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MA3951/MA5352:

Numerical and Variational Methods for PDEs

Exercise sheet 1 and Answers

1. Let Ω be a domain, let L denote a linear differential operator and let DL be an inner
product space of functions defined on Ω for which L is defined.

Define what it means for L to be symmetric on DL and define what it means for L to
be positive definite on DL.

ANSWER

L is symmetric on DL if (Lu, v) = (u, Lv) for all u, v ∈ DL.

L is positive definite on DL if (Lv, v) > 0 for all v ∈ DL with v 6= 0.

In each of the following cases, determine whether or not the given differential operator
L is symmetric on the function space DL. For the differential operators which are
symmetric determine whether or not they are positive definite.

(a) Ω = (0, 1), DL = C2[0, 1], Lu = −u′′.
(b) Ω = (0, 1), DL = {v ∈ C2[0, 1] : v(0) = 0}, Lu = −u′′.
(c) Ω = (0, 1), DL = {v ∈ C2[0, 1] : v(0) = 0, v(1) = 0}, Lu = −u′′.

(d) Ω = (0, 1),

DL = {v ∈ C2[0, 1] : v(0) = 0, v(1) = 0}, Lu = −u′′ + q(x)u,

where q ∈ C[0, 1] and q(x) ≥ 0 on [0, 1].

(e) Ω = (0, 1),

DL = {v ∈ C2[0, 1] : v(0) = 0, v′(1) + βv(1) = 0}, L = −u′′ + q(x)u,

where β ≥ 0 and where q ∈ C[0, 1] and q(x) ≥ 0.

(f) Ω = (0, 1),

DL = {v ∈ C2[0, 1] : v′(0) = 0, v′(1) = 0}, L = −u′′.

(g) Ω = (0, 1),

DL = {v ∈ C2[0, 1] : v′(0)−β1v(0) = 0, v′(1)+β2v(1) = 0}, L = −u′′ + q(x)u,

where β1 > 0 and β2 > 0 and where q ∈ C[0, 1] and q(x) ≥ 0.
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ANSWER

All the above are second order ODEs and the main identity being used throughout
is

(−u′′, v) = −
∫ 1

0

u′′v dx = −[u′v]10 +

∫ 1

0

u′v′ dx

= (−u′(1)v(1) + u′(0)v(0)) +

∫

1

0

u′v′ dx.

Whether or not we have symmetry depends on the boundary term and this in turn
depends on the boundary conditions, if any, which are part of the definition of the
space DL.

(1a), (1b), (1c). These all correspond to Lu = −u′′.

When DL = C2[0, 1] or when DL = {C2[0, 1] : v(0) = 0} the boundary term is not
symmetric for all u, v ∈ DL. As an example, take u = x and v = x2 and observe
that −u′(1)v(1) = −1 and −v′(1)u(1) = −2.

When DL = {C2[0, 1] : v(0) = v(1) = 0} the boundary term is 0 and we have
symmetry,

(−u′′, v) =

∫ 1

0

u′v′ dx for all u, v ∈ DL.

L is also positive definite on DL and this is shown below.

(1d). When Lu = −u′′ + qu and DL = {C2[0, 1] : v(0) = v(1) = 0} we similarly
get

(Lu, v) =

∫ 1

0

u′v′ + quv dx

and we have symmetry. L is also positive definite on DL and this is shown below.

(1e). When v(0) = 0 and u′(1) = −βu(1) we have

−u′(1)v(1) + u′(0)v(0) = −u′(1)v(1) = +βu(1)v(1).

When u, v ∈ DL = {v ∈ C2[0, 1] : v(0) = 0, v′(1)+βv(1) = 0} and Lu = −u′′ + qu
we hence have

(Lu, v) =

∫ 1

0

u′v′ + quv dx + βu(1)v(1)

and thus L is symmetric on DL. L is also positive definite on DL and this is shown
below.

(1f). When u′(0) = u′(1) = 0 and Lu = −u′′ the boundary term is 0 and

(Lu, v) =

∫ 1

0

u′v′ dx

for all u, v ∈ DL = {v ∈ C2[0, 1] : v′(0) = v′(1) = 0}, and we have symmetry. L is
NOT positive definite on DL. This is because if v(x) = 1 then v′(x) = 0, v ∈ DL,
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and (Lv, v) = 0. L is positive semi-definite on DL but as we have a non-zero
function giving (Lv, v) = 0 it follows that L is not positive definite on DL.

(1g). When u′(0) = β1u(0) and u′(1) = −β2u(1) we have

−u′(1)v(1) + u′(0)v(0) = β1u(0)v(0) + β2u(1)v(1).

Thus if DL = {v ∈ C2[0, 1] : v′(0) − β1v(0) = 0, v′(1) + β2v(1) = 0}, and
L = −u′′ + q(x)u then

(Lu, v) =

∫ 1

0

u′v′ + quv dx + (β1u(0)v(0) + β2u(1)v(1))

and we have symmetry. L is also positive definite on DL and this is considered
next with all the positive definite cases.

Verifying the positive definite property.

We consider the expression

(Lv, v) =

∫ 1

0

v′
2
+ qv2 dx + (β1v(0)2 + β2v(1)2)

which covers all the cases if we allow q = 0 or β1 = 0 or β2 = 0. As β1 ≥ 0
and β2 ≥ 0 and q(x) ≥ 0 we have a sum of non-negative terms and the only way
(Lv, v) = 0 is if each term individually is 0. With the spaces involved the integrand
is continuous and thus we must have v′(x) = 0, 0 < x < 1 and hence v(x) = c
where c is a constant. In (1f) there was no condition to force c = 0 but (1c), (1d)
and (1e) all contain the condition v(0) = 0 to give c = 0. For (1g) the condition
(Lv, v) = 0 also implies that

β1v(0)2 + β2v(1)2 = 0

and the condition here that β1 > 0 and β2 > 0 is sufficient to imply that v(0) =
v(1) = 0 and we get c = 0 as required.

(h) Ω = (0, 1),

DL = {v ∈ C4[0, 1] : v(0) = v′(0) = v(1) = v′(1) = 0}, L = u′′′′ − (pu′)′ + qu,

where p ∈ C1[0, 1], q ∈ C[0, 1] and p(x) ≥ p0 > 0 and q(x) ≥ 0 for all x ∈ (0, 1).

ANSWER

For the second order term and the property that v(0) = v(1) = 0 we get

−
∫

1

0

(pu′)′v dx =

∫

1

0

pu′v′ dx.
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For the fourth order term we integrate by parts twice and we use all the boundary
conditions.
∫ 1

0

u′′′′v dx = [u′′′v]10 −
∫ 1

0

u′′′v′ dx = −
∫ 1

0

u′′′v′ dx because v(0) = v(1) = 0,

= −[u′′v′]10 +

∫

1

0

u′′v′′ dx =

∫

1

0

u′′v′′ dx, because v′(0) = v′(1) = 0.

Putting everything together gives

(Lu, v) =

∫ 1

0

u′′v′′ + pu′v′ + quv dx

for all u, v ∈ DL and we have symmetry. We also have the positive definite property
as

(Lv, v) =

∫ 1

0

v′′
2
+ pv′

2
+ qv2 dx ≥ 0

and for (Lv, v) = 0 we must have v′′(x) = 0 in (0, 1). v′′ = 0 implies that v is linear
and because v(0) = v(1) = 0 we must have v(x) = 0 as required.

2. The following relates to problems in R
2. This will be only briefly covered at the start

of the module but if you already know results such as the divergence theorem then you
could try this now.

As in the previous question in each of the following cases, determine whether or not the
given differential operator L is symmetric on the function space DL. For the differential
operators which are symmetric determine whether or not they are positive definite.

(a)
Ω = {(x, y) : 0 < x < 2, 0 < y < 1},

DL = C2(Ω̄), Lu = −∆u.

(b)
Ω = {(x, y) : 0 < x < 2, 0 < y < 1},

DL = {v ∈ C2(Ω̄) : v = 0 on ∂Ω}, Lu = −∆u.

(c) Let
Ω = {(x, y) : 0 < x < 2, 0 < y < 1},

let ∂Ω1 denote the 3 sides on ∂Ω corresponding to x = 0, x = 2 and y = 1 and let
∂Ω2 denote the other side corresponding to y = 0. Also let

DL = {v ∈ C2(Ω̄) : v = 0 on ∂Ω1 and − ∂v

∂y
(x, 0) + βv(x, 0) = 0, 0 < x < 2},

where β ≥ 0, and let L = −∆.
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ANSWER

(2a), (2b) and (2c).

∇ · (v∇u) = v∆v + ∇u · ∇v gives − v∆v = ∇u · ∇v −∇ · (v∇u).

The divergence theorem then gives

−
∫∫

Ω

v∆v dxdy =

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v
∂u

∂n
ds.

The double integral on the right hand side is symmetric in u and v and thus
symmetry depends on whether the boundary integral term is symmetric.

In (2a) there is no condition on u, v on ∂Ω and L is NOT symmetric onDL = C2(Ω̄).
This can be confirmed by taking u = 1 and v = x2. As Lu = −∆u = 0 and
Lv = −∆v = −2 we have (Lu, v) = 0 and (u, Lv) = −2 × (area of Ω) 6= 0. Hence
(Lu, v) 6= (u, Lv).

In (2b) we have v = 0 on ∂Ω and

(Lu, v) =

∫∫

Ω

∇u · ∇v dxdy

for all u, v ∈ DL and hence L is symmetric on DL. It is also positive definite on
DL since

(Lv, v) =

∫∫

Ω

∇v · ∇v dxdy =

∫∫

Ω

(∇v)2 dxdy ≥ 0.

If (Lv, v) = 0 then the continuity of the integrand implies that ∇v = 0 which in
turn implies that v is constant. The condition that v = 0 on ∂Ω implies that the
constant is 0.

In (2c) we have v = 0 on ∂Ω1 and

∂u

∂y
= βu on ∂Ω2.

Now on the side y = 0 the outward normal direction is (0,−1)T and thus

∂u

∂n
= −∂u

∂y
= −βu.

Hence

−
∫

∂Ω2

v
∂u

∂n
ds = +

∫

∂Ω2

βuv ds.

Thus

−
∫∫

Ω

v∆v dxdy =

∫∫

Ω

∇u · ∇v dxdy +

∫

∂Ω2

βuv ds

and we have symmetry. It is also positive definite on DL by a similar argument to
the above where we now need to use the condition v = 0 on ∂Ω1.
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(d) Ω ⊂ R
2,

DL = {C4(Ω̄) : v =
∂v

∂n
= 0 on ∂Ω}, Lu = ∆2u = ∆(∆u).

ANSWER

Let w = ∆u and note the vector identities

−v∆w = ∇v · ∇w −∇ · (v∇w),

−w∆v = ∇v · ∇w −∇ · (w∇v).

Integrating over Ω for a function v satisfying v = ∂v/∂n = 0 on ∂Ω we have

−
∫∫

Ω

v∆w dxdy =

∫∫

Ω

∇v · ∇w dxdy = −
∫∫

Ω

w∆v dxdy.

Thus

(Lu, v) =

∫∫

Ω

v∆2u dxdy =

∫∫

Ω

∆u∆v dxdy.

for all u, v ∈ DL. Hence L is symmetric on DL. It is positive definite on DL because

(Lv, v) =

∫∫

Ω

(∆v)2 dxdy ≥ 0.

If (Lv, v) = 0 then the continuity of the integrand gives ∆v = 0 in Ω. Then by
using the boundary condition v = 0 on ∂Ω we similarly get

−
∫∫

Ω

v∆v dxdy =

∫∫

Ω

(∇v)2 dxdy = 0

and as before this gives ∇v = 0 in Ω which in turn implies that v = c where c is a
constant. The boundary condition v = 0 on ∂Ω implies that v = c = 0 in Ω.

3. Derive the expressions involved in the weak forms for the following problems stating in
each case the appropriate function space involved and classify each boundary condition
as an essential boundary condition or as a natural boundary condition.

(a)
−(pu′)′ + qu = f, 0 < x < 1, u(0) = u(1) = 0,

where p ∈ C1[0, 1], q, f ∈ C[0, 1] and p(x) > 0 and q(x) ≥ 0.

(b)
−(pu′)′ + qu = f, 0 < x < 1, u(0) = 0, u′(1) + u(1) = 0,

where p ∈ C1[0, 1], q, f ∈ C[0, 1] and p(x) > 0 and q(x) ≥ 0.
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ANSWER

(3a), (3b). When we multiply the ODE by a test function v and integrate from 0
to 1, one of the terms is

−
∫ 1

0

(pu′)′v dx = −[pu′v]10 +

∫ 1

0

pu′v′ dx.

In (3a) we require u(0) = u(1) = 0 and if we also insist that v(0) = v(1) = 0 then
we eliminate the boundary term. Hence we take the function space

V = {v ∈ C2[0, 1] : v(0) = v(1) = 0}.

One version of the weak form is as follows. Find u ∈ V such that
∫ 1

0

pu′v′ + quv dx =

∫ 1

0

fv dx for all v ∈ V.

The boundary conditions at x = 0 and at x = 1 are both essential boundary
conditions and need to be part of the specification of the function space V .

This derivation gets the correct expressions. To weaken the continuity requirements
on the space we can replace the space V given by V = H1

0 (0, 1).

In (3b) we require that u(0) = 0 and thus if v(0) = 0 then we have that the solution
u satifies

−[pu′v]10 = −p(1)u′(1)v(1) = p(1)u(1)v(1).

This leads us to now define

V = {v ∈ C2[0, 1] : v(0) = 0}.

One version of the weak form is as follows. Find u ∈ V such that
∫

1

0

pu′v′ + quv dx + p(1)u(1)v(1) =

∫

1

0

fv dx for all v ∈ V.

The boundary condition at x = 0 is an essential boundary conditions and needs
to be part of the specification of the function space V . The boundary condition
u′(1) + u(1) = 0 is a natural boundary condition for this particular weak form.

Again, to weaken the continuity requirements on the space we can replace the space
V just given by

V = {v ∈ H1(0, 1) : v(0) = 0}.

(c)
u′′′′ = f, 0 < x < 1, u(0) = u′(0) = u(1) = u′(1) = 0,

where f ∈ C[0, 1].

(d)
u′′′′ = f, 0 < x < 1, u(0) = u′′(0) = u(1) = u′′(1) = 0,

where f ∈ C[0, 1].

– 7–



20-4-2005 9:15 c© M. K. Warby MA3951/MA5352 Numerical and Variational Methods for PDEs exercises 8

ANSWER

(3c) and (3d). As in (1h) we have

∫

1

0

u′′′′v dx = [u′′′v]10 −
∫

1

0

u′′′v′ dx = −
∫

1

0

u′′′v′ dx if v(0) = v(1) = 0,

= −[u′′v′]10 +

∫ 1

0

u′′v′′ dx.

In (3c) we need u′(0) = u′(1) = 0 and if we restrict to v′(0) = v′(1) = 0 then the
boundary term in the last expression is 0. However in (3d) we are given u′′(0) =
u′′(1) = 0 and we do not need to place any such condition on v ′ at the end points.
This leads to the following weak problems.

For (3c) we take

V = {v ∈ C4[0, 1] : v(0) = v′(0) = v(1) = v′(1) = 0}.

The problem is find u ∈ V such that

∫ 1

0

u′′v′′ dx =

∫ 1

0

fv dx for all v ∈ V.

All the boundary conditions u(0) = u′(0) = u(1) = u′(1) = 0 are essential boundary
conditions.

We can weaken the continuity conditions on the space V by taking instead

V = {v ∈ H2(0, 1) : v(0) = v′(0) = v(1) = v′(1) = 0}.

For (3d) we take
V = {v ∈ C4[0, 1] v(0) = v(1) = 0}.

The problem is find u ∈ V such that

∫ 1

0

u′′v′′ dx =

∫ 1

0

fv dx for all v ∈ V.

All the boundary conditions u(0) = u(1) = 0 are essential boundary conditions but
the conditions u′′(0) = u′′(1) = 0 are natural boundary conditions for this weak
form.

We can weaken the continuity conditions on the space V by taking instead

V = {v ∈ H2(0, 1) : v(0) = v(1) = 0}.

– 8–
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4. This was question 1 of the June 2004 MA3951 paper.

(a) Obtain the weak form expressions corresponding to each of the following boundary
value problems. In your answer you should give in each case the space of functions
involved and you should indicate if any of the boundary conditions are essential
boundary conditions.

(i)
−((1 + x)u′)′ = 1, 0 < x < 1, u(0) = u(1) = 0.

[2 MARKS]

(ii)
−u′′ + 2u = x2, 0 < x < 1, u(0) = u′(1) + 2u(1) = 0.

[2 MARKS]

(iii)
u′′′′ − u′′ = 1, 0 < x < 1, u(0) = u′(0) = u′(1) = u′′′(1) = 0.

[3 MARKS]

(b) In the following the ordinary differential equation

−u′′ + 2u = x, 0 < x < 1, u(0) = 0, u′(1) = 0,

is to be approximately solved using Galerkin’s method.

(i) Derive the weak form for this problem in the form a(u, v) = (f, v).

[1 MARK]

(ii) Let ψi(x) = xi, i = 1, 2, · · · and let Vn = span{ψ1, · · · , ψn}. Determine the
Galerkin approximation from V1 and determine a linear system for c1 and c2
in the Galerkin approximation c1x+ c2x

2 from the space V2. You do not need
to solve these equations.

