)t.
The Jacobian matrix J is

J= S t — (7 =) —_ (T2—T1 Tz~
9y 9y (2 2;) <y2—y1 Ys — 1
Os Ot

where z, = 2, — z; and 3 = 23 — ;.

4 MARKS

(iii) Let b1, ¢s and @5 denote the basis functions defined on €; such that
6i(z(s,0)) = ¢(s,0), j=1,2,3,

a(u,v); = // Vu - Vv dzdy.
Q;

The element stiffness matrix is the 3 x 3 matrix given by K; = (a(q;j, ék)l)
Now by the chain rule we have in matrix form

Also let

0, or Oy\ (00 0,
Js | _ [ O0s Os 6:? _ T 8@
6@- Ox @ 8@ a¢z‘
ot ot at/ \oy Dy
Hence -
9¢i 0¢;
8@ _jT 0s
Dy ot
Let
&51 O 8(53 0p1  Opy O3
gp— |9z Odxr Odx | _ jr[ds Js Os
0p1 Oy 0o 01 O0py O3
8y ay 8y ot ot ot

(-1 10
=7 (—101)'

— 13—
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The jk entry of BT B is the integrand in a(gz;j, g?)k)z As the integrand is constant
over (); it follows that
K; = (area of K;)B'B

and as the area of K is |.J|/2 where J = det J the result follows.

5 MARKS
The mapping is
25+t
o) = (2= s+ (g — 2 = (2
and the Jacobian matrix is
= 2 1
J =23,
s 1 /vV3 -1 1 /V3 0
1_ = T _ —
J(O 2) and -/ J<—1 2)
Thus
oL (V3 0\ (-1 10)_1/-v3 V30
J\-1 2)\-101) J\ -1 -1 2
Hence
1 4 -2 =2
B'B=—|-2 4 =2
J2
-2 =2 4
As |J]/(2J%) = 1/(2|J|) = 1/4V/3 the result follows.
3 MARKS

If ¢ is the piecewise linear function associated with the point (0,0) then the
equation that U(0,0) satisfies is

a(e, 9)U(0,0) = (1, 9).

Because of the symmetry we get equal contributions to a(gzg ngS) and (1, g?)) from

each of the 6 triangles. Hence a(¢, $) = 6/y/3 and (1,¢) = 6/+/3 and we get
U(0,0) =1.

— 14—
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5. The following was question 5 of the June 2003 MA3056S paper.
Let Q = {(z,y): 0 <x <2 0<y<1}, a2x1rectangle, and consider Poisson’s
equation with the mixed boundary conditions

—Au = f in Q,
u(0,y) =u(2,y) =0, 0<y<1,
M0 = L1y =0, 0<z<2

dy dy

where f is a continuous function on €2.

(a)

Show that the weak form for the problem can be written as follows.
Find v € V such that

a(u,v) == //Q Vu- Vo dedy = //va dzdy =: (f,v)

for all v € V. In your answer you should give the space of functions V' taking into
account any natural boundary conditions.

[5 MARKS]

Suppose that the weak form is to be approximately solved by the finite element
method using a piecewise bilinear function defined on a uniform mesh of square
elements each of length h. In an implementation each square element is mapped
to a standard element S = {(s,t) : —1 < s,t < 1} with vertices sT = (-1, —1),
s8 = (1,-1), s8 =(1,1) and s} = (—1,1) in the (s, t) plane.

(i) State the 4 standard basis functions ¢1, ¢9, ¢3 and ¢4 defined on S such that
i(s;) = 1 and ¢;(s;) = 0 for j # i.

[2 MARKS]

(ii) Let 2] = (¢,d), 28 = (¢ + h,d), 23 = (c+ h,d+ h) and 27 = (¢,d+ h) be the

vertices of an actual element €2; and let Uy, Uy, Us and U, denote respectively

the value of the approximation at these points. Let z:S5 — (); denote the
mapping of the standard element to €2;. Explain why this can be written in

the form
_[c +ﬁ 14+s
L=\d) T \1+e )

[1 MARK]
Further show that the gradient vector can be written in the form
U
w571 Loty 1 ) [
Uy
[3 MARKS]

— 15—
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(iii) It can be shown that the element stiffness matrix for this problem has the form

26 v =B ~
yo28 v =B

-5 v 28
vy -8 v 28

Show that # =1/3 and 7 = —1/6.
[Hint: First explain why (5 + 2y = 0.]

[4 MARKS]

(iv) Consider the mesh involving the two squares shown in the figure. Let <b1, ¢2,
gbg, ¢4, gz55 and gZ)G be the 6 piecewise bilinear functions defined on € which
satisfy ¢;(;) = 1 and gbz(_]) — 0 for j # i. Describe ¢o(z) and ¢5(z) for all
x € Q.

[3 MARKS]

By using the element stiffness matrix given in part (iii), determine the entries

a(qg% QZA)Q)v a’(¢327 &5) and a(qgfn QZA)5) in the linear System

(ol e (o) = ((79)

[2 MARKS]
A:f - (07 1) ig - (17 1) ig - (27 1)
[ L 2 L J
u=>0 Q1 Qz u=0~0
[ L 4 .
iy = (0,0) iy = (1,0) i3 = (2,0)
ANSWER

(a) From the vector identity
V- (vVu) = vAv+ Vv - Vu

we have using the divergence theorem that

—//vAudxdy = / Vu-Vvdxdy—/ vVu-n ds
Q Q o9

= / Vu-Vvdxdy— v% ds
Q

on
= //Vu-Vvd:cdy
Q

— 16—
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if the integrand of the boundary term vanishes on 0€2. We are given that the normal
derivative of u vanishes on the top and bottom sides of the rectangle and thus to
remove the boundary term we only need to restrict to functions v such that v =0
of the other two sides. Hence if we take

V={vel(Q): v(0,y) =v2y)=0,0<y<1}

then the exact solution u € V satisfies

// Vu - Vo d:pdy:/ fvdedy forallveV.
Q Q

The boundary condition du/dxr = 0 on two of the sides is a natural boundary
condition for this problem.

) )
bilst) = 0-9)1-0)
bals,t) = (1)1 1),
o3(s,t) = i(l+8)(1+t>,
Guls.t) = F(1—s)(1+0)

(ii) Since ¢1 + ¢2 + @3 + ¢4 = 1 the mapping z(s,t) is given by

= () (§oons (Jouens ()
- (J)+5(50)

Thus
or oy _h e oy
gs ot 2 % 9 T s
Hence
os _ot_2
or Oy h
Now
U(E(Sv t)) = U1¢1(87 t) + U2¢2(87 t) + U3¢3(87 t) + U4¢4(87 t)
Thus
U
ou ou 0p1 O¢py 0¢s Oy 1
dr |\ _ 2|09s|_2(0s 0s 0s s Us
ou h \ oU h\0p1 Ops Ops3 Oy Us
dy ot o ot ot ot/ \y,
Uy

1 (t—=1 1—t t+1 -+ [0
2h \s -1 —(s+1) s+1 1-s

— 17—
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(iii) Since ¢1 + ¢ + @3 + ¢4 = 1 we get V(o1 + ¢2 + ¢3 + ¢4) = 0 which implies
that the entries on each row of the stiffness matrix add to 0. Thus 3+ 2y = 0.
Let ¢; be such that ¢;(z(s,t)) = ¢;(s,t). From part (ii) we have

;2 B _ 72
V(bj—h 96, and J=h"/4
ot

where J is the determinant of the Jacobian matrix.
The entries of the element stiffness matrix are

// Vo - ng)ldxdy—/ / aa(i’“%‘il 8;5:88?01 dt 1<k1<4.

1 /1ot
B:—/ /(t—1)2+(s—1)2dsdt
16 /1)1
We have

/11/11(75—1)2dsdt:/11/11(s—1)2dsdt:2[(821)11—1:1—36.

Henee 1 /16 16\ 2
W=—|—+4+—) =2,
& 16(3+3) 3

Thus §=1/3 and v = —1/6.