[5 MARKS]

(iii) Let M ≥ 1 be a natural number and let h = 1/M , and xi = ih, i = 0, 1, · · · ,M ,
denote equally spaced mesh points in [0, 1]. Also, on the ith element [xi−1, xi],
let

φ̃1(x) =
xi − x

h
, φ̃2(x) =

x− xi−1

h
,

denote the standard linear basis functions defined on [xi−1, xi]. Show that the
element matrix Ki and the element vector bi are given by

Ki =
1

h

(

1 −1
−1 1

)

+
h

3

(

2 1
1 2

)

and bi =
h

2

(

xi−1

(

1
1

)

+
h

3

(

1
2

))

.

(In your answer you may assume that

∫ xi

xi−1

φ̃2
1 dx =

∫ xi

xi−1

φ̃2
2 dx =

h

3
and

∫ xi

xi−1

φ̃1φ̃2 dx =
h

6
.)

[4 MARKS]
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(iv) Let U denote the Galerkin finite element approximation to this problem using
piecewise linears defined on the mesh in part (iii) in the case M = 2 and let
U1 = U(x1) and U2 = U(x2). By using the results of part (iii) determine
the linear equations that U1 and U2 satisfy. You do not need to solve these
equations.

[3 MARKS]

ANSWER

(a) (i)

−
∫

1

0

((1 + x)u′)′v dx = − [(1 + x)u′v]
1

0
+

∫

1

0

(1 + x)u′v′ dx

=

∫ 1

0

(1 + x)u′v′ dx

if v(0) = v(1) = 0. Let V = {v ∈ H1(0, 1) : v(0) = v(1) = 0}. For the weak
problem we have the following. Find u ∈ V such that

∫ 1

0

(1 + x)u′v′ dx =

∫ 1

0

v dx for all v ∈ V.

Both boundary conditions which are part of the specification of the space V
are essential boundary conditions.

2 MARKS

(ii) For the function u satisfying the ODE

−
∫ 1

0

u′′v dx = − [u′v]
1

0
+

∫ 1

0

u′v′ dx =

∫ 1

0

u′v′ dx− u′(1)v(1)

=

∫ 1

0

u′v′ dx+ 2u(1)v(1)

provided v(0) = 0. Let V = {v ∈ H1(0, 1) : v(0) = 0}. For the weak problem
we have the following. Find u ∈ V such that

∫ 1

0

(u′v′ + 2uv) dx + 2u(1)v(1) =

∫ 1

0

x2v dx for all v ∈ V.

The boundary condition u(0) = 0 is an essential boundary condition.

3 MARKS

(iii)

∫

1

0

(u′′′′ − u′′)v dx = [(u′′′ − u′)v]
1

0
−
∫

1

0

(u′′′ − u′)v′ dx

=

∫ 1

0

(−u′′′v′ + u′v′) dx

= − [u′′v′]
1

0
+

∫ 1

0

(u′′v′′ + u′v′) dx

– 10–
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provided v(0) = v′(0) = v′(1) = 0 and by using the boundary conditions
u′(1) = u′′′(1) = 0 that the exact solution u satisfies at x = 1. Let

V = {v ∈ H2(0, 1) : v(0) = v′(0) = v′(1) = 0}.
For the weak problem we have the following. Find u ∈ V such that

∫ 1

0

(u′′v′′ + u′v′) dx =

∫ 1

0

v dx for all v ∈ V.

The 3 boundary conditions in the specification of V are essential boundary
conditions.

3 MARKS

(b) (i) We let V = {v ∈ H1(0, 1) : v(0) = 0}. The weak form involves finding u ∈ V
such that for all v ∈ V we have

a(u, v) :=

∫ 1

0

(u′v′ + 2uv) dx =

∫ 1

0

xv dx =: (f, v).

1 MARK

(ii) For any function

v =

n
∑

1

αiψi ∈ Vn

the bilinearity gives
a(v, v) = αTKα.

As a(., .) is a positive definite bilinear form

αTKα = a(v, v) ≥ 0.

We only get 0 when v = 0 and as the basis functions are linearly independent
this only occurs when α = 0. Thus the matrix K is positive definite.

3 MARKS

When n = 1 we have
a(ψ1, ψ1)c1 = (f, ψ1).

In the case n = 2 we have instead that c1 and c2 satisfy
(

a(ψ1, ψ1) a(ψ1, ψ2)
a(ψ2, ψ1) a(ψ2, ψ2)

)(

c1
c2

)

=

(

(f, ψ1)
(f, ψ2)

)

.

Now ψ′
1 = 1 and ψ′

2 = 2x. For the integrals

a(ψ1, ψ1) =

∫ 1

0

(1 + 2x2) dx = 1 +
2

3
=

5

3
,

a(ψ2, ψ1) =

∫ 1

0

(2x+ 2x3) dx = 1 +
2

4
=

3

2
,

a(ψ2, ψ2) =

∫

1

0

(4x2 + 2x4) dx =
4

3
+

2

5
=

26

15
,

(x, ψ1) =

∫ 1

0

x2 dx =
1

3
,

(x, ψ2) =

∫ 1

0

x3 dx =
1

4
.

– 11–
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Thus when n = 1 we have c1 = 1/5. When n = 2 we have

(

5/3 3/2
3/2 26/15

)(

c1
c2

)

=

(

1/3
1/4

)

.

6 MARKS

(iii) Let φ1(s) = 1 − s and φ2(s) = s and let x = xi−1 + hs so that

φ̃1(x) = φ1(s) and φ̃2(x) = φ2(s).

We have dx/ds = h. Also let

a(u, v)i =

∫ xi

xi−1

(u′v′ + 2uv) dx and (x, v)i =

∫ xi

xi−1

xv dx.

Ki =

(

a(φ̃1, φ̃1)i a(φ̃1, φ̃2)i

a(φ̃2, φ̃1)i a(φ̃2, φ̃2)i

)

and bi =

(

(f, φ̃1)i

(f, φ̃2)i

)

.

Now φ̃′
1 = −1/h and φ̃′

2 = 1/h.

∫ xi

xi−1

(

φ̃′2
1 φ̃′

1φ̃
′
2

φ̃′
2φ̃

′
1 φ̃′2

2

)

dx =
1

h

(

1 −1
−1 1

)

.

The result for Ki follows using the integrals given in the question.
On [xi−1, xi] we have x(s) = xi−1 + hs = xi−1φ1(s) + xiφ2(s), 0 ≤ s ≤ 1 and
thus

bi = xi−1h

∫ 1

0

(

1 − s
s

)

ds+ h2

∫ 1

0

(

s(1 − s)
s2

)

ds

= xi−1

h

2

(

1
1

)

+
h2

6

(

1
2

)

.

4 MARKS

(iv)
KU = b

where using K1 and K2 with h = 1/2 we have

K = 2

(

2 −1
−1 1

)

+
1

6

(

4 1
1 2

)

.

b1 =
1

24

(

1
2

)

, b2 =
1

8

(

1
1

)

+ b1 =
1

24

(

4
5

)

.

Thus

b =
1

24

(

6
5

)

.

3 MARKS

– 12–
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5. Question 1 of the June 2004 MA5352 paper had some parts in common with question 1
of the MA3951 paper. These are some of the parts which were different. MA3951 students
had to answer 3 questions (from a choice of 4) in 3 hours. MA5352 students had to answer
4 questions (from a choice of 5) in 3 hours. The extra question on the MA5352 paper
was from the finite element material taught by Simon Shaw.

(a) Obtain the weak form expressions corresponding to each of the following boundary
value problems. In your answer you should give in each case the space of functions
involved and you should indicate if any of the boundary conditions are essential
boundary conditions.

(i)
−u′′ + 2u = x2, 0 < x < 1, u(0) = u′(1) + 2u(1) = 0.

[3 MARKS]

(ii)
u′′′′ − u′′ = 1, 0 < x < 1, u(0) = u′(0) = u′(1) = u′′′(1) = 0.

[3 MARKS]

(b) In the following the ordinary differential equation

−u′′ + 2u = x, 0 < x < 1, u(0) = 0, u′(1) = 0,

is to be approximately solved using Galerkin’s method.

(i) Derive the weak form for this problem in the form a(u, v) = (f, v) where a(., .)
is a symmetric and positive definite bilinear form defined on an appropriate
space of functions V .

[1 MARK]

(ii) Let ψi(x) = xi, i = 1, 2, · · · and let Vn = span{ψ1, · · · , ψn}. The coefficients
c1, c2, · · · , cn in the Galerkin approximation Un =

∑n
1
ciψi satisfy the linear

system
Kc = b

where c = (ci), K = (a(ψi, ψj)) and b = ((f, ψi)). Explain why the matrix K
is positive definite.

[3 MARKS]

Determine the Galerkin approximation from V1 and determine a linear system
for c1 and c2 in the Galerkin approximation c1x+ c2x

2 from the space V2. You
do not need to solve these equations.

[6 MARKS]

– 13–
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ANSWER

(a) (i) For the function u satisfying the ODE

−
∫ 1

0

u′′v dx = − [u′v]
1

0
+

∫ 1

0

u′v′ dx =

∫ 1

0

u′v′ dx− u′(1)v(1)

=

∫

1

0

u′v′ dx+ 2u(1)v(1)

provided v(0) = 0. Let V = {v ∈ H1(0, 1) : v(0) = 0}. For the weak problem
we have the following. Find u ∈ V such that

∫ 1

0

(u′v′ + 2uv) dx + 2u(1)v(1) =

∫ 1

0

x2v dx for all v ∈ V.

The boundary condition u(0) = 0 is an essential boundary condition.

3 MARKS

(ii)

∫ 1

0

(u′′′′ − u′′)v dx = [(u′′′ − u′)v]
1

0
−
∫ 1

0

(u′′′ − u′)v′ dx

=

∫ 1

0

(−u′′′v′ + u′v′) dx

= − [u′′v′]
1

0
+

∫ 1

0

(u′′v′′ + u′v′) dx

provided v(0) = v′(0) = v′(1) = 0 and by using the boundary conditions
u′(1) = u′′′(1) = 0 that the exact solution u satisfies at x = 1. Let

V = {v ∈ H2(0, 1) : v(0) = v′(0) = v′(1) = 0}.

For the weak problem we have the following. Find u ∈ V such that

∫

1

0

(u′′v′′ + u′v′) dx =

∫

1

0

v dx for all v ∈ V.

The 3 boundary conditions in the specification of V are essential boundary
conditions.

3 MARKS

(b) (i) We let V = {v ∈ H1(0, 1) : v(0) = 0}. The weak form involves finding u ∈ V
such that for all v ∈ V we have

a(u, v) :=

∫ 1

0

(u′v′ + 2uv) dx =

∫ 1

0

xv dx =: (f, v).

1 MARK

– 14–
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(ii) For any function

v =

n
∑

1

αiψi ∈ Vn

the bilinearity gives
a(v, v) = αTKα.

As a(., .) is a positive definite bilinear form

αTKα = a(v, v) ≥ 0.

We only get 0 when v = 0 and as the basis functions are linearly independent
this only occurs when α = 0. Thus the matrix K is positive definite.

3 MARKS

When n = 1 we have
a(ψ1, ψ1)c1 = (f, ψ1).

In the case n = 2 we have instead that c1 and c2 satisfy

(

a(ψ1, ψ1) a(ψ1, ψ2)
a(ψ2, ψ1) a(ψ2, ψ2)

)(

c1
c2

)

=

(

(f, ψ1)
(f, ψ2)

)

.

Now ψ′
1 = 1 and ψ′

2 = 2x. For the integrals

a(ψ1, ψ1) =

∫ 1

0

(1 + 2x2) dx = 1 +
2

3
=

5

3
,

a(ψ2, ψ1) =

∫ 1

0

(2x+ 2x3) dx = 1 +
2

4
=

3

2
,

a(ψ2, ψ2) =

∫ 1

0

(4x2 + 2x4) dx =
4

3
+

2

5
=

26

15
,

(x, ψ1) =

∫

1

0

x2 dx =
1

3
,

(x, ψ2) =

∫ 1

0

x3 dx =
1

4
.

Thus when n = 1 we have c1 = 1/5. When n = 2 we have

(

5/3 3/2
3/2 26/15

)(

c1
c2

)

=

(

1/3
1/4

)

.

6 MARKS

– 15–
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6. The following was question 1 of the June 2003 MA3056S paper.

Obtain the weak form expressions corresponding to each of the following ODEs. In
your answer you should give in each case the space of functions involved and you should
indicate if any of the boundary conditions are natural boundary conditions.

(a) (i)
−u′′(x) = x2, 0 < x < 1, u(0) = u(1) = 0.

[2 MARKS]

(ii)
−u′′(x) + u(x) = 1, 0 < x < 1, u(0) = u′(1) = 0.

[2 MARKS]

(iii)
−u′′(x) + 6u(x) = x, 0 < x < 1, u′(0) = 0, u′(1) + u(1) = 0.

[2 MARKS]

(iv)
u′′′′(x) = cos(x), 0 < x < 1, u(0) = u′(0) = u(1) = u′(1) = 0.

[3 MARKS]

(b) Suppose that a weak problem is of the form:

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

where V is an appropriate space of functions, a(., .) is a symmetric and positive
definite bilinear form on V ×V and F (.) is a linear functional on V . Let φ1, · · · , φn

denote linearly independent functions in V . Describe the Galerkin method for
constructing an approximation Un ∈ span{φ1, · · · , φn} ⊂ V and explain why the
linear system which is obtained involves a matrix which is symmetric and positive
definite.

[5 MARKS]

(c) Let φi(x) = xi, i = 1, 2, · · · , let Vn = span{φ1, · · · , φn} and consider the problem

−u′′(x) + 6u(x) = 1, 0 < x < 1, u(0) = u′(1) = 0.

Obtain the Galerkin approximation U1 ∈ V1.

Also obtain the linear system Kc = b for the coefficients c = (c1, c2)
T of the

approximation U2(x) = c1x + c2x
2. You do not need to solve this system.

[6 MARKS]

– 16–
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ANSWER

(a) (i)

−
∫ 1

0

u′′v dx = −[u′v]10 +

∫ 1

0

u′v′ dx =

∫ 1

0

u′v′ dx

if v(0) = v(1) = 0. Let V = {v ∈ C2[0, 1] : v(0) = v(1) = 0}. The exact
solution u ∈ V satisfies

∫

1

0

u′v′ dx =

∫

1

0

x2v dx for all v ∈ V .

2 MARKS

(ii)

−
∫ 1

0

u′′v dx = −[u′v]10 +

∫ 1

0

u′v′ dx =

∫ 1

0

u′v′ dx

if v(0) = 0 and using u′(1) = 0. Let V = {v ∈ C2[0, 1] : v(0) = 0}. The exact
solution u ∈ V satisfies

∫ 1

0

u′v′ + uv dx =

∫ 1

0

v dx for all v ∈ V .

The boundary condition u′(1) = 0 is a natural boundary condition for this
weak form.

2 MARKS

(iii)

−
∫

1

0

u′′v dx = −[u′v]10 +

∫

1

0

u′v′ dx

=

∫ 1

0

u′v′ dx− u′(1)v(1)

=

∫ 1

0

u′v′ dx + u(1)v(1)

using u′(0) = 0 and −u′(1) = u(1). Let V = C2[0, 1]. The exact solution u ∈ V
satisfies

∫

1

0

u′v′ + 6uv dx + u(1)v(1) =

∫

1

0

xv dx for all v ∈ V .

The boundary conditions u′(0) = 0 and u′(1) + u(1) = 0 are natural boundary
conditions for this weak form.

2 MARKS

(iv)

∫ 1

0

u′′′′v dx = [u′′′v]10 −
∫ 1

0

u′′′v′ dx = −
∫ 1

0

u′′′v′ dx

= −[u′′v′]10 +

∫ 1

0

u′′v′′ dx =

∫ 1

0

u′′v′′ dx

– 17–
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if v(0) = v′(0) = v(1) = v′(1) = 0. Let V = {v ∈ C4[0, 1] : v(0) = v′(0) =
v(1) = v′(1) = 0}. The exact solution u ∈ V satisfies

∫ 1

0

u′′v′′ dx =

∫ 1

0

v cos(x) dx for all v ∈ V .

3 MARKS

(b) With the Galerkin method we obtain Un ∈ Vn = span{φ1, · · · , φn} such that

a(Un, v) = F (v) for all v ∈ Vn.

As Un ∈ Vn it is of the form Un =
∑n

j=1
cjφj and by taking v = φi, i = 1, · · · , n we

get the n equations

a(Un, φi) = a(

n
∑

j=1

cjφj, φi) =

n
∑

j=1

a(φj, φi)cj = F (φi), i = 1, · · · , n.

In matrix-vector form this is

Kc = b where K = (a(φj, φi)), c = (ci) and b = (F (φi)).

The matrix K is symmetric because the symmetry of a(., .) gives a(φj, φi) =
a(φi, φj). The matrix is positive definite because if v =

∑n
j=1

djφj then

dTKd = a(v, v) ≥ 0

and we get 0 only if v = 0 by the positive definite property of a(., .). Since the
functions φ1, · · · , φn are linearly independent this is only possible if d = 0.

5 MARKS

(c) From (a)(ii) the weak form expression is

a(u, v) =

∫ 1

0

u′v′ + 6uv dx =

∫ 1

0

xv dx = F (v).