Hence

(iv)
b () z(1—vy), in Q,
02(7) {(Q—x)(l—y), in €,
bo(z) = xy, ?n O,

(QEQ, ¢32) and a(g55, g?>5) involve adding a diagonal entry of the matrix for 2, with
a diagonal entry of the matrix for 2. We have a(da, d2) = a(¢s, ¢5) = 4/3.
The a(<;52, ¢5) entry has a contribution of ¥ = —1/6 from each element. Thus

(¢27 ¢5) = _1/3

— 18—
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6. Apart from a few minor changes and re-typing this was question 2 of the 2001 MA5056S
paper. (MA5156S was previously labelled as MA5056S).

For the boundary value problem in which u(z) = u(z,y) satisfies —Au(z) = f(z),
z € Q; u(z) =0, z € 99, where Q C R? has a polygonal boundary 92 derive the weak
formulation

Oudv  Oudv
a(u,v) // <(’9x(’9x 8_y8_y) dxdy—//ﬂfvdxdy for all v € 9,

giving the appropriate space of functions S.

[4 MARKS]

ANSWER

From the vector identity

V- (vVu) = vAu+ Vu - Vo

we obtain

—vAu =Vu-Vv—-V - (vVu).
Then by the divergence theorem

—//vAudxdy:/ Vu-Vvdxdy—/ U@_uds'
Q Q a0 871

If we take v = 0 on 02 then the boundary integral term is 0. Hence we define
V={veH(Q): v=0ond0}.

The weak form is find v € V such that

//Vu-Vvdxdy:/ fvdedy YveV.
Q Q

The weak problem is to be approximated using a finite element method based on piece-
wise linear functions defined over a triangular partition of €2. The finite element method
approximation is Uy(z). What is meant by a finite element method being conforming
and what conditions must Uy (z) satisfy in order to be a conforming approximation?

[2 MARKS]

ANSWER

The finite element method is conforming if the finite element space V}, is a subspace of
the space V' in the weak formulation. A piecewise polynomial function is in V' if it is
continuous, i.e. V, C C(Q).

— 19—
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Suppose the standard triangular element is taken as the equilateral triangle 7" shown in
the Figure with nodes 2z = (—1,0), z = (1,0), 21 = (0,/3).

Y

z§ = (0,/3)

&{ = <_17O> Qg = (170) &

What are meant by the Lagrange basis functions on an element and what conditions
must they satisfy?
[1 MARK]

ANSWER

The linear Lagrange basis function are linear polynomials which are 1 at one of the
nodes and 0 at the other nodes

(a) Write down the three linear Lagrange basis functions ¢1(x,y), ¢2(x, y) and ¢3(x,y).
[4 MARKS)]

ANSWER

We can arrange for ¢,(z) to be 0 at z, and at x4 if is is 0 along the line passing
through points z, and z4. This line is

y =31 —1).
Hence
p1(z,y) = Cy+V3(x —1)) with 1=¢1(—1,0)=C(-2V3).

Thus 1
$1(z,y) = ﬁ(\@(l —z) —y).

Similarly for ¢, we get

1
da(7.9) = 5= (V3(1+7) —y)
and for ¢3(z,y) we get )
¢s3(x,y) = Ve

— 20—
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(b)

Hence write down the approximation Uy (z,y) for (z,y) in T.

[1 MARK]

ANSWER
Let U; = Up(z;) for i = 1,2,3. Then

Uh(xvy) - Ulgbl(xvy)+U2¢2(x7y)+U3¢3(xay)

= U (V31— 2) — y) + Vo (V3(1 + 2) — y) + Uy

)
2V/3 2V/3 V3

Derive the 3 x 3 element matrix arising from a(u,v)|r.

[6 MARKS]

ANSWER

The gradient of each of the basis functions is constant on the triangle and the area
of the triangle is v/3. Thus the 4, j entry of element matrix is

V3V, - V.

Now for the gradients we have
_1 1 0
2 2
B - (V(bl V(bQ v¢3) - ( 1 1 1 ) =

The element matrix is

4
3

3

w b N

23\

Without evaluating the integrals give the 3 x 1 element vector arising from (f, v)|7.

[1 MARK]
ANSWER
The element vector is
(bl (.T, y)
J[ 1) (o) | sy
T ¢3 (.T, y)

Explain how the linear form for U, (x,y) as in (b) will produce a conforming finite
element approximation.