For the linear system Kc = b we have

k11 = a(φ1, φ1) =

∫

1

0

(1 + 6x2) dx = 1 + 2 = 3,

k22 = a(φ2, φ2) =

∫

1

0

(4x2 + 6x4) dx =
4

3
+

6

5
=

38

15
,

k21 = a(φ2, φ1) =

∫ 1

0

(2x + 6x3) dx = 1 +
6

4
=

5

2
,

b1 = F (φ1) =

∫ 1

0

x dx =
1

2
,

b2 = F (φ2) =

∫

1

0

x2 dx =
1

3
.

– 18–
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Now U1 = c1φ1 = c1x where c1 = b1/k11 = 1/6.

The approximation U2 = c1φ1 + c2φ2 = c1x + c2x
2 where





3 5
2

5
2

38
15





(

c1
c2

)

=





1
2
1
3



 .

6 MARKS

7. The following were parts of question 1 of the June 2003 MA5156S paper.

(a) Obtain the weak form expressions corresponding to each of the following ODEs. In
your answer you should give in each case the space of functions involved and you
should indicate if any of the boundary conditions are natural boundary conditions.

(i)
−u′′(x) + 12u(x) = 1, 0 < x < 1, u(0) = u′(1) = 0.

[2 MARKS]

(ii)

u′′′′(x) − u′′(x) = cos(x), 0 < x < 1, u(0) = u′′(0) = u(1) = u′′(1) = 0.

[3 MARKS]

ANSWER

(i)

−
∫

1

0

u′′v dx = −[u′v]10 +

∫

1

0

u′v′ dx =

∫

1

0

u′v′ dx

if v(0) = 0 and using u′(1) = 0. Let V = {v ∈ C2[0, 1] : v(0) = 0}. The exact
solution u ∈ V satisfies

∫ 1

0

u′v′ + 12uv dx =

∫ 1

0

v dx for all v ∈ V .

The boundary condition u′(1) = 0 is a natural boundary condition for this
weak form.

2 MARKS

(ii)

∫ 1

0

u′′′′v dx = [u′′′v]10 −
∫ 1

0

u′′′v′ dx = −
∫ 1

0

u′′′v′ dx

= −[u′′v′]10 +

∫ 1

0

u′′v′′ dx =

∫ 1

0

u′′v′′ dx

if v(0) = v(1) = 0 and using the boundary conditions u′′(0) = u′′(1) = 0. Let
V = {v ∈ C4[0, 1] : v(0) = v(1) = 0}. The exact solution u ∈ V satisfies

∫ 1

0

u′′v′′ + u′v′ dx =

∫ 1

0

v cos(x) dx for all v ∈ V .

– 19–
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The boundary conditions u′′(0) = u′′(1) = 0 are natural boundary conditions
for this weak problem.

3 MARKS

(b) In the following the problem,

−u′′ + 12u = 1, 0 < x < 1, u(0) = u′(1) = 0,

given in part (7a)(i), is to be approximately solved using the Galerkin finite ele-
ment method using a piecewise linear approximating function defined on a mesh
0 = x0 < x1 < · · · < xM = 1. Do the following.

(i) When the finite element method is implemented in an element-by-element way
an actual element [xi−1, xi] is mapped to a standard element such as [0, 1].
State the linear basis functions φ1(s), φ2(s), 0 ≤ s ≤ 1 defined on the standard
element [0, 1] and express both the mapping and the form of the approximation
in terms of these functions.

[2 MARKS]

(ii) For the ith element [xi−1, xi] describe what is meant by the element matrix Ki

and the element vector bi for this problem and determine Ki and bi.

[4 MARKS]

(iii) Let φ̂i, i = 0, 1, · · · ,M denote the piecewise linear hat functions associated
with the points 0 = x0 < x1 < · · · < xM = 1 with the property φ̂i(xi) = 1,
φ̂i(xj) = 0, j 6= i. In the case M = 2 and uniformly spaced points xi = i/2,

i = 0, 1, 2 determine the 3 × 3 global matrix K̂ = (a(φ̂i, φ̂j)), 0 ≤ i, j ≤ 2 and

the 3 × 1 global vector b̂ = ((f, φ̂i)), 0 ≤ i ≤ 2 where f(x) = 1.

[3 MARKS]

(iv) Determine the finite element approximation at x = 1/2 and at x = 1 using
this mesh.

[2 MARKS]

ANSWER

(i) The basis functions are φ1(s) = 1 − s, φ2(s) = s. Let x : [0, 1] → [xi−1, xi]
denote the map, let U denote the approximation and let Uj = U(xj).

x(s) = xi−1φ1(s) + xiφ2(s) = xi−1 + his, hi = xi − xi−1,

U(x(s)) = Ui−1φ1(s) + Uiφ2(s) = Ui−1 + (Ui − Ui−1)s.

2 MARKS

(ii) Let

a(u, v)i =

∫ xi

xi−1

u′v′ + 12uv dx and (f, v)i =

∫ xi

xi−1

v dx.

– 20–
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Also let φ̃i be such that φ̃i(x(s)) = φi(s). The element matrix and element
vector are

Ki =

(

a(φ̃1, φ̃1)i a(φ̃1, φ̃2)i

a(φ̃2, φ̃1)i a(φ̃2, φ̃2)i

)

and bi =

(

(f, φ̃1)i

(f, φ̃2)i

)

.

dφ̃i

dx
=
ds

dx

dφi

ds
=

1

hi

dφi

ds
.

As φ′
1 = −1 and φ′

2 = 1 we have

Ki =
1

hi

(

1 −1
−1 1

)

+ 12hi

∫ 1

0

(

(1 − s)2 s(1 − s)
s(1 − s) s2

)

ds

∫ 1

0

s2 ds =

∫ 1

0

(1 − s)2 ds =
1

3
,

∫ 1

0

s(1 − s) ds =
1

2
− 1

3
=

1

6
.

The element matrix is

Ki =
1

hi

(

1 −1
−1 1

)

+
12hi

6

(

2 1
1 2

)

.

The element vector is

bi = hi

∫ 1

0

(

1 − s
s

)

ds =
hi

2

(

1
1

)

.

4 MARKS

(iii) The element matrices and the element vectors are the same for all the elements.
With M = 2, hi = 1/2, 1/hi = 2 and

K1 = K2 =

(

2 −2
−2 2

)

+

(

2 1
1 2

)

=

(

4 −1
−1 4

)

,

b1 = b2 =
1

4

(

1
1

)

.

K̂ =





4 −1 0
−1 8 −1
0 −1 4



 .

b̂ =
1

4





1
2
1



 .

3 MARKS

(iv) At the node x0 = 0 the approximation satisfies the essential boundary condi-
tions and thus U(x0) = 0.

U(x) = U(1/2)φ̂1(x) + U(1)φ̂2(x)

where
(

8 −1
−1 4

)(

U(1/2)
U(1)

)

=
1

4

(

2
1

)

.

– 21–
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We get
(

U(1/2)
U(1)

)

=
1

31

(

4 1
1 8

)

1

4

(

2
1

)

=
1

124

(

9
10

)

.

2 MARKS

8. The following was question 2 of the June 2003 MA3056S paper.

In the following the ordinary differential equation

−u′′ + 12u = 1, 0 < x < 1, u(0) = u(1) = 0

is to be approximately solved using the Galerkin finite element method using a contin-
uous piecewise linear approximating function defined on a mesh 0 = x0 < x1 < · · · <
xM = 1.

(a) Derive the weak form for this problem in the form a(u, v) = (f, v).

[2 MARKS]

(b) When the finite element method is implemented in an element-by-element way an
actual element [xi−1, xi] is mapped to a standard element such as [0, 1]. State the
linear basis functions φ1(s), φ2(s), 0 ≤ s ≤ 1 defined on the standard element [0, 1]
and express both the mapping and the form of the approximation in terms of these
functions.

[2 MARKS]

(c) Let φ̂i(x), i = 0, 1, · · · ,M denote the piecewise linear hat functions with the prop-
erty φ̂i(xi) = 1 and φ̂i(xj) = 0 for j 6= i. On the element [xi−1, xi] indicate which
of these functions are non-zero and indicate how the non-zero functions are related
to φ1 and φ2 given in (b).

[2 MARKS]

(d) For the ith element [xi−1, xi] describe what is meant by the element matrix Ki and
the element vector bi for this problem and determine Ki and bi.

[5 MARKS]

(e) In the case M = 3 and uniformly spaced points xi = i/3, i = 0, 1, 2, 3 do the
following.

(i) Give the 3 element matrices K1, K2, and K3 and the 3 element vectors b1, b2
and b3.

[2 MARKS]

(ii) Determine the 4 × 4 global matrix K̂ = (a(φ̂i, φ̂j)), 0 ≤ i, j ≤ 3 and the 4 × 1

global vector b̂ = ((f, φ̂i)), 0 ≤ i ≤ 3 where f(x) = 1.

[4 MARKS]

(iii) Determine the finite element approximation at x = 1/3 and at x = 2/3 ob-
tained using this mesh of 3 elements.

[3 MARKS]
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ANSWER

(a) If v ∈ H1
0 (0, 1) then

−
∫ 1

0

u′′v dx =

∫ 1

0

u′v′ dx.

The weak form involves finding v ∈ V = H1
0 (0, 1) such that

a(u, v) =

∫ 1

0

u′v′ + 12uv dx =

∫ 1

0

v dx = (f, v) for all v ∈ V

with f(x) = 1.

2 MARKS

(b) The basis functions are φ1(s) = 1 − s, φ2(s) = s. Let x : [0, 1] → [xi−1, xi]
denote the map, let U denote the approximation and let Uj = U(xj).

x(s) = xi−1φ1(s) + xiφ2(s) = xi−1 + his, hi = xi − xi−1,

U(x(s)) = Ui−1φ1(s) + Uiφ2(s) = Ui−1 + (Ui − Ui−1)s.

2 MARKS

(c) On [xi−1, xi] the functions φ̂i−1(x) and φ̂i(x) are the only non-zero basis func-
tions.

φ̂i−1(x(s)) = φ1(s),

φ̂i(x(s)) = φ2(s).

2 MARKS

(d) Let

a(u, v)i =

∫ xi

xi−1

u′v′ + 12uv dx and (f, v)i =

∫ xi

xi−1

v dx.

Also let φ̃i be such that φ̃i(x(s)) = φi(s). The element matrix and element
vector are

Ki =

(

a(φ̃1, φ̃1)i a(φ̃1, φ̃2)i

a(φ̃2, φ̃1)i a(φ̃2, φ̃2)i

)

and bi =

(

(f, φ̃1)i

(f, φ̃2)i

)

.

dφ̃i

dx
=
ds

dx

dφi

ds
=

1

hi

dφi

ds
.

As φ′
1 = −1 and φ′

2 = 1 we have

Ki =
1

hi

(

1 −1
−1 1

)

+ 12hi

∫ 1

0

(

(1 − s)2 s(1 − s)
s(1 − s) s2

)

ds,

∫

1

0

s2 ds =

∫

1

0

(1 − s)2 ds =
1

3
,

∫

1

0

s(1 − s) ds =
1

2
− 1

3
=

1

6
.

The element matrix is

Ki =
1

hi

(

1 −1
−1 1

)

+
12hi

6

(

2 1
1 2

)

.

– 23–



20-4-2005 9:15 c© M. K. Warby MA3951/MA5352 Numerical and Variational Methods for PDEs exercises 24

The element vector is

bi = hi

∫ 1

0

(

1 − s
s

)

ds =
hi

2

(

1
1

)

.

5 MARKS

(e) (i) The element matrices and the element vectors are the same for all the
elements. With M = 3, hi = 1/3, 1/hi = 3 and

K1 = K2 = K3 =

(

3 −3
−3 3

)

+
2

3

(

2 1
1 2

)

=

(

13

3
−−7

3
−7

3

13

3

)

=
1

3

(

13 −7
−7 13

)

,

b1 = b2 = b3 =
1

6

(

1
1

)

.

2 MARKS

(ii)

K̂ =
1

3









13 −7 0
−7 26 −7 0
0 −7 26 −7
0 0 −7 13









.

b̂ =
1

6









1
2
2
1









.

4 MARKS

(iii) At the nodes x0 = 0 and x3 = 1 the approximation satisfies the essential
boundary conditions and thus U(x0) = U(x3) = 0.

U(x) = U(1/3)φ̂1(x) + U(2/3)φ̂2(x)

where
1

3

(

26 −7
−7 26

)(

U(1/3)
U(2/3)

)

=
1

6

(

2
2

)

.

We get
(

U(1/3)
U(2/3)

)

=
1

627

(

26 7
7 26

)(

1
1

)

=
33

627

(

1
1

)

.

3 MARKS
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9. Apart from a few minor changes and re-typing this was question 3 of the 1999 MA3056S

paper.

The two point boundary value, with solution u(x),

−u′′(x) + 6u(x) = x, 0 < x < 1, u(0) = u(1) = 0,

is to be solved via its weak formulation using a Galerkin finite element based on piecewise
linear functions. For test functions v where

v ∈ H1
0 (0, 1) := {v : v, v′ ∈ L2(0, 1), v(0) = v(1) = 0}, (1)

derive the weak form of problem (1).

ANSWER

−
∫ 1

0

u′′v dx = −[u′v]10 +

∫ 1

0

u′v′ dx =

∫ 1

0

u′v′ dx for all v ∈ H1
0 (0, 1).

The weak form involves finding u ∈ H1
0 (0, 1) such that

a(u, v) =

∫ 1

0

u′v′ + 6uv dx =

∫ 1

0

xv dx =: F (v) for all v ∈ H1
0 (0, 1).

In the case of the partition 0 = x0 < x1 < x2 < · · · < x
ne

= 1, show that the weak form
can be expressed in the form

ne
∑

i=1

a(u, v)i =

ne
∑

i=1

(x, v)i for all v ∈ H1
0 (0, 1), (2)

where

a(u, v)i =

∫ xi

xi−1

u′v′ + 6uv dx and (x, v)i =

∫ xi

xi−1

xv dx.

ANSWER

Because of the properties of the integral we have for any function g ∈ L2(0, 1) that

∫

1

0

g(x) dx =

ne
∑

i=1

∫ xi

xi−1

g(x) dx.

Thus

a(u, v) =

ne
∑

i=1

a(u, v)i and (x, v) =

ne
∑

i=1

(x, v)i.

The result then follows.
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Explain what is meant by an isoparametric finite element method.

ANSWER

Let S denote a standard element and let Ii = (xi−1, xi) denote an actual element and
let x : S → Ii be a mapping which is one-to-one and onto. Also let U denote the finite
element approximation and let φ1, · · · , φm denote the basis functions defined on S. An
isoparametric finite element method is a method in which on each element the mapping
and the approximation are both of the form

x(s) =

m
∑

j=1

x̃jφj(x),

U(x(s)) =
m
∑

j=1

Ũjφj(x).

A linear isoparametric finite element, based on the equally spaced points xi = i/3, i =
0, 1, 2, 3 is used to approximate the solution of (2). Let U(x) denote the approximation
and let Ui = U(xi). With s = s(x) denoting the linear mapping of [xi−1, xi] onto [0, 1]
and with ũ(s) = u(x(s)) and ṽ(s) = v(x(s)) for xi−1 < x < xi show that

a(u, v)i =

∫ 1

0

(

dũ

ds

dṽ

ds

ds

dx
+ 6ũṽ

dx

ds

)

ds,

(x, v)i =

∫ 1

0

x(s)ṽ(s)
dx

ds
ds.

Then show that the element matrix for the element [xi−1, xi] is,

1

3

(

11 −8
−8 11

)

.

Assemble the 3 element matrices to form a 4 × 4 global matrix. Also compute the 3
element constant vectors and assemble these to create a 4 × 1 global vector. Then,
by taking account of the homogeneous boundary conditions obtain the 2-by-2 system
satisfied by U1 and U2. You do not have to solve the system.

ANSWER

We have

ũ(s) = u(x(s)),
dũ

ds
=
du

dx

dx

ds
,

du

dx
=
dũ

ds

ds

dx
.

Thus

a(u, v)i =

∫ xi

xi−1

(u′v′ + 6uv) dx =

∫ 1

0

(

(

ds

dx

)2
dũ

ds

dṽ

ds
+ 6ũṽ

)

dx

ds
ds

=

∫ 1

0

(

ds

dx

dũ

ds

dṽ

ds
+ 6ũṽ

dx

ds

)

ds

(x, v)i =

∫ 1

0

x(s)ṽ(s)
dx

ds
ds.
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The linear basis functions on [0, 1] are φ̃1(s) = 1 − s and φ̃2(s) = s. For the derivatives
φ̃′

1 = −1 and φ̃′
2 = 1. The mapping is

x(s) = xi−1 + hs, h = xi − xi−1,
dx

ds
= h,

ds

dx
=

1

h
.

The element matrix Ki and the element vector bi are

Ki = (a(φk, φl)i), 1 ≤ k, l ≤ 2 and bi = ((x, φk)i), 1 ≤ k ≤ 2

where φk(x(s)) = φ̃k(s).

a(φ1, φ1) =

∫ 1

0

(

1

h
+ 6(1 − s)2h

)

ds =
1

h
+ 6h

[

(s− 1)3

3

]1

0

=
1

h
+ 2h,

a(φ2, φ2) =

∫ 1

0

(

1

h
+ 6s2h

)

ds =
1

h
+ 2h,

a(φ1, φ2) =

∫ 1

0

(−1

h
+ 6s(1 − s)h

)

ds =
−1

h
+ 6h

(

1

2
− 1

3

)

=
−1

h
+ h.

As h = 1/3 we have

Ki =
1

h

(

1 −1
−1 1

)

+ h

(

2 1
1 2

)

=
1

3

(

11 −8
−8 11

)

.

If φ̂k, k = 0, 1, 2, 3 denote the piecewise linear hat functions defined for all x ∈ [0, 1]
then the 4 × 4 global matrix is K̂ = (a(φ̂k, φ̂l)), 0 ≤ k, l ≤ 3. The nodes x1 = 1/3 and
x2 = 2/3 are both on two elements and thus the 2, 2 and 3, 3 entries of the global matrix
get contributions from two elements. Assembling gives

K̂ =
1

3









11 −8
−8 22 −8

−8 22 −8
−8 11









.

For the element vector we have

bi = h

∫

1

0

x(s)

(

φ1

φ2

)

ds = h

∫

1

0

(xi−1 + hs)

(

1 − s
s

)

ds = hxi−1

(

1

2

1

2

)

+ h2

(

1

6

1

3

)

.

Thus

b1 =
1

9

(

1

6

1

3

)

,

b2 =
1

9

(

1

2

1

2

)

+
1

9

(

1

6

1

3

)

=
1

9

(

2

3

5

6

)

,

b3 =
2

9

(

1

2

1

2

)

+
1

9

(

1

6

1

3

)

=
1

9

(

7

6

4

3

)

.
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Assembling these element vectors gives the global vector

b̂ =
1

9









1

6

1
2
4

3









.

The approximation U(x) = U1φ̂1(x) + U2φ̂2(x) where U1 and U2 satisfy

(

a(φ̂1, φ̂1) a(φ̂1, φ̂2)

a(φ̂2, φ̂1) a(φ̂2, φ̂2)

)(

U1

U2

)

=
1

3

(

22 −8
−8 22

)(

U1

U2

)

=

(

(x, φ̂1)

(x, φ̂2)

)

=
1

9

(

1
2

)

.

10. Let V be an inner product space, let a(., .) be a symmetric and positive definite bilinear
form on V × V and let f ∈ V . Show that a function u ∈ V satisfying

a(u, v) = (f, v) for all v ∈ V

uniquely minimises the functional

I(v) =
1

2
a(v, v) − (f, v).

ANSWER

This is a standard book work question.

As we are attempting to show that u minimises I(.) over V we compare I(u + v) with
I(u) for any v ∈ V , v 6= 0. We have

I(u+ v) − I(u) =
1

2
(a(u+ v, u+ v) − a(u, u)) − ((f, u+ v) − (f, u)),

=
1

2
(2a(u, v) + a(v, v))) − (f, v),

=
1

2
a(v, v) > 0

using the properties of a(., .) to expand the a(u+v, u+v) term, using a(u, v)−(f, v) = 0
and using the positive definite property. This tells us that u uniquely minimises the
functional.

11. (a) After first reformulating the two-point boundary value problem

−u′′ + 6u = 1, u(0) = u(1) = 0

into weak form, calculate the Galerkin method approximation U(x) = c1φ1(x)
where φ1(x) = x(1 − x).
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ANSWER

We have essential boundary conditions at x = 0 and at x = 1. Let

V = {v ∈ C2[0, 1] : v(0) = v(1) = 0}.

The exact solution u ∈ V satisfies

a(u, v) =

∫

1

0

u′v′ + 6uv dx =

∫

1

0

v dx = (1, v) for all v ∈ V .

The Galerkin approximation U = c1φ1 satisfies

a(U, φ1) = a(φ1, φ1)c1 = (1, φ1) giving c1 =
(1, φ1)

a(φ1, φ1)
.

φ1 = x− x2, φ′
1 = 1 − 2x.

(1, φ1) =

∫ 1

0

x− x2 dx =
1

2
− 1

3
=

1

6
.

a(φ1, φ1) =

∫ 1

0

φ′
1

2
+ φ2

1 dx =

∫ 1

0

(1 − 2x)2 + 6(x− x2)2 dx.

The integrand is
(1 − 4x + 4x2) + 6(x2 − 2x3 + x4)

Thus

a(φ1, φ1) = (1 − 4

2
+

4

3
) + 6

(

1

3
− 2

4
+

1

5

)

=
1

3
+

1

5
=

8

15
.

Thus

c1 =
1/6

8/15
=

15

48
=

5

16
.

(b) After first reformulating the two-point boundary value problem

−u′′ + 6u = x, u′(0) = 0, u′(1) + u(1) = 0

into weak form, calculate the Galerkin method approximation U1 ∈ span{φ1} and
U2 ∈ span{φ1, φ2} where φ1(x) = 1 and φ2(x) = x.

ANSWER

Let Lu = −u′′ + 6u and let f(x) = x. Then

(Lu, v) = −[u′v]10 +

∫

1

0

u′v′ + 6uv dx.

Using the boundary conditions we have

−[u′v]10 = −u′(1)v(1) + u′(0)v(0) = u(1)v(1).
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Let V = C2[0, 1]. The exact solution u ∈ V satisfies

a(u, v) =

∫ 1

0

u′v′ + 6uv dx+ u(1)v(1) =

∫ 1

0

fv dx for all v ∈ V.

Both the boundary conditions are natural boundary conditions for this weak form.

U1 = c1φ1, where a(φ1, φ1)c1 = (f, φ1).

With φ1 = 1, φ′
1 = 0.

a(φ1, φ1) =

∫

1

0

6φ2
1 dx + φ1(1)2 = 6 + 1 = 7, (f, φ1) =

∫

1

0

x dx =
1

2
.

Thus

c1 =
1

14
giving U1 =

1

14
.

U2 = c1φ1 + c2φ2 where now

(

a(φ1, φ1) a(φ1, φ2)
a(φ2, φ1) a(φ2, φ2)

)(

c1
c2

)

=

(

(f, φ1)
(f, φ2)

)

.

Now φ2 = x, φ′
2 = 1. Thus

(f, φ2) =

∫ 1

0

x2 dx =
1

3
,

a(φ1, φ2) =

∫ 1

0

6φ1φ2 dx+ φ1(1)φ2(1) =

∫ 1

0

6x dx+ 1 = 3 + 1 = 4,

a(φ2, φ2) =

∫ 1

0

1 + 6x2 dx + 1 = 1 + 2 + 1 = 4.

The linear system is
(

7 4
4 4

)(

c1
c2

)

=

(

1

2
1

3

)

.

Solving

(

c1
c2

)

=
1

12

(

4 −4
−4 7

)(

1

2
1

3

)

=
1

72

(

4 −4
−4 7

)(

3
2

)

=
1

72

(

4
2

)

=
1

36

(

2
1

)

.

Hence U2 = (2 + x)/36.

12. Let 0 = x0 < x1 < · · · < x
ne

= 1 and let φ̂i(x) denote the piecewise linear ‘hat’ function
which takes the value 1 at x = xi. Describe mathematically φ̂i(x) and φ̂′

i(x), 0 ≤ x ≤ 1.
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ANSWER

The graph of a hat function is

xi−1 xi xi+1

(xi, 1)

Let hi = xi − xi−1, hi+1 = xi+1 − xi.

φ̂i(x) =























(x− xi−1)
hi

, xi−1 ≤ x ≤ xi,

(xi − x)
hi+1

, xi ≤ x ≤ xi+1,

0, otherwise.

and φ̂′
i(x) =



















1
hi
, xi−1 < x < xi,

−1
hi+1

, xi < x < xi+1,

0, x < xi−1 or x > xi.

φ̂′
i(x) is not defined at x = xi−1, x = xi and x = xi+1.

If

a(u, v) =

∫ 1

0

u′v′ + quv dx,

where q(x) ≥ 0, then explain why the matrix K = (a(φ̂i, φ̂j)), 1 ≤ i, j ≤ ne−1 is banded
and state the band width.

ANSWER

φ̂i is only non-zero in (xi−1, xi+1) and if i and j are such that (xi−1, xi+1)∩(xj−1, xj+1) =

empty set then a(φ̂i, φ̂j) = 0. If we keep i fixed then we get non-zero entries only if
j = i− 1, j = i and j = i+1. Hence K is a tri-diagonal matrix, i.e. a matrix with band
width=3.
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Let

U =

ne−1
∑

j=1

cjφ̂j

and consider the case of equally spaced points with spacing h = 1/ne.

(a) In the case q = 0 show that

a(U, φ̂i) =

∫ 1

0

φ̂i(x) dx

gives
−ci−1 + 2ci − ci+1 = h2.

ANSWER

For the right hand side and using hi = hi+1 = h we have

∫

1

0

φ̂i(x) dx =

∫ xi

xi−1

x− xi−1

h
dx +

∫ xi+1

xi

xi+1 − x

h
dx =

h

2
+
h

2
= h.

For the left hand side

a(U, φ̂i) = a(φ̂i−1, φ̂i)ci−1 + a(φ̂i, φ̂i)ci + a(φ̂i+1, φ̂i)ci+1.

For the integrals note that the derivatives of the basis functions are constant on
each element.

a(φ̂i−1, φ̂i) =

∫ xi

xi−1

−1

h2
dx =

−1

h
,

a(φ̂i+1, φ̂i) =

∫ xi+1

xi

−1

h2
dx =

−1

h
,

a(φ̂i, φ̂i) =

∫ xi

xi−1

1

h2
dx +

∫ xi+1

xi

1

h2
dx =

2

h
.

The equation is
1

h
(−ci−1 + 2ci − ci+1) = h.

(b) In the case q = α > 0 is constant on [0, 1] show that the equation

a(U, φ̂i) =

∫ 1

0

φ̂i dx

leads to a relation of the form

ki,i−1ci−1 + kiici + ki,i+1ci+1 = h.

In your answer you should give ki,i−1, kii and ki,i+1 in terms of h and α.
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ANSWER

We again have

a(U, φ̂i) = a(φ̂i−1, φ̂i)ci−1 + a(φ̂i, φ̂i)ci + a(φ̂i+1, φ̂i)ci+1 = h

where now

a(u, v) =

∫ 1

0

u′v′ + αuv dx.

We consider the integrals of terms such as φ̂iφ̂j.
∫ xi

xi−1

φ̂i(x)φ̂i−1(x) dx =
1

h2

∫ xi

xi−1

(x− xi−1)(xi − x) dx.

To evaluate the integral let y = x−xi−1 so that xi−x = −(x−xi) = −(y−h) = h−y.
∫ xi

xi−1

(x− xi−1)(xi − x) dx. =

∫ h

0

y(h− y) dx = h
h2

2
− h3

3
=
h3

6
.

Similarly
∫ xi+1

xi

φ̂i(x)φ̂i+1(x) dx =
1

h2

∫ xi+1

xi

(x− xi)(xi+1 − x) dx =
h3

6
.

Hence

ki,i−1 = a(φ̂i−1, φ̂i) = −1

h
+ α

h

6
,

ki,i+1 = a(φ̂i+1, φ̂i) = −1

h
+ α

h

6
.

For the a(φ̂i, φ̂i) term we have to consider the following.
∫ xi

xi−1

φ̂2
i dx+

∫ xi+1

xi

φ̂2
i dx =

1

h2

(
∫ xi

xi−1

(x− xi−1)
2 dx+

∫ xi+1

xi

(x− xi+1)
2 dx

)

=
1

h2

(

h3

3
+
h3

3

)

=
2h

3
.

Thus

kii = a(φ̂i, φ̂i) =
2

h
+ α

2h

3
.

An alternative way of organising the computations here is to get the terms ki,i−1,
ki,i and ki,i+1 after first computing the element matrices which is part of the next
question. The details of calculating the element matrices are given in the answer
to the next question. To summarise the results we have for (xi−1, xi) an element
stiffness matrix corresponding to the derivative terms and an element mass matrix
corresponding to integrating the basis functions of respectively

1

hi

(

1 −1
−1 1

)

and
hi

6

(

2 1
1 2

)

.
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Combining these appropriately we get the element matrix associated with the weak
form of

Ki =
1

hi

(

1 −1
−1 1

)

+ α
hi

6

(

2 1
1 2

)

.

The terms ki,i−1 and ki,i+1 only have a contribution from one element in each case.
As hi = h for all elements we get

ki,i−1 = ki,i+1 = −1

h
+ α

h

6
.

The ki,i term involves combining the contributions from elements (xi−1, xi) and
(xi, xi+1) which in turn involves adding the appropriate diagonal terms of Ki and
Ki+1. We have

ki,i =
2

h
+ α

4h

6
.

13. Apart from a few minor changes and re-typing this was question 1 of the 2001 MA3056S

paper.

The weak form of the two point boundary value problem

L(u(x)) = f(x), 0 < x < 1, u(0) = A, u(1) = B, (1)

where L is a linear differential operator, f(x) is a given function and A and B are
given values, is set up by multiplying (1) by a test function v ∈ H1

0 (0, 1) := {v : v ∈
H1(0, 1), v(0) = v(1) = 0}, and integrating the product over [0, 1]. After integrating
the weak form of problem (1) is of the form:

find u ∈ H such that a(u, v) =

∫ 1

0

fv dx ∀v ∈ H1
0 (0, 1), (2)

where H := {w : w ∈ H1(0, 1), w(0) = A, w(1) = B} and where a(., .) is a symmetric
bilinear form.

(a) Explain how you would apply the Galerkin technique using polynomial basis func-
tions over [0, 1] to derive an approximation U to u ∈ H, the solution of (2).

[6 MARKS]

ANSWER

The problem as given has non-homogeneous boundary conditions but can be con-
verted to one with homogeneous conditions by defining

u1(x) = A+ (B − A)x which satisfies u1(0) = A and u1(1) = B.

The solution u ∈ H is of the form u = u1 + ũ where ũ ∈ H1
0 (0, 1). We have

a(u, v) = a(u1 + ũ, v) = (f, v) giving a(ũ, v) = (f, v) − a(u1, v) =: F (v).
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With polynomial basis functions φ1, φ2, · · · in H1
0 (0, 1) we define

Vn := span{φ1, · · · , φn}.

The Galerkin technique involves computing Ũn ∈ Vn such that

a(Ũn, v) = F (v) for all v ∈ Vn

from which we get Un = u1 + Ũn. With Ũn =
∑n

1
cjφj the coefficients c = (ci)

satisfy Kc = b where
K = (a(φi, φj)), b = (F (φi)).

(b) Derive the weak form of the problem

−u′′(x) = x4, 0 < x < 1, u(0) = 1, u(1) = 0. (3)

[4 MARKS]

ANSWER

−
∫

1

0

u′′v dx =

∫

1

0

u′v′ dx for v satisfying v(0) = v(1) = 0.

The weak form can be written as find u ∈ {v ∈ H1(0, 1) : v(0) = 0, v(1) = 1}
such that

a(u, v) =

∫ 1

0

u′v′ dx =

∫ 1

0

x4v dx for all v ∈ H1
0 (0, 1).

(c) Using the Galerkin technique with trial function

U(x) = (1 − x) + c1x(1 − x) + c2x
2(1 − x)

containing the unknown parameters c1 and c2, and the respective test functions

v1(x) = x(1 − x) and v2(x) = x2(1 − x),

set up the 2 × 2 system of linear equations for c1 and c2.

[Do not attempt to evaluate the integrals involved and do not attempt to solve the
system.]

[5 MARKS]
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ANSWER

U(x) = u1 + c1φ1(x) + c2φ2(x), with
u1 = 1 − x,
φ1(x) = x(1 − x),
φ2(x) = x2(1 − x).

The integrands in the a(., .) expression involves derivatives of the basis functions
φ1 and φ2. We have

φ′
1(x) = 1 − 2x and φ′

2(x) = 2x− 3x2.

The equations are

Kc =

(

(x4, φ1)

(x4, φ2)

)

−
(

a(u1, φ1)

a(u1, φ2)

)

where

K =

∫

1

0

(

φ′
1

2 φ′
1φ

′
2

φ′
2φ

′
1 φ′

2

2

)

dx =

∫

1

0

(

(1 − 2x)2 (1 − 2x)(2x− 3x2)
(1 − 2x)(2x− 3x2) (2x− 3x2)2

)

dx.

14. The following was question 3 of the June 2003 MA3056S paper.

Let V denote a Hilbert space with inner product (., .), let a(., .) denote a symmetric and
positive definite bilinear form defined on V × V and let F (.) denote a linear functional
defined on V . Also let Vh ⊂ V and suppose that there exists u ∈ V and Uh ∈ Vh

satisfying

a(u, v) = F (v), for all v ∈ V,

a(Uh, v) = F (v), for all v ∈ Vh.

(a) Define what it means for a(., .) to be positive definite on V × V .

[1 MARK]

(b) If e = u− Uh then show that a(e, v) = 0 for all v ∈ Vh.

[1 MARK]

(c) Let ‖v‖E = a(v, v)1/2 denote the energy norm on V .

State the Cauchy Schwarz inequality as applied to a(v, w) and show that

‖u− Uh‖E ≤ ‖u− v‖E for all v ∈ Vh.

Comment on this property of Uh.
[4 MARKS]
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(d) Show that u ∈ V and Uh ∈ Vh uniquely minimise the functional

I(v) =
1

2
a(v, v) − F (v) (∗)

over the spaces V and Vh respectively.

[5 MARKS]

(e) For the functional I(.) defined in (∗) in part (d) show that

I(Uh) = I(u) +
1

2
a(u− Uh, u− Uh).

[2 MARKS]

(f) Let ‖.‖ denote the usual norm of V given by ‖v‖ = (v, v)1/2. Suppose that the
bilinear form a(., .) and the linear functional F (.) satisfy the coercive and bounded
properties that

κ1‖v‖2 ≤ a(v, v), |a(v, w)| ≤ κ2‖v‖‖w‖, |F (v)| ≤ κ3‖v‖

for all v, w ∈ V where 0 < κ1 ≤ κ2 and κ3 > 0 are constants. Show that under
these conditions we have the following.