[1 MARK]

— 21—
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ANSWER

On the edge z, to z, the basis function ¢3 is 0 and thus U,(z) depends only on
U, and U,. Similarly on the other two edges the approximation depends only the
value of Uy, at the vertices of that edge. Thus at a point z, on an edge between
two adjacent triangles we obtain the same value Uy(z,) as x — x, from either of
these triangles indicating that Uy (z) is continuous across element edges and this
sufficient to ensure a conforming approximation.

(f) For the equilateral triangle shown below with the six nodes

), zi =(1,0),  zj =(0,V3),
)7 £5T = (_%’ ?)7 Qg = (070)

(=)

@I{ = (_17

[

ﬁ = (%7
write down the six quadratic Lagrange basis functions N;(z,y), i = 1,2,3,4,5,6.
[Hint: The functions N; can be expressed in terms of the ¢; of part (a).]

[5 MARKS]

ANSWER

We can arrange for the function N; to be quadratic and 0 at 5 of the points if it is zero
on two different straight lines which contain these 5 points.

In the case of N7 we have the line passing through z,, z, and x5 (used in the construction
of ¢1) and we have the line passing through z-, and z4. The line passing through z

and x4 is
y = —V/3z.

This gives a factor
1

V3

— 29—
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which is 1 at the point z,. Thus

L (VBrty)oue,w).

N1($,y) = _\/g

Similarly

No(z,y) = %(ﬁx—yw:c,y»

N3(z,y) = (% - 1) ¢3(,y).

Now (3, %52 ) P3(3, 52 ) = 5. Simlarly for the other ¢; functions when evaluated at
the appropriate mid-side pomts. Hence

N4(x,y) = 4(b2(.1’,y)¢3<$€,y),
Ns(z,y) = 4¢1(z,y)d3(x,y),
N6<x7y) = 4¢1(x,y)¢2(:c,y)

7. This question is taken from the last part of question 2 of the 1998 MA3056S paper.

The context of the question is that of Poisson’s equation —Au = f which has been
reformulated into the weak form

a(u,v) = (f,v), Yo € S

a(u,v) // (gzgz gzg—Z) dedy and (f,v) = / fv dxdy.

An earlier part of the question has also involved deriving the element matrix for the
standard triangle 7" with vertices (0,0), (1,0) and (0,1). Using the basis functions

¢1(z,y) =1 -2 —y, d2(z,y) = 2 and ¢3(z,y) = y the matrix is

where

1 2 -1 -1
-1 0 1

(i) Give the 3 x 1 element vector arising from (f, v)|7.

ANSWER

z,y)
/ f(z,y) ¢>2 ,y) | dady.
,y)

(ii) Give the approximation to the element vector obtained when a one-point quadra-
ture rule is used to evaluate the integrals.

— 23—
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ANSWER
The one-point quadrature rule involves evaluating at the centroid which is the point
(1/3,1/3). We have ¢;(1/3,1/3) = 1/3, i = 1,2,3. As the area of the standard
triangle is 1/2 the approximation of the element vector is

1

Lrassags) (1
6 1

Let © be the unit square {(z,y) : 0 < z,y < 1} and 9Qp = {(z,0) : 0 < z < 1}.
Consider the triangular meshes shown in Fig. A and B, and in each case construct the 4 x
4 global stiffness matrix, by assembling the appropriate 3 x 3 element stiffness matrices,
and the 4 x 1 global vector assuming that the one-point quadrature rule has been used.
Then from the relevant linear equation systems satisfied by (uz(0, 1), us(1,1))?, show
that both meshes lead to the same solution only when

f(1/3,1/3)+ f(2/3,2/3) = f(1/3,2/3) and f(2/3,1/3)+ f(1/3,1/3) = f(2/3,2/3) .

ig’: - (07 1) EZ - (17 1) ig’: - (07 1) EZ - (17 1)

Ql Q1

Q{ = (07()) @g = (LO) Q{ = (07()) @g = (LO)

Fig. A Fig. B

ANSWER

If we assemble the element matrices and just consider the part relating to nodes z; and
2, then using the mesh of Fig. A the matrix is

10 4 1 -1y _ [2 -1

00 -1 2 /) \-1 2
and using the mesh of Fig.B the matrix is

00 4 2 -1\ (2 -1

01 -1 1) \=-1 2 )"
We have the same matrix from both meshes.