(i)

‖u− Uh‖2 ≤ κ2

κ1

‖u− v‖2 for all v ∈ Vh.

[2 MARKS]

(ii)

‖u‖ ≤ κ3

κ1

and ‖Uh‖ ≤ κ3

κ1

.

[2 MARKS]

(iii)

I(v) ≥ − κ2
3

2κ1

for all v ∈ V , where I(v) is defined in (∗) in part (d).

[3 MARKS]

ANSWER

(a) a(., .) is positive definite on V × V if a(v, v) ≥ 0 for all v ∈ V with a(v, v) = 0 only
when v = 0.

1 MARK

(b) Subtracting the two relations when v ∈ Vh and using the properties of the bilinear
form we have

0 = a(u, v) − a(Uh, v) = a(u− Uh, v).

1 MARK
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(c) The Cauchy Schwarz inequality is |a(v, w)| ≤ ‖v‖E‖w‖E.

Using the result in (b) we have for all v ∈ Vh

‖u− Uh‖2 = a(u− Uh, u− Uh)

= a(u− Uh, u− Uh) + a(u− Uh, Uh − v)

= a(u− Uh, u− v)

≤ ‖u− Uh‖E‖u− v‖E.

using the Cauchy Schwarz inequality. Dividing by ‖u− Uh‖E 6= 0 gives the result.
This result tells us that Uh is the best approximation to u from the space Vh in the
energy norm.

4 MARKS

(d) Let v ∈ V and consider I(u+ v).

I(u+ v) =
1

2
a(u+ v, u+ v) − F (u+ v)

=
1

2
(a(u, u) + 2a(u, v) + a(v, v)) − (F (u) + F (v))

= I(u) + (a(u, v) − F (v)) +
1

2
a(v, v).

From the property of u we have a(u, v) − F (v) = 0 and thus

I(u+ v) = I(u) +
1

2
a(v, v) > I(u)

for all v 6= 0 using the positive definite property of a(., .). u hence uniquely min-
imises the functional over V .

Similarly if v ∈ Vh and v 6= 0 then we have

I(Uh + v) = I(Uh) +
1

2
a(v, v) > I(Uh)

showing that Uh uniquely minimises the functional over Vh.

5 MARKS

(e) From the derivation used in (d) we take v = Uh − u to immediately get the result.

2 MARKS

(f) (i) If we use the coercive and bounded properties on the terms in the best approx-
imation result in part (c) we get for all v ∈ V that

κ1‖u− Uh‖2 ≤ ‖u− Uh‖2
E ≤ ‖u− v‖2

E ≤ κ2‖u− v‖2.

The result then follows.

2 MARKS
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(ii)
κ1‖u‖2 ≤ a(u, u) = F (u) ≤ κ3‖u‖

giving ‖u‖ ≤ κ3/κ1.
Similarly

κ1‖Uh‖2 ≤ a(Uh, Uh) = F (Uh) ≤ κ3‖Uh‖
giving ‖Uh‖ ≤ κ3/κ1.

2 MARKS

(iii) Using the coercive property of a(v, v) and the bounded property of F (v) we
have

I(v) ≥ κ1

2
‖v‖2 − κ3‖v‖ =

1

2
(κ1‖v‖2 − 2κ3‖v‖)

Now the quadratic

g(t) = κ1t
2 − 2κ3t

= κ1

(

t2 − 2
κ3

κ1

t

)

= κ1

(

t− κ3

κ1

t

)2

− κ2
3

κ1

≥ −κ
2
3

κ1

for all t ∈ R.

Hence

I(v) ≥ − κ2
3

2κ1

.

3 MARKS

15. Apart from a few minor changes and re-typing this was question 5 of the 2001 MA3056S

paper.

(i) Let V denote a Hilbert space with inner product (., .) and let a(., .) denote a bilinear
form which is such that a(v, v) > 0 for all v ∈ V with v 6= 0. Also let Vh ⊂ V denote
another space of functions such that u ∈ V and Uh ∈ Vh minimise the functional

I(v) =
1

2
a(v, v) − (f, v)

over the spaces V and Vh respectively where f ∈ V . Show the following:

(a) a(u, v) = (f, v) for all v ∈ V and a(Uh, v) = (f, v) for all v ∈ Vh.
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ANSWER

As u ∈ V minimises I(v) over V it follows that for all v 6= 0 the quadratic
g(t) = I(u+ tv) − I(u) has a minimum at t = 0, i.e. g′(0) = 0. Now

g(t) =
1

2
(a(u+ tv, u+ tv) − a(u, u)) − ((f, u+ tv) − (f, u))

=
1

2
(2a(u, v)t+ a(v, v)t2) − (f, v)t

= (a(u, v) − (f, v))t+
t2

2
a(v, v)

and g′(0) = a(u, v) − (f, v). Thus for all v ∈ V we have a(u, v) = (f, v).

Similarly if v ∈ Vh, v 6= 0 and we now let g(t) = I(Uh + tv)− I(Uh) then g has
a minimum at t = 0 with

0 = g′(0) = a(Uh, v) − (f, v)

and we have a(Uh, v) = (f, v).

(b) If e = u− Uh then a(e, v) = 0 for all v ∈ Vh.

ANSWER

This follows immediately from

(f, v) = a(u, v) = a(Uh, v) for all v ∈ Vh

and the properties of the bilinear form, i.e. a(u−Uh, v) = a(u, v)−a(uh, v) = 0.

(c) I(Uh) = I(u) + 1

2
a(e, e).

ANSWER

From the answer to part (a) (with t = 1) we have

I(u+ v) = I(u) +
1

2
a(v, v).

Taking v = Uh − u = −e gives

I(Uh) = I(u) +
1

2
a(−e,−e) = I(u) +

1

2
a(e, e).

(d) a(e, e) ≤ a(u− v, u− v) for all v ∈ Vh. Comment on this result.

ANSWER

Let v ∈ Vh. We have

a(e, e) = a(e, u− Uh) = a(e, u− Uh + (Uh − v))

= a(e, u− v)

≤ a(e, e)1/2a(u− v, u− v)1/2 by the Cauchy Schwarz inequality.

Hence
a(e, e) ≤ a(u− v, u− v).

Let ‖v‖E := a(v, v)1/2 denote the energy norm. The result just given shows
that the Galerkin approximation Uh is the best approximation to u from the
space Vh in the energy norm.
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[10 MARKS]

(ii) Show that the weak form of

u′′′′(x) = f(x), 0 < x < 1 with u(0) = u′(0) = u(1) = u′(1) = 0,

involves the bilinear form

a(u, v) =

∫ 1

0

u′′v′′ dx.

ANSWER

Let v satisfy v(0) = v′(0) = v(1) = v′(1) = 0. We use integration by parts twice to
get

∫ 1

0

u′′′′v dx = −
∫ 1

0

u′′′v′ dx, using v(0) = v(1) = 0,

= +

∫

1

0

u′′v′′ dx, using v′(0) = v′(1) = 0.

The weak form involves finding u ∈ V = {v ∈ H2(0, 1) : v(0) = v′(0) = v(1) =
v′(1) = 0} such that

∫

1

0

u′′v′′ dx =

∫

1

0

fv dx for all v ∈ V .

If the finite element method is used to obtain an approximation Uh to u using
piecewise cubic Hermite elements on a mesh 0 = x0 < x1 < · · · < x

ne
= 1 then

it can be shown that the approximate solution and its first derivative are exact at
the point xi. In the case f(x) = 1 give the exact solution. Also in the case ne = 1
give the finite element solution. Under these conditions of f(x) = 1 and ne = 1
and with e = u− Uh show the following:

(a) e′(1/2) = 0.

(b) e′′(α) = 0 where α = 1

2
±

√
3

6
.

(c) e′′′(1/2) = 0.

[10 MARKS]

ANSWER

I have not done much on the module on cubic Hermite elements but there is not
much to know to answer this question.

Firstly, for the exact solution we just need to integrate f(x) four times and apply
the 4 boundary conditions. As f(x) = 1 the exact solution u(x) is a polynomial of
degree 4 with the coefficient of x4 being 1/4! = 1/24 and the boundary conditions
imply that u(x) has double roots at x = 0 and at x = 1. Hence

u(x) =
1

24
x2(1 − x)2 =

x2

24
(x2 − 2x+ 1).
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With one cubic element the finite element solution is completely determined by
the boundary conditions and we have Uh = 0 and thus the error e = u− Uh = u.
Differentiating we have

e′(x) =
1

24
(4x3 − 6x2 + 2x) =

x

12
(2x2 − 3x+ 1) =

x

12
(2x− 1)(x− 1),

e′′(x) =
1

24
(12x2 − 12x+ 2) =

1

12
(6x2 − 6x + 1),

e′′′(x) =
1

12
(12x− 6) =

1

2
(2x− 1).

From the factors we immediately have the result for parts (a) and (c). For part (b)
the roots of e′′(x) are

x = 6 ±
√

(62 − 4(6)

(2)(6)
=

6 ±
√

12

12
=

1

2
±

√
3

6
.

16. The following relates more to what is done in the MA5352 part of the module but anyone
who has done Fourier series before can attempt it.

Let v ∈ C1[0, 1] be a function satisfying v(0) = v(1) = 0 and let

v(x) =
∞
∑

k=1

ck sin kπx

be its Fourier series representation. Show that for all such functions
∫ 1

0

v(x)2 dx ≤ 1

π2

∫ 1

0

v′(x)
2

dx.

Use this result to determine the values of k for which Lu = −u′′−k2u is positive definite
on the space

DL = {v ∈ C2[0, 1] : v(0) = v(1) = 0}.

ANSWER

Let vn be the sum of the first n terms. We have

vn(x) =
n
∑

k=1

ck sin kπx,

v′n(x) =

n
∑

k=1

kck cos kπx.

Then

vn(x)2 =
n
∑

k=1

n
∑

l=1

ckcl sin kπx sin lπx,

v′n(x)2 =

n
∑

k=1

n
∑

l=1

klckcl cos kπx cos lπx.
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Now from the identities

cos(y + z) = cos y cos z − sin y sin z,

cos(y − z) = cos y cos z + sin y sin z

we get

cos y cos z =
1

2
(cos(y + z) + cos(y − z)),

sin y sin z =
1

2
(cos(y − z) − cos(y + z)).

We need to consider integrals of the form

∫ 1

0

cos(k + l)πx dx =
1

(k + l)π
[sin(k + l)πx]10 = 0,

∫ 1

0

cos(k − l)πx dx =
1

(k − l)π
[sin(k − l)πx]10 = 0, provided k 6= l,

∫ 1

0

dx = 1, corresponding to k = l.

Thus

∫ 1

0

sin kπx sin lπx dx =

∫ 1

0

cos kπx cos lπx dx =

{

1

2
if k = l,

0 if k 6= l.

From this it follows that
∫ 1

0

vn(x)2 dx =
1

2

∑

k=1

c2k,

∫ 1

0

v′n(x)2 dx =
1

2
π2
∑

k=1

k2c2k.

As k2c2k ≥ c2k for k = 1, 2, · · · it follows that

∫

1

0

v′n(x)2 dx ≥ π2

∫

1

0

vn(x)2 dx.

(In fact we can only have equality here if ck = 0 for k ≥ 2 and this corresponds to
v(x) = c1 sin πx.) Letting n→ ∞ gives the required inequality.

Using the boundary condition v(0) = v(1) = 0 we have

(Lv, v) =

∫ 1

0

(−v′′ − k2v)v dx =

∫ 1

0

v′
2 − k2v2 dx ≥

∫ 1

0

(π2 − k2)v2 dx.

We have the positive definite property if π2 − k2 > 0, i.e. |k| < π. L fails to be
positive definite if k = π. In this case the function v(x) = sin πx is non-zero and gives
(Lv, v) = 0.
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As a comment here, if you have taken courses on ODEs which has included sections
on eigenvalues then the above is connected with the eigenvalues and eigenfunctions of
Lu = −u′′ from a space of functions which includes the conditions u(0) = u(1) = 0.
An eigenvalue λ with corresponding eigenfunction u 6= 0 of L satisfy Lu = λu, i.e.
−u′′ − λu = 0. There are no eigenvalues for λ < π2. λ = π2 is the smallest positive
eigenvalue. The complete set of eigenvalues are λk = k2π2, k = 1, 2, · · · corresponding
respectively to the eigenfunctions sin kπx. k = 1, 2, · · · .
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MA3951/MA5352:

Numerical and Variational Methods for PDEs

Exercise sheet 2 and Answers

1. This was question 2 of the June 2004 MA5352B paper.

(a) Let Ω denote a bounded simply connected domain with a piecewise smooth bound-
ary ∂Ω and consider the Poisson problem

−∆u = 1 in Ω, u = 0 on ∂Ω1,
∂u

∂n
= g on ∂Ω2

where ∂Ω1 and ∂Ω2 give a partition of ∂Ω, g is a constant and where ∂/∂n denotes
partial differentiation in the direction of the outward normal to ∂Ω2.

Show that if u satisfies this problem then u ∈ V also satisfies the weak formulation

∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

v dxdy + g

∫

∂Ω2

v ds

for all v ∈ V where

V = {v ∈ H1(Ω) : v = 0 on ∂Ω1}.

[6 MARKS]

(b) Suppose that the domain Ω is partitioned into n triangular elements Ω1, · · · ,Ωn

such that

Ω̄ =

n
⋃

r=1

Ω̄r, Ωi ∩ Ωj = empty set for i 6= j

and let T denote the standard triangle with vertices sT
1 = (0, 0), sT

2 = (1, 0) and
sT
3 = (0, 1) in the (s, t) plane.

(i) State the three standard linear Lagrange basis functions φ1, φ2 and φ3 defined
on T such that φi(si) = 1 and φi(sj) = 0 if j 6= i.

[1 MARK]

(ii) Let x1 = (x1, y1)
T , x2 = (x2, y2)

T and x3 = (x3, y3)
T denote the vertices of Ωr,

let U(x) denote a linear function defined on Ωr and let Ui = U(xi), i = 1, 2, 3.
Describe the mapping x : T → Ωr which is such that si → xi, i = 1, 2, 3, give
U(x(s, t)) for (s, t) ∈ T and show that the gradient vector ∇U can be written
as

∇U =
1

J

(

y3 − y1 y1 − y2

x1 − x3 x2 − x1

)(

U2 − U1

U3 − U1

)

where J = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1).

[6 MARKS]
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(iii) Explain what is meant by the element matrix Kr for the Poisson problem of
part (a) and show that in the case x1 = (0, 0)T , x2 = (2, 0)T and x3 = (0, 1)T

we obtain

Kr =





5/4 −1/4 −1
−1/4 1/4 0
−1 0 1



 .

In the case g = 0 also give the 3 × 1 element vector br.

[6 MARKS]

(iv) Consider the uniform mesh of Ω := (0, 4) × (0, 2) consisting of eight triangles
and nine nodes as shown in the figure below and let φ̂i(x), i = 1, 2, · · · , 9
denote the piecewise linear basis functions defined on Ω̄ which are such that

φ̂i(xj) =

{

1, if j = i,

0, if j 6= i.

Also let Uj = U(xj), j = 1, 2, · · · , 9 denote the Galerkin approximation at the
nodal points. Given the result of part (iii) and given that the element matrices
have an invariance to translation, uniform scaling, reflection and rotations
determine a(φ̂j, φ̂5), j = 1, 2, · · · , 9 and (1, φ̂5) in the equation

9
∑

j=1

a(φ̂j, φ̂5)Uj = (1, φ̂5).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[1]=(0,0)

[2]=(0,1)

[3]=(0,2)

[4]=(2,0)

[5]=(2,1)

[6]=(2,2)

[7]=(4,0)

[8]=(4,1)

[9]=(4,2)

[6 MARKS]

ANSWER

(a) From the vector identity

∇ · (v∇u) = v∆u+ ∇v · ∇u

– 2–
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we have using the divergence theorem that

−
∫∫

Ω

v∆u dxdy =

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v∇u · n ds

=

∫∫

Ω

∇u · ∇v dxdy − g

∫

∂Ω2

v ds

if v = 0 on ∂Ω1 and by using the given boundary condition on ∂Ω2. Thus if v ∈ V
then the exact solution u ∈ V satisfies

∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

v dxdy + g

∫

∂Ω2

v ds.

6 MARKS

(b) (i) The basis functions are

φ1(s, t) = 1 − s− t,

φ2(s, t) = s,

φ3(s, t) = t.

1 MARK

(ii)

x(s, t) = x1φ1(s, t) + x2φ2(s, t) + x3φ3(s, t)

= x1 + (x2 − x1)s+ (x3 − x1)t,

U(x(s, t)) = U1φ1(s, t) + U2φ2(s, t) + U3φ3(s, t)

= U1 + (U2 − U1)s+ (U3 − U1)t.

By the chain rule of partial differentiation




∂U(x(s, t))
∂s

∂U(x(s, t))
∂t



 =





∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t









∂U
∂x
∂U
∂y



 = J̃T





∂U
∂x
∂U
∂y





where J̃ is the Jacobian matrix. Thus

∇U =





∂U
∂x
∂U
∂y



 = J̃−T





∂U(x(s, t))
∂s

∂U(x(s, t))
∂t



 = J̃−T

(

U2 − U1

U3 − U1

)

.