Assembling the element vectors for the mesh of Fig. A and retaining only the terms
relating to nodes z; and z, we get

%f(1/3,1/3) (é) + %f(2/3,2/3) G) _

— 24—
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For the mesh of Fig. B the element centroids are instead (1/3,2/3) and (2/3,1/3) and
we get

%f(2/3,1/3) (g) + %f(1/3,2/3) G) .

To obtain the same solution from both meshes we need the same right hand side vector.
That is we need

FA/3,1/3) + f(2/3,2/3) = [(1/3,2/3)
f2/3,2/3) = [(2/3,1/3) + f(1/3,2/3).

. Apart from a few minor changes and re-typing this was question 2 of the 1999 MA3056S
paper.
For the mixed boundary value problem in which u(z,y) satisfies

_A(u(x7y>> = f(x,y), (l’,y) € Qv

u(z,y) =0, (xz,y) € 0Qp,
g_g(xvy):(L (l’,y) ea&_ZN
where Q0 C R? is a rectangle with boundary 092 = 9Qp U 9Qy and 0Qp N ONy =empty

J

set and I is the derivative in the outward normal direction to 0€2y, derive the weak
formulation: find v € V' such that

Ooudu  Ov v
= —— + —— | dady = fodedy = (f Vv eV
a(u,v) //( ” y) xdy // vdedy = (f,v) Yo )

describing the appropriate space V.

ANSWER

From the vector identity
V- (vVu) = vAu+ Vu - Vo

we obtain

—vAu =Vu-Vv—-V - (vVu).
Then by the divergence theorem

—//vAudxdy://Vu~Vv dzdy — U@_u ds.
Q Q 90 on

As QU — () on the part 02y we only need v to vanish on the other part of 92 to remove
the %oundary integral term. Hence we define

V={veHQ): v=00ndp}.

The weak form is find v € V such that

//Vu-Vvdxdy://fvdxdy Vv e V.
Q Q

— 25—
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The weak form is to be approximated using the finite element method. Explain what is
meant by the conforming condition for the finite element approximation, giving sufficient
conditions for this when piecewise polynomial functions are used.

ANSWER

The finite element method is conforming if the finite element space V}, is a subspace of
the space V in the weak formulation. A piecewise polynomial function is in V' if it is

continuous, i.e. V;, C C(9).

The finite element approximation U(x,y) is a piecewise bilinear function defined over
a partition of () into square elements. In the case of the standard square S where
S ={(x,y) : —1 < a,y < 1} with nodes (—1,-1), (1,-1), (1,1) and (—1,1) write
down the four Lagrange basis functions each of which is associated with one of the
nodes.

ANSWER

Each of the 4 basis functions can be written as the product of a linear basis function in
s and a linear basis function in ¢. We can write them in the matrix form as follows.

1 /1
(ﬁf ﬁ)i(ﬁi) (l—2 1+a).

Then for this element do the following.

(i) It can be shown that the 4 x 4 element stiffness matrix arising from a(u, v)|s when
bilinears is used has the form

=2 @R
R O @
R =2 @
Q=2 W=

Evaluate o, # and 7.

ANSWER

With an element stiffness matrix the sum of the entries on each row must add to 0
because V(o1 + ¢ + ¢3 + ¢4) = 0. Hence

a+28+v=0.
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Now

11 1l
/ / (1—y)?dady = / (1 —2)*dzdy
—1J-1 -1J-1

1

Thus

1 1 1
v = 15 ) [ Vo Vendsy
—1J1
1 1 1
= ——/ / (1—v*) + (1 —2?) dady.
6./

Now
1 pl
//(l—yz)dxdy = // (1 — 2%) dady
-1/ -1J-1
1 1 g
~1 0 3 3

7:—5-

From the relation oo + 25 4+ v = 0 this gives § = —1/6.