The Jacobian matrix J̃ is given by

J̃ =
(

x2 − x1, x3 − x1

)

=

(

x2 − x1 x3 − x1

y2 − y1 y3 − y1

)

and hence the determinant is

J = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)

and the inverse is

J̃−1 =
1

J

(

y3 − y1 x1 − x3

y1 − y2 x2 − x1

)

and the result follows.
6 MARKS

– 3–
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(iii) Let φ̃1, φ̃2 and φ̃3 be the basis functions defined on Ωr given by

φ̃i(x(s, t)) = φi(s, t), i = 1, 2, 3

and let

a(φ̃i, φ̃j)r =

∫∫

Ωr

∇φ̃i · ∇φ̃j dxdy

The element matrix is the 3 × 3 matrix (a(φ̃i, φ̃j)r).
For the specific element given we have x = 2s and y = t so that

J̃ =

(

2 0
0 1

)

, J = 2, J̃−1 = J̃−T =

(

1/2 0
0 1

)

.

Now let

B =







∂φ̃1

∂x
∂φ̃2

∂x
∂φ̃3

∂x

∂φ̃1

∂y
∂φ̃2

∂y
∂φ̃3

∂y






= J̃−T





∂φ1

∂s
∂φ2

∂s
∂φ3

∂s
∂φ1

∂t
∂φ2

∂t
∂φ3

∂t



 =

(

−1/2 1/2 0

−1 0 1

)

.

As B is constant on Ωr and as Ωr has area 1 we have

Kr = BTB =





5/4 −1/4 −1
−1/4 1/4 0
−1 0 1



 .

The element vector in this case is is the 3×1 vector ((1, φ̃j)r). As the integrand
is linear, this can be computed exactly using the one-point quadrature rule.
At the centroid of the element each basis function has value 1/3 and the area
of the triangle is 1 and thus

br =
2

3





1
1
1



 .

6 MARKS

(iv) All 8 triangles in the mesh have the same angles as the triangle in part (iii)
and hence all 8 element matrices are the same provided the 3 vertices of each
triangle are taken in the appropriate order. Now

a(φ̂j, φ̂5) =

8
∑

r=1

a(φ̂j, φ̂5)r.

As points 3 and 5 and points 7 and 5 are not on the same element we get
a(φ̂3, φ̂5) = a(φ̂7, φ̂5) = 0.
As (Kr)23 = 0 we get a(φ̂1, φ̂5) = a(φ̂9, φ̂5) = 0.
For the connection between φ̂5 and φ̂2 we need to consider two contributions
given by (Kr)1,2.

a(φ̂2, φ̂5) = a(φ̂8, φ̂5) = −1

4
− 1

4
= −1

2
.

– 4–
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For the connection between φ̂5 and φ̂4 we need to consider two contributions
given by (Kr)1,3.

a(φ̂4, φ̂5) = a(φ̂6, φ̂5) = −1 − 1 = −2.

For the diagonal entry we have contributions from 6 triangles. We need to
consider each diagonal entry of Kr twice.

a(φ̂5, φ̂5) =
5

4
+

5

4
+ 1 + 1 +

1

4
+

1

4
= 5.

As φ̂5 is non-zero over the 6 triangles which have x5 as a node we have

(1, φ̂5) =
8
∑

r=1

(1, φ̂5)r =
6

3
= 2.

The equation is

5U5 − 2(U4 + U6) −
1

2
(U2 + U8) = 2.

6 MARKS

2. Derive the weak forms for the following problems involving Poisson’s equation

−∆u = f in Ω ⊂ R
2, f ∈ C(Ω̄),

subject to the boundary conditions given below, stating in each case the appropriate
space of functions involved (in terms of Sobolev spaces) and classify each boundary
condition as an essential boundary condition or as a natural boundary condition.

(a) u = 0 on ∂Ω.

(b) u = 0 on ∂ΩD and ∂u
∂n

= 0 on ∂ΩN where ∂Ω = ∂ΩD ∪ ∂ΩN and assuming that
∂ΩD is not empty.

(c) u = 0 on ∂ΩD and ∂u
∂n

+ βu = g on ∂ΩN where β ≥ 0, ∂Ω = ∂ΩD ∪ ∂ΩN and
assuming that ∂ΩD is not empty.

ANSWER

From the vector identity
∇ · (v∇u) = v∆u+ ∇u · ∇v

we obtain
−v∆u = ∇u · ∇v −∇ · (v∇u).

Then by the divergence theorem

−
∫∫

Ω

v∆u dxdy =

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v
∂u

∂n
ds.

– 5–
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(a) If we take v = 0 on ∂Ω then the boundary integral term is 0. Hence we define

V = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

The weak form is find u ∈ V such that
∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

fv dxdy ∀v ∈ V.

(b) As ∂u
∂n

= 0 on the part ∂ΩN we only need v to vanish on the other part of ∂Ω to
remove the boundary integral term. Hence we define

V = {v ∈ H1(Ω) : v = 0 on ∂ΩD}.

The weak form is find u ∈ V such that
∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

fv dxdy ∀v ∈ V.

(c) On the part ∂ΩN we have from the mixed boundary condition that

−v ∂u
∂n

= (βu− g)v.

If we define
V = {v ∈ H1(Ω) : v = 0 on ∂ΩD}

then

−
∫

∂Ω

v
∂u

∂n
ds =

∫

∂ΩN

(βu− g)v ds.

The weak form is find u ∈ V such that
∫∫

Ω

∇u · ∇v dxdy +

∫

∂ΩN

βuv ds =

∫∫

Ω

fv dxdy +

∫

∂ΩN

gv ds ∀v ∈ V.

3. Let T denote the standard triangle with vertices sT
1 = (0, 0), sT

2 = (1, 0) and sT
3 = (0, 1)

and let Ωr denote an actual triangle with vertices x1, x2 and x3.

(a) State the linear basis functions φ1, φ2 and φ3 defined on T which have the property
that φi(si) = 1 and φi(sj) = 0 for j 6= i and give the affine mapping of T onto Ωr

such that x(si) = xi, i = 1, 2, 3.

State the Jacobian matrix J̃ of this mapping.

– 6–
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ANSWER

The basis functions are

φ1(s, t) = 1 − s− t,

φ2(s, t) = s,

φ3(s, t) = t.

The affine map is

x(s, t) = x1φ1(s, t) + x2φ2(s, t) + x3φ3(s, t) = x1 + (x2 − x1)s+ (x3 − x1)t.

With xT
1 = (x1, y1), x

T
2 = (x2, y2) and xT

3 = (x3, y3) the Jacobian matrix (written
in several different ways) is

J̃ =
(

∂x
∂s

∂x
∂t

)

=





∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t



 =
(

x2 − x1 x3 − x1

)

=

(

x2 − x1 x3 − x1

y2 − y1 y3 − y1

)

.

(b) Let U(x) denote a linear function defined on T and let Ui = U(xi), i = 1, 2, 3.
Show that the gradient vector ∇U can be written as

∇U =
1

J

(

y3 − y1 y1 − y2

x1 − x3 x2 − x1

)(

U2 − U1

U3 − U1

)

where J = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1).

ANSWER

Now

∇U =





∂U
∂x
∂U
∂y



 .

By the chain rule of partial differentiation





∂U(x(s, t))
∂s

∂U(x(s, t))
∂t



 =





∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t









∂U
∂x
∂U
∂y



 = J̃T





∂U
∂x
∂U
∂y



 .

Thus

∇U =





∂U
∂x
∂U
∂y



 = J̃−T





∂U(x(s, t))
∂s

∂U(x(s, t))
∂t



 .

Now

U(x)(s, t) = U1 + (U2 − U1)s+ (U3 − U1)t,




∂U(x(s, t))
∂s

∂U(x(s, t))
∂t



 =

(

U2 − U1

U3 − U1

)

.

– 7–
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As

J̃−1 =
1

J

(

y3 − y1 −(x3 − x1)
−(y2 − y1) x2 − x1

)

, J̃−T =
1

J

(

y3 − y1 −(y2 − y1)
−(x3 − x1) x2 − x1

)

where J = det(J̃) = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1) we have the result.

(c) Given that we have reformulated Poisson’s equation −∆u = f in Ω, u = 0 on ∂Ω
into weak form involving

a(u, v) =

∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

fv dxdy = (f, v),

explain what is meant by the 3 × 3 element stiffness matrix Kr for the triangle Ωr

and show that it can be written in the form

Kr =
|J |
2
BTB where B = J̃−T

(

−1 1 0
−1 0 1

)

where, as above, J̃ is Jacobian matrix and J = det(J̃).

ANSWER

Let φ̃1, φ̃2 and φ̃3 be the basis functions defined on Ωr given by

φ̃i(x(s, t)) = φi(s, t), i = 1, 2, 3.

The element stiffness matrix is the 3 × 3 matrix (a(φ̃i, φ̃j)).

Let

B =







∂φ̃1

∂x
∂φ̃2

∂x
∂φ̃3

∂x

∂φ̃1

∂y
∂φ̃2

∂y
∂φ̃3

∂y







which is constant on Ωr. We have

(BTB)ij = ∇φ̃i · ∇φ̃j .

Thus
Kr = (area of Ωr)B

TB.

The area of the triangle Ωr is |J |/2 = | det(J̃)|/2.

To obtain an expression for B we use the chain rule of partial differentiation.





∂φ1

∂s
∂φ2

∂s
∂φ3

∂s
∂φ1

∂t
∂φ2

∂t
∂φ3

∂t



 =





∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t











∂φ̃1

∂x
∂φ̃2

∂x
∂φ̃3

∂x

∂φ̃1

∂y
∂φ̃2

∂y
∂φ̃3

∂y






.

Thus






∂φ̃1

∂x
∂φ̃2

∂x
∂φ̃3

∂x

∂φ̃1

∂y
∂φ̃2

∂y
∂φ̃3

∂y






= J̃−T





∂φ1

∂s
∂φ2

∂s
∂φ3

∂s
∂φ1

∂t
∂φ2

∂t
∂φ3

∂t





= J̃−T

(

−1 1 0
−1 0 1

)

.

– 8–
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(d) Explain why the matrix Kr given in part (c) is unchanged if we do any of the
following.

We shift the vertices to xi + c, i = 1, 2, 3, i.e. we do a translation.

We do a uniform scaling, i.e. xi → αxi, i = 1, 2, 3 where α > 0.

We rotate the points xi about a point or we reflect the points xi about a line which
corresponds to replacing the Jacobian matrix J̃ by QJ̃ where Q is a 2×2 orthogonal
matrix.

ANSWER

From part (c) we have

Kr =
1

2





−1 −1
1 0
0 1



C

(

−1 1 0
−1 0 1

)

where C = | det(J̃)|J̃−1J̃−T .

The Jacobian matrix of the map corresponding to the points xi + c, i = 1, 2, 3 does
not depend on c and hence C and Kr is independent of c.

If we replace xi by αxi then the Jacobian matrix J̃α is given by

J̃α = αJ̃ and J̃−1
α =

1

α
J̃−1.

As we have a 2 × 2 matrix

det(J̃α) = α2 det(J̃).

Hence C is independent of α and we have the same element stiffness matrix.

Let J̃Q = QJ̃ . As QTQ = I we have | det(Q)| = 1 and | det(J̃Q)| = | det(J̃)|. Also

J̃−1

Q = J̃−1QT and J̃−T
Q = QJ̃−T

so that
J̃−1

Q J̃−T
Q = J̃−1J̃−T

and again we get the same matrix C and element matrix Kr.

(e) In the case of the isosceles triangle Ωr with vertices xT
1 = (0, 0), xT

2 = (2, 0) and
xT

3 = (1, tanα) show that the element stiffness matrix is

Kr =
1

4 tanα





sec2 α 2 − sec2 α −2
2 − sec2 α sec2 α −2

−2 −2 4



 .

[Note that we obtain from this the two specific cases covered in the notes by let-
ting α = π/2 (for the standard triangle) and letting α = π/3 (for the equilateral
triangle).]

– 9–
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xT
1 = (0, 0) xT

2 = (2, 0)

xT
3 = (1, tanα)

α α

ANSWER

The mapping and the Jacobian matrix are

x(s, t) = x2s+ x3t, J̃ =

(

2 1
0 tanα

)

.

The determinant is J = 2 tanα. The inverse of the Jacobian and its transpose are

J̃−1 =
1

J

(

tanα −1
0 2

)

and J̃−T =
1

J

(

tanα 0
−1 2

)

.

The matrix B is given by

B =
1

J

(

tanα 0
−1 2

)(

−1 1 0
−1 0 1

)

=

(

− tanα tanα 0
−1 −1 2

)

.

Using sec2 α = 1 + tan2 α we have

BTB =
1

J2





sec2 α 1 − tan2 α −2
1 − tan2 α sec2 α −2

−2 −2 4



 =
1

J2





sec2 α 2 − sec2 α −2
2 − sec2 α sec2 α −2

−2 −2 4



 .

As
|J |
2J2

=
1

2J
=

1

4 tanα
we have the required result.

4. The following was question 4 of the June 2003 MA3056S paper.

Let Ω denote a bounded domain with a polygonal boundary ∂Ω and consider the Poisson
equation

−∆u = 1 in Ω, u = 0 on ∂Ω.

(a) Show that the weak form for this problem involves the expression
∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

v dxdy

and state an appropriate space of functions in which u and v should lie.

[5 MARKS]

– 10–
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(b) Suppose that the domain Ω is partitioned into n triangular elements Ω1, · · · ,Ωn

such that

Ω̄ =
n
⋃

i=1

Ω̄i, Ωi ∩ Ωj = empty set for i 6= j

and let T denote the standard triangle with vertices sT
1 = (0, 0), sT

2 = (1, 0) and
sT
3 = (0, 1) in the (s, t) plane.

(i) State the 3 standard Lagrange basis functions φ1, φ2 and φ3 defined on T such
that φi(si) = 1 and φi(sj) = 0 if j 6= i.

[1 MARK]

(ii) Suppose that the triangle Ωi has vertices x1, x2 and x3 and let Ui = U(xi),
i = 1, 2, 3 denote the values of the function U(x) which is linear for x ∈ Ωi.
Describe the mapping x : T → Ωi and describe the function U(x) at any point
x ∈ Ωi using φ1, φ2 and φ3 of part (i). Also give the Jacobian matrix J̃ of the
mapping x : T → Ωi in terms of x1, x2 and x3.

[4 MARKS]

(iii) Explain what is meant by the element stiffness matrix Ki in this case of Pois-
son’s equation and piecewise linear basis functions and show that Ki can be
written in the form

Ki =
| det J̃ |

2





−1 −1
1 0
0 1



 J̃−1J̃−T

(

−1 1 0
−1 0 1

)

.

[5 MARKS]

(iv) If Ωi is the equilateral triangle shown below with vertices xT
1 = (0, 0), xT

2 =
(2, 0) and xT

3 = (1,
√

3) then give an affine mapping x : T → Ωi and show that

Ki =
1

2
√

3





2 −1 −1
−1 2 −1
−1 −1 2



 .

[3 MARKS]

Ωi

xT
1 = (0, 0) xT

2 = (2, 0)

xT
3 = (1,

√
3)

– 11–
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Suppose that Ω is the hexagonal domain which is the union of the 6 equilateral
triangles shown below. Given that the element contribution to the right hand side
vector for each triangle is

∫∫

Ωi





φ̃1(x)

φ̃2(x)

φ̃3(x)



 dxdy =
1√
3





1
1
1



 ,

where φ̃1, φ̃2 and φ̃3 are the linear basis functions on Ωi, and that all the element
matrices are the same and are as given above, determine the finite element solution
at the centre (0, 0) using piecewise linears on this mesh of 6 triangles.

[2 MARKS]

(0, 0)
(2, 0)(−2, 0)

(1,
√

3)(−1,
√

3)

(−1,−
√

3) (1,−
√

3)

ANSWER

(a) From the vector identity

∇ · (v∇u) = v∆v + ∇v · ∇u

we have by using the divergence theorem that

−
∫∫

Ω

v∆u dxdy =

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v∇u · n ds

=

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v
∂u

∂n
ds

=

∫∫

Ω

∇u · ∇v dxdy

if we restrict to functions v such that v = 0 on ∂Ω. Hence if we take

V = {v ∈ C2(Ω̄) : v = 0 on ∂Ω}

– 12–
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then the exact solution u ∈ V satisfies
∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

v dxdy for all v ∈ V.

5 MARKS

(b) (i) The 3 functions are φ1(s, t) = 1 − s− t, φ2(s, t) = s and φ3(s, t) = t.

1 MARK

(ii) The mapping and the approximation are given by

x(s, t) = x1φ1(s, t) + x2φ2(s, t) + x3φ3(s, t)

= x1 + (x2 − x1)s+ (x3 − x1)t,

U(x(s, t)) = U1φ1(s, t) + U2φ2(s, t) + U3φ3(s, t)

= U1 + (U2 − U1)s+ (U3 − U1)t.

The Jacobian matrix J̃ is

J̃ =





∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t



 =
(

x̄2 x̄3

)

=

(

x2 − x1 x3 − x1

y2 − y1 y3 − y1

)

where x̄2 = x2 − x1 and x̄3 = x3 − x1.

4 MARKS

(iii) Let φ̃1, φ̃2 and φ̃3 denote the basis functions defined on Ωi such that

φ̃j(x(s, t)) = φj(s, t), j = 1, 2, 3.

Also let

a(u, v)i =

∫∫

Ωi

∇u · ∇v dxdy.