Thus

(ii) Give the 4 x 1 element vector arising from S, leaving each component in integral

form.
ANSWER
The element vector is
2D vt [ e[
2T, Y _ - T +x Yy "
[ [ren s aw=5 [ [ sen | GE00T0]
¢a(2,y) (1—=)(1+y)

Let Q be the rectangle {(z,y) : 0 <z <2, 0 <y < 1} and let 9Qp = {(0,y) : 0 <
y<1}U{2,y): 0 <y < 1} as in the Figure. Let z,, i = 1,--- ,6 be the nodes of the
elements ; and €2 of the mesh of Q and let U; = U(z,).

"EZ - (07 1) Eg - (17 1) Eg - (27 1)
@ @ @
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By constructing the 4 x 4 element stiffness matrix for each of the elements €2; and €2,
assemble the 6 x 6 global stiffness matrix associated with the given mesh of Q2. Apply
the essential boundary conditions of the boundary value problem to obtain the 2 x 2

matrix K in the system
Us\ _ (b2
< ()= ()

that determine U, and Us.

ANSWER

The element matrix for both €; and €2, is

4 -1 -2 -1
11-1 4 -1 =2
6l-2 -1 4 -1

-1 -2 —1 4

Let K denote the 6 x 6 matrix. Local nodes 1,2,3,4 on element €2; correspond to global
nodes 1,2,5.4 respectively. Local nodes 1,2,3,4 on element 25 correspond to global nodes
2,3,6,5 respectively. Thus

4 -1 - —1 -9 . S .

~1 4 - -2 -1 - C 4 -1 - =1 =2

. . e . -1 4 - -2
6I = -1 -2 . 4 -1 - 1. . . .
2 -1 - -1 4 - -1 -2 - 4 -1

-2 -1 . -1 4

Extracting the entries corresponding to nodes z, and z gives

1/8 -2\ 1[4 -1
KZE(& 8>:§<44)'

. This question is taken from the last part of question 2 of the 1997 MA5056S paper.

The context of the question is that of Poisson’s equation —Awu = f in €2 with boundary

conditions v = 0 on J2p and Ou _ 0 on 092y where 092 = 0Q2p U 02y with 0€2p being
on

non-empty. In an earlier part of the question this has been reformulated into the weak

form

a(u,v) = (f,v), Yve s

Ooudv  Oudv
a(u,v) // (690690 8_y8_y) dedy and (f,v) = / fv dxdy.

and where S = {v € H'(Q): v=0o0n dQp}.

where

— 28—
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An earlier part of the question has also been concerned with constructing the element
matrix for the standard triangle with vertices (0,0), (1,0) and (0, 1) and with the unit
square with vertices (0,0), (1,0), (1,1) and (0, 1). These matrices are

4 -1 -2 -1

T W
2\, o 1) 2 -1 4 -1
1 -2 —1 4

The last part of the question follows.

Let = Q; U, denote the region shown in the Figure where ; is a unit square and
) is the standard triangle and suppose that 0Qp = {(z,y) : -1 <z <1, y = 0}. If
the finite element method is used to approximate the solution using a bilinear function
on €2; and a linear function on )y with

U(x,y) =U(—1,1)By(z,y) + U(0,1)By(z, )

describing the approximation then give the functions B; and B, and derive the 2 x 2
matrix K in the linear system

K(UU((_O?S)) _ (2;) bl-://Qf(x,y)Bi(:c,y) dedy, i=12.

(—=1,1) (0,1)
0
Qs
(-1,0) (0,0) (1,0
ANSWER

The functions B; and B, are as follows.

Bi(e.y) — —zy for (z,y) € Q,
Y= 0 for (z,y) € Q.

Bo(wy) — (x+ 1)y for (x,y) € O,
2y = y for (z,y) € Q.

The matrix K is given by

K= (o alonsy)

— 29—
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All the entries involving B; are obtained directly from the element matrix for the bilinear
element as By is 0 on €. For a(Bs, By) we have a contribution from both elements.

2 1 7
a(Ba, By) = // (VBy)*dady + // (VBy)?daody = = + = = —.
951 Qo 3 2 6

14 -1
K‘é(—l 7)'

Thus

10.

Apart from a few minor changes and re-typing this was question 1 of the 2002 MA51568
paper.

Let S be the square element in the (s,t) plane, as shown in the figure, with vertices
(—1,1), (1,—1), (1,1) and (—1,1), labelled respectively as P, Py, P; and P4 The
points (0, —1), (1,0), (0,1), (-1 O) and (0,0) are labelled respectively as P;, Py, Py, Py
and Py. For i = 1,---,9 write down the biquadratic basis functions oi(s,t), (s,t) € S

which are such that
. 1 ifj=1
() = ’
?il J) {O otherwise.

[7 MARKS]

ANSWER

Each basis function is the product of a quadratic in s and a quadratic in ¢t and the
complete set of functions can be neatly written in matrix form as

tt+1
b0 ¢ s (tr1)
¢s by ¢ | =| 1—t (8(82_1) 1— s LS;”)-
O1 G5 Do t(t—1)
2
it
2 y2s Py
. ' Py P
N R R ;
P, P, P,

[
w
T
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Consider the points (nodes) P; of the element €2, in the (z,y) plane with coordinates
(xi,yi), 1 =1,---,9, where

x1:x8:x4:_1, y1:y5:y2:—1,
r5 =29 =0, ys=ys=yo =0,

1’2:.773:.776:1, y3:y4:1

and where (z7,yr) is such that |z7| < 1 and y; > 0. With 2! = (z;,¥;) and 27 = (z,v),
the biquadratic mapping which takes S onto 2, is given by

£(87 t) = Z£i¢i(87 t)
i=1
What is the form of the mapping in the particular case z7 = 0 and y; = 1.

[2 MARKS]

ANSWER

If 27 =0 and y7; = 1 then f’, = P, for i = 1,---,9 and we have the identity map, i.e.
r=sandy=t.

Hence explain why for a general point (x7,y7), |x7| < 1, y; > 0 we have

r = s+ x70:(s,t)
= t+ (yr — Dor(s, 0).

[3 MARKS]

ANSWER

In this case P; = P, for all i except ¢ = 7. Hence the mapping is the identity map plus
a term depending on the difference of P; from the position (0, 1). The mapping is

z(s,t) = <§) + (yfz 1) d7(s,1).

Hence sketch the form of the element €2, which is the image of S under the mapping.

[2 MARKS]

— 31—
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ANSWER

The images of the sides of S except the top side are unchanged by the mapping but the
top side may be curved and is described parametrically by

z(s,1) = G) + (yf_? 1) dr(s, 1).

In the case y; > 1 a possible image is shown below.

P7i t
PMs
i Py Py
Pp---eoe-- e it EEE LR L
P P P,

Give the partial derivatives % and % and show that the determinant of the Jacobian
of the mapping is given by

_ Dy D7
J = 1+x7§+(y7—1)ﬁ.
[6 MARKS]
ANSWER

Grlsit) = Silt+1)(1 - 52)

o7 B
%(87 t) - _t(t + 1)57
a(b? o l a2
Thus
j_ 1 0 $7% 907%
=lo 1) " ( _1)% ( _1)9¢¢
Y ds Y7 ) ot
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The determinant is

s exercises 33

J = <1 +x7%) (1 + (y7 — 1)%) — x7(yr — 1)8¢7%

s ot
= 1+x7%+(y7—1)%.
Show that for (s,t) € S

Also show that if (z7,y7) satisfies

1 1 2
—— < < - d —<yr <2
1 T 1 an 3 Y7 )

then J > 0.

[5 MARKS]

ANSWER

t+1 <2 for —-1<t<1.
Thus as |s| <1 and [t| < 1 we have

For (s,t) € T we have 0 < 1—s? < 1. For =1 <t < 1 we have —1 < 2t +1 < 3.

Together these imply that for all (s,t) € T" we have

On T if |x7| < 1/4 we have
07 2 _

1
> = ——.
s 4 2
2/3 < y; <2gives —1/3 <y; — 1 < 1. Hence on T" we have

0 1/3 1
(yr — 1)% > ~3 (5) =—3

Combining these last two results gives

0
J:1+x7£+(y7—1)

Oy 1
ot 9
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