The element stiffness matrix is the 3 × 3 matrix given by Ki = (a(φ̃j, φ̃k)i).
Now by the chain rule we have in matrix form





∂φi

∂s
∂φi

∂t



 =





∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t











∂φ̃i

∂x

∂φ̃i

∂y






= J̃T







∂φ̃i

∂x

∂φ̃i

∂y






.

Hence






∂φ̃i

∂x

∂φ̃i

∂y






= J̃−T





∂φi

∂s
∂φi

∂t



 .

Let

B =







∂φ̃1

∂x
∂φ̃2

∂x
∂φ̃3

∂x

∂φ̃1

∂y
∂φ̃2

∂y
∂φ̃3

∂y






= J̃−T





∂φ1

∂s
∂φ2

∂s
∂φ3

∂s
∂φ1

∂t
∂φ2

∂t
∂φ3

∂t





= J̃−T

(

−1 1 0
−1 0 1

)

.

– 13–
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The jk entry of BTB is the integrand in a(φ̃j, φ̃k)i. As the integrand is constant
over Ωi it follows that

Ki = (area of Ki)B
TB

and as the area of Ki is |J |/2 where J = det J̃ the result follows.

5 MARKS

(iv) The mapping is

x(s, t) = (x2 − x1)s+ (x3 − x1)t =

(

2s+ t√
3t

)

and the Jacobian matrix is

J̃ =

(

2 1

0
√

3

)

.

J = 2
√

3,

J̃−1 =
1

J

(√
3 −1

0 2

)

and J̃−T =
1

J

(√
3 0

−1 2

)

.

Thus

B =
1

J

(√
3 0

−1 2

)(

−1 1 0
−1 0 1

)

=
1

J

(

−
√

3
√

3 0
−1 −1 2

)

.

Hence

BTB =
1

J2





4 −2 −2
−2 4 −2
−2 −2 4



 .

As |J |/(2J2) = 1/(2|J |) = 1/4
√

3 the result follows.

3 MARKS

If φ̂ is the piecewise linear function associated with the point (0, 0) then the
equation that U(0, 0) satisfies is

a(φ̂, φ̂)U(0, 0) = (1, φ̂).

Because of the symmetry we get equal contributions to a(φ̂, φ̂) and (1, φ̂) from
each of the 6 triangles. Hence a(φ̂, φ̂) = 6/

√
3 and (1, φ) = 6/

√
3 and we get

U(0, 0) = 1.

2 MARKS

– 14–
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5. The following was question 5 of the June 2003 MA3056S paper.
Let Ω = {(x, y) : 0 < x < 2, 0 < y < 1}, a 2 × 1 rectangle, and consider Poisson’s
equation with the mixed boundary conditions

−∆u = f in Ω,

u(0, y) = u(2, y) = 0, 0 < y < 1,

∂u

∂y
(x, 0) =

∂u

∂y
(x, 1) = 0, 0 < x < 2,

where f is a continuous function on Ω̄.

(a) Show that the weak form for the problem can be written as follows.

Find u ∈ V such that

a(u, v) :=

∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

fv dxdy =: (f, v)

for all v ∈ V . In your answer you should give the space of functions V taking into
account any natural boundary conditions.

[5 MARKS]

(b) Suppose that the weak form is to be approximately solved by the finite element
method using a piecewise bilinear function defined on a uniform mesh of square
elements each of length h. In an implementation each square element is mapped
to a standard element S = {(s, t) : −1 < s, t < 1} with vertices sT

1 = (−1,−1),
sT
2 = (1,−1), sT

3 = (1, 1) and sT
4 = (−1, 1) in the (s, t) plane.

(i) State the 4 standard basis functions φ1, φ2, φ3 and φ4 defined on S such that
φi(si) = 1 and φi(sj) = 0 for j 6= i.

[2 MARKS]

(ii) Let xT
1 = (c, d), xT

2 = (c+ h, d), xT
3 = (c+ h, d+ h) and xT

4 = (c, d+ h) be the
vertices of an actual element Ωi and let U1, U2, U3 and U4 denote respectively
the value of the approximation at these points. Let x : S → Ωi denote the
mapping of the standard element to Ωi. Explain why this can be written in
the form

x =

(

c
d

)

+
h

2

(

1 + s
1 + t

)

.

[1 MARK]

Further show that the gradient vector can be written in the form

∇U(x(s, t)) =
1

2h

(

t− 1 1 − t t+ 1 −(t + 1)
s− 1 −(s+ 1) s+ 1 1 − s

)









U1

U2

U3

U4









.

[3 MARKS]

– 15–
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(iii) It can be shown that the element stiffness matrix for this problem has the form








2β γ −β γ
γ 2β γ −β
−β γ 2β γ
γ −β γ 2β









.

Show that β = 1/3 and γ = −1/6.
[Hint: First explain why β + 2γ = 0.]

[4 MARKS]

(iv) Consider the mesh involving the two squares shown in the figure. Let φ̂1, φ̂2,
φ̂3, φ̂4, φ̂5 and φ̂6 be the 6 piecewise bilinear functions defined on Ω̄ which
satisfy φ̂i(x̂i) = 1 and φ̂i(x̂j) = 0 for j 6= i. Describe φ̂2(x) and φ̂5(x) for all
x ∈ Ω.

[3 MARKS]

By using the element stiffness matrix given in part (iii), determine the entries
a(φ̂2, φ̂2), a(φ̂2, φ̂5) and a(φ̂5, φ̂5) in the linear system

(

a(φ̂2, φ̂2) a(φ̂2, φ̂5)

a(φ̂2, φ̂5) a(φ̂5, φ̂5)

)(

U(x̂2)
U(x̂5)

)

=

(

(f, φ̂2)

(f, φ̂5)

)

.

[2 MARKS]

Ω1 Ω2

x̂T
1 = (0, 0) x̂T

2 = (1, 0) x̂T
3 = (2, 0)

x̂T
4 = (0, 1) x̂T

5 = (1, 1) x̂T
6 = (2, 1)

u = 0 u = 0

ANSWER

(a) From the vector identity

∇ · (v∇u) = v∆v + ∇v · ∇u

we have using the divergence theorem that

−
∫∫

Ω

v∆u dxdy =

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v∇u · n ds

=

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v
∂u

∂n
ds

=

∫∫

Ω

∇u · ∇v dxdy

– 16–
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if the integrand of the boundary term vanishes on ∂Ω. We are given that the normal
derivative of u vanishes on the top and bottom sides of the rectangle and thus to
remove the boundary term we only need to restrict to functions v such that v = 0
of the other two sides. Hence if we take

V = {v ∈ C2(Ω̄) : v(0, y) = v(2, y) = 0, 0 ≤ y ≤ 1}
then the exact solution u ∈ V satisfies

∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

fv dxdy for all v ∈ V.

The boundary condition ∂u/∂x = 0 on two of the sides is a natural boundary
condition for this problem.

5 MARKS

(b) (i)

φ1(s, t) =
1

4
(1 − s)(1 − t),

φ2(s, t) =
1

4
(1 + s)(1 − t),

φ3(s, t) =
1

4
(1 + s)(1 + t),

φ4(s, t) =
1

4
(1 − s)(1 + t).

2 MARKS

(ii) Since φ1 + φ2 + φ3 + φ4 = 1 the mapping x(s, t) is given by

x =

(

c
d

)

+

(

h
0

)

φ2(s, t) +

(

h
h

)

φ3(s, t) +

(

0
h

)

φ4(s, t)

=

(

c
d

)

+
h

2

(

1 + s
1 + t

)

.

1 MARK

Thus
∂x

∂s
=
∂y

∂t
=
h

2
and

∂x

∂t
=
∂y

∂s
= 0.

Hence
∂s

∂x
=
∂t

∂y
=

2

h
.

Now
U(x(s, t)) = U1φ1(s, t) + U2φ2(s, t) + U3φ3(s, t) + U4φ4(s, t).

Thus




∂U
∂x
∂U
∂y



 =
2

h





∂U
∂s
∂U
∂t



 =
2

h





∂φ1

∂s
∂φ2

∂s
∂φ3

∂s
∂φ4

∂s
∂φ1

∂t
∂φ2

∂t
∂φ3

∂t
∂φ4

∂t













U1

U2

U3

U4









=
1

2h

(

t− 1 1 − t t + 1 −(t + 1)

s− 1 −(s+ 1) s+ 1 1 − s

)









U1

U2

U3

U4









.
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3 MARKS

(iii) Since φ1 + φ2 + φ3 + φ4 = 1 we get ∇(φ1 + φ2 + φ3 + φ4) = 0 which implies
that the entries on each row of the stiffness matrix add to 0. Thus β +2γ = 0.
Let φ̃j be such that φ̃j(x(s, t)) = φj(s, t). From part (ii) we have

∇φ̃j =
2

h





∂φj

∂s
∂φj

∂t



 and J = h2/4

where J is the determinant of the Jacobian matrix.
The entries of the element stiffness matrix are

∫∫

Ωi

∇φ̃k · ∇φ̃l dxdy =

∫ 1

−1

∫ 1

−1

∂φk

∂s

∂φl

∂s
+
∂φk

∂t

∂φl

∂t
dsdt 1 ≤ k, l ≤ 4.

Hence

2β =
1

16

∫ 1

−1

∫ 1

−1

(t− 1)2 + (s− 1)2 dsdt

We have

∫ 1

−1

∫ 1

−1

(t− 1)2 dsdt =

∫ 1

−1

∫ 1

−1

(s− 1)2 dsdt = 2

[

(s− 1)3

3

]1

−1

=
16

3
.

Hence

2β =
1

16

(

16

3
+

16

3

)

=
2

3
.

Thus β = 1/3 and γ = −1/6.

4 MARKS

(iv)

φ̂2(x) =

{

x(1 − y), in Ω1,

(2 − x)(1 − y), in Ω2,

φ̂5(x) =

{

xy, in Ω1,

(2 − x)y, in Ω2.

3 MARKS

a(φ̂2, φ̂2) and a(φ̂5, φ̂5) involve adding a diagonal entry of the matrix for Ω1 with
a diagonal entry of the matrix for Ω2. We have a(φ̂2, φ̂2) = a(φ̂5, φ̂5) = 4/3.
The a(φ̂2, φ̂5) entry has a contribution of γ = −1/6 from each element. Thus
a(φ̂2, φ̂5) = −1/3.

2 MARKS

– 18–



20-4-2005 9:15 c© M. K. Warby MA3951/MA5352 Numerical and Variational Methods for PDEs exercises 19

6. Apart from a few minor changes and re-typing this was question 2 of the 2001 MA5056S

paper. (MA5156S was previously labelled as MA5056S).

For the boundary value problem in which u(x) = u(x, y) satisfies −∆u(x) = f(x),
x ∈ Ω; u(x) = 0, x ∈ ∂Ω, where Ω ⊂ R

2 has a polygonal boundary ∂Ω derive the weak
formulation

a(u, v) =

∫∫

Ω

(

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)

dxdy =

∫∫

Ω

fv dxdy for all v ∈ S,

giving the appropriate space of functions S.

[4 MARKS]

ANSWER

From the vector identity
∇ · (v∇u) = v∆u+ ∇u · ∇v

we obtain
−v∆u = ∇u · ∇v −∇ · (v∇u).

Then by the divergence theorem

−
∫∫

Ω

v∆u dxdy =

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v
∂u

∂n
ds.

If we take v = 0 on ∂Ω then the boundary integral term is 0. Hence we define

V = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

The weak form is find u ∈ V such that
∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

fv dxdy ∀v ∈ V.

The weak problem is to be approximated using a finite element method based on piece-
wise linear functions defined over a triangular partition of Ω. The finite element method
approximation is Uh(x). What is meant by a finite element method being conforming
and what conditions must Uh(x) satisfy in order to be a conforming approximation?

[2 MARKS]

ANSWER

The finite element method is conforming if the finite element space Vh is a subspace of
the space V in the weak formulation. A piecewise polynomial function is in V if it is
continuous, i.e. Vh ⊂ C(Ω̄).

– 19–
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Suppose the standard triangular element is taken as the equilateral triangle T shown in
the Figure with nodes xT

1 = (−1, 0), xT
2 = (1, 0), xT

3 = (0,
√

3).

x

y

xT
1 = (−1, 0) xT

2 = (1, 0)

xT
3 = (0,

√
3)

What are meant by the Lagrange basis functions on an element and what conditions
must they satisfy?

[1 MARK]

ANSWER

The linear Lagrange basis function are linear polynomials which are 1 at one of the
nodes and 0 at the other nodes.

(a) Write down the three linear Lagrange basis functions φ1(x, y), φ2(x, y) and φ3(x, y).

[4 MARKS]

ANSWER

We can arrange for φ1(x) to be 0 at x2 and at x3 if is is 0 along the line passing
through points x2 and x3. This line is

y =
√

3(1 − x).

Hence

φ1(x, y) = C(y +
√

3(x− 1)) with 1 = φ1(−1, 0) = C(−2
√

3).

Thus

φ1(x, y) =
1

2
√

3
(
√

3(1 − x) − y).

Similarly for φ2 we get

φ2(x, y) =
1

2
√

3
(
√

3(1 + x) − y)

and for φ3(x, y) we get

φ3(x, y) =
y√
3
.

– 20–
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(b) Hence write down the approximation Uh(x, y) for (x, y) in T .

[1 MARK]

ANSWER

Let Ui = Uh(xi) for i = 1, 2, 3. Then

Uh(x, y) = U1φ1(x, y) + U2φ2(x, y) + U3φ3(x, y)

= U1

1

2
√

3
(
√

3(1 − x) − y) + U2

1

2
√

3
(
√

3(1 + x) − y) + U3

y√
3
.

(c) Derive the 3 × 3 element matrix arising from a(u, v)|T .

[6 MARKS]

ANSWER

The gradient of each of the basis functions is constant on the triangle and the area
of the triangle is

√
3. Thus the i, j entry of element matrix is

√
3∇φi · ∇φj.

Now for the gradients we have

B =
(

∇φ1 ∇φ2 ∇φ3

)

=

(

−1

2

1

2
0

− 1

2
√

3
− 1

2
√

3

1√
3

)

=
1

2

(

−1 1 0

−
√

3

3
−

√
3

3

2
√

3

3

)

.

The element matrix is

√
3BTB =

√
3

4





4

3
−2

3
−2

3

−2

3

4

3
−2

3

−2

3
−2

3

4

3



 =
1

2
√

3





2 −1 −1
−1 2 −1
−1 −1 2



 .

(d) Without evaluating the integrals give the 3×1 element vector arising from (f, v)|T .

[1 MARK]

ANSWER

The element vector is
∫∫

T

f(x, y)





φ1(x, y)
φ2(x, y)
φ3(x, y)



 dxdy.

(e) Explain how the linear form for Uh(x, y) as in (b) will produce a conforming finite
element approximation.

[1 MARK]
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ANSWER

On the edge x1 to x2 the basis function φ3 is 0 and thus Uh(x) depends only on
U1 and U2. Similarly on the other two edges the approximation depends only the
value of Uh at the vertices of that edge. Thus at a point xp on an edge between
two adjacent triangles we obtain the same value Uh(xp) as x → xp from either of
these triangles indicating that Uh(x) is continuous across element edges and this
sufficient to ensure a conforming approximation.

(f) For the equilateral triangle shown below with the six nodes

xT
1 = (−1, 0), xT

2 = (1, 0), xT
3 = (0,

√
3),

xT
4 = (1

2
,
√

3

2
), xT

5 = (−1

2
,
√

3

2
), xT

6 = (0, 0)

write down the six quadratic Lagrange basis functions Nj(x, y), i = 1, 2, 3, 4, 5, 6.

[Hint: The functions Nj can be expressed in terms of the φi of part (a).]

x

y

xT
1 = (−1, 0) xT

2 = (1, 0)xT
6 = (0, 0)

xT
4 = (1

2
,
√

3

2
)xT

5 = (−1

2
,
√

3

2
)

xT
3 = (0,

√
3)

[5 MARKS]

ANSWER

We can arrange for the function Ni to be quadratic and 0 at 5 of the points if it is zero
on two different straight lines which contain these 5 points.

In the case of N1 we have the line passing through x2, x4 and x3 (used in the construction
of φ1) and we have the line passing through x5, and x6. The line passing through x5

and x6 is
y = −

√
3x.

This gives a factor

− 1√
3
(
√

3x+ y).

– 22–
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which is 1 at the point x1. Thus

N1(x, y) = − 1√
3
(
√

3x + y)φ1(x, y).

Similarly

N2(x, y) =
1√
3
(
√

3x− y)φ2(x, y),

N3(x, y) =

(

2y√
3
− 1

)

φ3(x, y).

Now φ2(
1

2
,
√

3

2
) = φ3(

1

2
,
√

3

2
) = 1

2
. Simlarly for the other φi functions when evaluated at

the appropriate mid-side points. Hence

N4(x, y) = 4φ2(x, y)φ3(x, y),

N5(x, y) = 4φ1(x, y)φ3(x, y),

N6(x, y) = 4φ1(x, y)φ2(x, y).

7. This question is taken from the last part of question 2 of the 1998 MA3056S paper.

The context of the question is that of Poisson’s equation −∆u = f which has been
reformulated into the weak form

a(u, v) = (f, v), ∀v ∈ S

where

a(u, v) =

∫∫

Ω

(

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)

dxdy and (f, v) =

∫∫

Ω

fv dxdy.

An earlier part of the question has also involved deriving the element matrix for the
standard triangle T with vertices (0, 0), (1, 0) and (0, 1). Using the basis functions
φ1(x, y) = 1 − x− y, φ2(x, y) = x and φ3(x, y) = y the matrix is

Ki =
1

2





2 −1 −1
−1 1 0
−1 0 1



 .

(i) Give the 3 × 1 element vector arising from (f, v)|T .

ANSWER

∫∫

T

f(x, y)





φ1(x, y)
φ2(x, y)
φ3(x, y)



 dxdy.

(ii) Give the approximation to the element vector obtained when a one-point quadra-
ture rule is used to evaluate the integrals.
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ANSWER

The one-point quadrature rule involves evaluating at the centroid which is the point
(1/3, 1/3). We have φi(1/3, 1/3) = 1/3, i = 1, 2, 3. As the area of the standard
triangle is 1/2 the approximation of the element vector is

1

6
f(1/3, 1/3)





1
1
1



 .

Let Ω be the unit square {(x, y) : 0 < x, y < 1} and ∂ΩD ≡ {(x, 0) : 0 ≤ x ≤ 1}.
Consider the triangular meshes shown in Fig. A and B, and in each case construct the 4×
4 global stiffness matrix, by assembling the appropriate 3× 3 element stiffness matrices,
and the 4× 1 global vector assuming that the one-point quadrature rule has been used.
Then from the relevant linear equation systems satisfied by (uh(0, 1), uh(1, 1))T , show
that both meshes lead to the same solution only when

f(1/3, 1/3)+ f(2/3, 2/3) = f(1/3, 2/3) and f(2/3, 1/3)+ f(1/3, 1/3) = f(2/3, 2/3) .

xT
1 = (0, 0) xT

2 = (1, 0)

xT
4 = (1, 1)xT

3 = (0, 1)

Ω1

Ω2

Fig. A
xT

1 = (0, 0) xT
2 = (1, 0)

xT
4 = (1, 1)xT

3 = (0, 1)

Fig. B

Ω1

Ω2

ANSWER

If we assemble the element matrices and just consider the part relating to nodes x3 and
x4 then using the mesh of Fig. A the matrix is

(

1 0
0 0

)

+

(

1 −1
−1 2

)

=

(

2 −1
−1 2

)

and using the mesh of Fig.B the matrix is
(

0 0
0 1

)

+

(

2 −1
−1 1

)

=

(

2 −1
−1 2

)

.

We have the same matrix from both meshes.

Assembling the element vectors for the mesh of Fig. A and retaining only the terms
relating to nodes x3 and x4 we get

1

6
f(1/3, 1/3)

(

1
0

)

+
1

6
f(2/3, 2/3)

(

1
1

)

.
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For the mesh of Fig. B the element centroids are instead (1/3, 2/3) and (2/3, 1/3) and
we get

1

6
f(2/3, 1/3)

(

0
1

)

+
1

6
f(1/3, 2/3)

(

1
1

)

.

To obtain the same solution from both meshes we need the same right hand side vector.
That is we need

f(1/3, 1/3) + f(2/3, 2/3) = f(1/3, 2/3)

f(2/3, 2/3) = f(2/3, 1/3) + f(1/3, 2/3).

8. Apart from a few minor changes and re-typing this was question 2 of the 1999 MA3056S

paper.

For the mixed boundary value problem in which u(x, y) satisfies

−∆(u(x, y)) = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂ΩD,

∂u
∂n

(x, y) = 0, (x, y) ∈ ∂ΩN

where Ω ⊂ R
2 is a rectangle with boundary ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN =empty

set and ∂
∂n

is the derivative in the outward normal direction to ∂ΩN , derive the weak
formulation: find u ∈ V such that

a(u, v) =

∫∫

Ω

(

∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

)

dxdy =

∫∫

Ω

fv dxdy = (f, v) ∀v ∈ V,

describing the appropriate space V .

ANSWER

From the vector identity
∇ · (v∇u) = v∆u+ ∇u · ∇v

we obtain
−v∆u = ∇u · ∇v −∇ · (v∇u).

Then by the divergence theorem

−
∫∫

Ω

v∆u dxdy =

∫∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

v
∂u

∂n
ds.

As ∂u
∂n

= 0 on the part ∂ΩN we only need v to vanish on the other part of ∂Ω to remove
the boundary integral term. Hence we define

V = {v ∈ H1(Ω) : v = 0 on ∂ΩD}.

The weak form is find u ∈ V such that
∫∫

Ω

∇u · ∇v dxdy =

∫∫

Ω

fv dxdy ∀v ∈ V.
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The weak form is to be approximated using the finite element method. Explain what is
meant by the conforming condition for the finite element approximation, giving sufficient
conditions for this when piecewise polynomial functions are used.

ANSWER

The finite element method is conforming if the finite element space Vh is a subspace of
the space V in the weak formulation. A piecewise polynomial function is in V if it is
continuous, i.e. Vh ⊂ C(Ω̄).

The finite element approximation U(x, y) is a piecewise bilinear function defined over
a partition of Ω into square elements. In the case of the standard square S where
S = {(x, y) : −1 ≤ x, y ≤ 1} with nodes (−1,−1), (1,−1), (1, 1) and (−1, 1) write
down the four Lagrange basis functions each of which is associated with one of the
nodes.

ANSWER

Each of the 4 basis functions can be written as the product of a linear basis function in
s and a linear basis function in t. We can write them in the matrix form as follows.

(

φ4 φ3

φ1 φ2

)

=
1

4

(

1 + y
1 − y

)

(

1 − x 1 + x
)

.

Then for this element do the following.

(i) It can be shown that the 4× 4 element stiffness matrix arising from a(u, v)|S when
bilinears is used has the form









α β β γ
β α γ β
β γ α γ
γ β β α









.

Evaluate α, β and γ.

ANSWER

With an element stiffness matrix the sum of the entries on each row must add to 0
because ∇(φ1 + φ2 + φ3 + φ4) = 0. Hence

α+ 2β + γ = 0.

Now

∇φ1 = −1

4

(

1 − y
1 − x

)

and ∇φ3 =
1

4

(

1 + y
1 + x

)

.

α =
1

16

∫ 1

−1

∫ 1

−1

(∇φ1)
2 dxdy

=
1

16

∫ 1

−1

∫ 1

−1

(1 − y)2 + (1 − x)2 dxdy.
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Now
∫

1

−1

∫

1

−1

(1 − y)2 dxdy =

∫

1

−1

∫

1

−1

(1 − x)2 dxdy

= 2

∫

1

−1

(1 − x)2 dx = 2

[

1

3
(x− 1)3

]1

−1

=
16

3
.

Thus

α =
2

3
.

γ =
1

16

∫ 1

−1

∫ 1

−1

∇φ1 · ∇φ3 dxdy

= − 1

16

∫ 1

−1

∫ 1

−1

(1 − y2) + (1 − x2) dxdy.

Now
∫ 1

−1

∫ 1

−1

(1 − y2) dxdy =

∫ 1

−1

∫ 1

−1

(1 − x2) dxdy

= 2

∫ 1

−1

(1 − x2) dx = 4

∫ 1

0

(1 − x2) dx = 4

(

1 − 1

3

)

=
8

3
.

Thus

γ = −1

3
.

From the relation α + 2β + γ = 0 this gives β = −1/6.

(ii) Give the 4 × 1 element vector arising from S, leaving each component in integral
form.

ANSWER

The element vector is

∫ 1

−1

∫ 1

−1

f(x, y)









φ1(x, y)
φ2(x, y)
φ3(x, y)
φ4(x, y)









dxdy =
1

4

∫ 1

−1

∫ 1

−1

f(x, y)









(1 − x)(1 − y)
(1 + x)(1 − y)
(1 + x)(1 + y)
(1 − x)(1 + y)









dxdy.

Let Ω be the rectangle {(x, y) : 0 < x < 2, 0 < y < 1} and let ∂ΩD = {(0, y) : 0 <
y < 1} ∪ {2, y) : 0 < y < 1} as in the Figure. Let xi, i = 1, · · · , 6 be the nodes of the
elements Ω1 and Ω2 of the mesh of Ω and let Ui = U(xi).

xT
1 = (0, 0) xT

2 = (1, 0) xT
3 = (2, 0)

xT
4 = (0, 1) xT

5 = (1, 1) xT
6 = (2, 1)

Ω1 Ω1u = 0 u = 0
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By constructing the 4 × 4 element stiffness matrix for each of the elements Ω1 and Ω2

assemble the 6 × 6 global stiffness matrix associated with the given mesh of Ω. Apply
the essential boundary conditions of the boundary value problem to obtain the 2 × 2
matrix K in the system

K

(

U2

U5

)

=

(

b2
b5

)

that determine U2 and U5.

ANSWER

The element matrix for both Ω1 and Ω2 is

1

6









4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4









.

Let K̂ denote the 6× 6 matrix. Local nodes 1,2,3,4 on element Ω1 correspond to global
nodes 1,2,5,4 respectively. Local nodes 1,2,3,4 on element Ω2 correspond to global nodes
2,3,6,5 respectively. Thus

6K̂ =

















4 −1 · −1 −2 ·
−1 4 · −2 −1 ·
· · · · · ·

−1 −2 · 4 −1 ·
−2 −1 · −1 4 ·
· · · · · ·

















+

















· · · · · ·
· 4 −1 · −1 −2
· −1 4 · −2 −1
· · · · · ·
· −1 −2 · 4 −1
· −2 −1 · −1 4

















.

Extracting the entries corresponding to nodes x2 and x5 gives

K =
1

6

(

8 −2
−2 8

)

=
1

3

(

4 −1
−1 4

)

.

9. This question is taken from the last part of question 2 of the 1997 MA5056S paper.

The context of the question is that of Poisson’s equation −∆u = f in Ω with boundary

conditions u = 0 on ∂ΩD and ∂u
∂n

= 0 on ∂ΩN where ∂Ω = ∂ΩD ∪ ∂ΩN with ∂ΩD being
non-empty. In an earlier part of the question this has been reformulated into the weak
form

a(u, v) = (f, v), ∀v ∈ S

where

a(u, v) =

∫∫

Ω

(

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)

dxdy and (f, v) =

∫∫

Ω

fv dxdy.

and where S = {v ∈ H1(Ω) : v = 0 on ∂ΩD}.
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An earlier part of the question has also been concerned with constructing the element
matrix for the standard triangle with vertices (0, 0), (1, 0) and (0, 1) and with the unit
square with vertices (0, 0), (1, 0), (1, 1) and (0, 1). These matrices are

1

2





2 −1 −1
−1 1 0
−1 0 1



 and
1

6









4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4









.

The last part of the question follows.

Let Ω̄ = Ω̄1 ∪ Ω̄2 denote the region shown in the Figure where Ω1 is a unit square and
Ω2 is the standard triangle and suppose that ∂ΩD = {(x, y) : −1 ≤ x ≤ 1, y = 0}. If
the finite element method is used to approximate the solution using a bilinear function
on Ω1 and a linear function on Ω2 with

U(x, y) = U(−1, 1)B1(x, y) + U(0, 1)B2(x, y)

describing the approximation then give the functions B1 and B2 and derive the 2 × 2
matrix K in the linear system

K

(

U(−1, 1)
U(0, 1)

)

=

(

b1
b2

)

, bi =

∫∫

Ω

f(x, y)Bi(x, y) dxdy, i = 1, 2.

(−1, 0) (0, 0) (1, 0)

(−1, 1) (0, 1)

Ω1

Ω2

ANSWER

The functions B1 and B2 are as follows.

B1(x, y) =

{

−xy for (x, y) ∈ Ω1,

0 for (x, y) ∈ Ω2.

B2(x, y) =

{

(x + 1)y for (x, y) ∈ Ω1,

y for (x, y) ∈ Ω2.

The matrix K is given by

K =

(

a(B1, B1) a(B1, B2)
a(B1, B2) a(B2, B2)

)

.
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All the entries involving B1 are obtained directly from the element matrix for the bilinear
element as B1 is 0 on Ω2. For a(B2, B2) we have a contribution from both elements.

a(B2, B2) =

∫∫

Ω1

(∇B2)
2 dxdy +

∫∫

Ω2

(∇B2)
2 dxdy =

2

3
+

1

2
=

7

6
.

Thus

K =
1

6

(

4 −1
−1 7

)

.

10. Apart from a few minor changes and re-typing this was question 1 of the 2002 MA5156S

paper.

Let S be the square element in the (s, t) plane, as shown in the figure, with vertices
(−1, 1), (1,−1), (1, 1) and (−1, 1), labelled respectively as P̂1, P̂2, P̂3 and P̂4. The
points (0,−1), (1, 0), (0, 1), (−1, 0) and (0, 0) are labelled respectively as P̂5, P̂6, P̂7, P̂8

and P̂9. For i = 1, · · · , 9 write down the biquadratic basis functions φi(s, t), (s, t) ∈ S
which are such that

φi(P̂j) =

{

1 if j = i,

0 otherwise.

[7 MARKS]

ANSWER

Each basis function is the product of a quadratic in s and a quadratic in t and the
complete set of functions can be neatly written in matrix form as





φ4 φ7 φ3

φ8 φ9 φ6

φ1 φ5 φ2



 =









t(t+ 1)
2

1 − t2

t(t− 1)
2









(

s(s− 1)
2 1 − s2 s(s+ 1)

2

)

.

s

t

P̂1 P̂5 P̂2

P̂4 P̂7 P̂3

P̂6

P̂8

P̂9
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Consider the points (nodes) Pi of the element Ωr in the (x, y) plane with coordinates
(xi, yi), i = 1, · · · , 9, where

x1 = x8 = x4 = −1, y1 = y5 = y2 = −1,

x5 = x9 = 0, y6 = y8 = y9 = 0,

x2 = x3 = x6 = 1, y3 = y4 = 1

and where (x7, y7) is such that |x7| < 1 and y7 > 0. With xT
i = (xi, yi) and xT = (x, y),

the biquadratic mapping which takes S onto Ωr is given by

x(s, t) =
9
∑

i=1

xiφi(s, t).

What is the form of the mapping in the particular case x7 = 0 and y7 = 1.

[2 MARKS]

ANSWER

If x7 = 0 and y7 = 1 then P̂i = Pi for i = 1, · · · , 9 and we have the identity map, i.e.
x = s and y = t.

Hence explain why for a general point (x7, y7), |x7| < 1, y7 > 0 we have

x = s+ x7φ7(s, t)

y = t+ (y7 − 1)φ7(s, t).

[3 MARKS]

ANSWER

In this case P̂i = Pi for all i except i = 7. Hence the mapping is the identity map plus
a term depending on the difference of P7 from the position (0, 1). The mapping is

x(s, t) =

(

s
t

)

+

(

x7

y7 − 1

)

φ7(s, t).

Hence sketch the form of the element Ωr which is the image of S under the mapping.

[2 MARKS]
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ANSWER

The images of the sides of S except the top side are unchanged by the mapping but the
top side may be curved and is described parametrically by

x(s, 1) =

(

s
1

)

+

(

x7

y7 − 1

)

φ7(s, 1).

In the case y7 > 1 a possible image is shown below.

s

t

P1 P5 P2

P4 P3

P6

P8

P9

P7

Give the partial derivatives
∂φ7

∂s
and

∂φ7

∂t
and show that the determinant of the Jacobian

of the mapping is given by

J = 1 + x7

∂φ7

∂s
+ (y7 − 1)

∂φ7

∂t
.

[6 MARKS]

ANSWER

φ7(s, t) =
1

2
t(t + 1)(1 − s2),

∂φ7

∂s
(s, t) = −t(t + 1)s,

∂φ7

∂t
(s, t) =

1

2
(2t+ 1)(1 − s2).

Thus

J̃ =

(

1 0
0 1

)

+





x7
∂φ7

∂s
x7
∂φ7

∂t
(y7 − 1)

∂φ7

∂s
(y7 − 1)

∂φ7

∂t



 .
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The determinant is

J =

(

1 + x7

∂φ7

∂s

)(

1 + (y7 − 1)
∂φ7

∂t

)

− x7(y7 − 1)
∂φ7

∂s

∂φ7

∂t
,

= 1 + x7

∂φ7

∂s
+ (y7 − 1)

∂φ7

∂t
.

Show that for (s, t) ∈ S

−2 ≤ ∂φ7

∂s
≤ 2; −1

2
≤ ∂φ7

∂t
≤ 3

2
.

Also show that if (x7, y7) satisfies

−1

4
< x7 <

1

4
and

2

3
< y7 < 2,

then J > 0.
[5 MARKS]

ANSWER

|t+ 1| ≤ 2 for − 1 ≤ t ≤ 1.

Thus as |s| ≤ 1 and |t| ≤ 1 we have

−2 ≤ ∂φ7

∂s
≤ 2.

For (s, t) ∈ T we have 0 ≤ 1 − s2 ≤ 1. For −1 ≤ t ≤ 1 we have −1 ≤ 2t + 1 ≤ 3.
Together these imply that for all (s, t) ∈ T we have

−1

2
≤ ∂φ7

∂s
≤ 3

2
.

On T if |x7| ≤ 1/4 we have

x7

∂φ7

∂s
> −2

4
= −1

2
.

2/3 < y7 < 2 gives −1/3 < y7 − 1 < 1. Hence on T we have

(y7 − 1)
∂φ7

∂t
> −1

3

(

3

2

)

= −1

2
.

Combining these last two results gives

J = 1 + x7

∂φ7

∂s
+ (y7 − 1)

∂φ7

∂t
> 1 − 1

2
− 1

2
= 0.
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