Topics in MA3614 in 2023/4

- Preliminaries (Chaps 1 and 2).
- Complex differentiation: Analytic functions, Cauchy Riemann equations, harmonic functions, ... (Chap 3).
- Elementary functions of a complex variable: Polynomials, rational functions, $\exp (z), \log (z), z^{\alpha}, \ldots$ (Chap 4).
- Contour integrals, loop integrals, Cauchy integral theorem, Cauchy integral formula, ... (Chaps 5 and 6).
- Taylor series, Laurent series representations (Chap 7).
- Residue theory and its use in evaluating real integrals (Chap 8).

Analytic functions - definitions

- Complex derivative: Let f be a complex valued function defined in a neighbourhood of z_{0}. The derivative of f at z_{0} is given by

$$
\frac{\mathrm{d} f}{\mathrm{~d} z}\left(z_{0}\right) \equiv f^{\prime}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

provided the limit exists.
Note that the limit must be independent of how $h \rightarrow 0$.
This was used later to justify the generalised Cauchy integral formula for $f^{\prime}(z)$ at the start of term 2.

- A function f is analytic at z_{0} if f is differentiable at all points in some neighbourhood of z_{0}.
- A function f is analytic in a domain if f is analytic at all points in the domain.
- A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function if it is analytic on the whole complex plane \mathbb{C}.

MA3614 2023/4 Week 31, Page 2 of 16

The Cauchy Riemann equations for $f(z)=u(x, y)+i v(x, y)$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

When u and v have continuous partial derivatives on a domain D the function $f=u+i v$ is analytic on D if and only if the Cauchy Riemann (CR) equations are satisfied throughout D.

If $f=u+i v$ is analytic then u and v are harmonic functions. v is said to be the harmonic conjugate of u. By one CR equation

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

and we partially integrate to get

$$
v(x, y)=(\text { some function })+g(y)
$$

Then by partially differentiating and using the other $C R$ equation

$$
\frac{\partial v}{\partial y}=(\text { deriv of some function })+g^{\prime}(y)=\frac{\partial u}{\partial x}
$$

This gives $g^{\prime}(y)$.

Some representations of $f^{\prime}(z)$

With the usual notation let $z=x+i y=r e^{i \theta}$ and let

$$
f(z)=u(x, y)+i v(x, y)=\tilde{u}(r, \theta)+i \tilde{v}(r, \theta)
$$

be an analytic function. As we get the same value by differentiating in any direction we can represent the derivative in many different ways. Let h be real. We have the following as $h \rightarrow 0$.

$$
\begin{aligned}
\frac{f(z+h)-f(z)}{h} & \rightarrow \frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} . \\
\frac{f\left(z+h \mathrm{e}^{i \theta}\right)-f(z)}{h \mathrm{e}^{i \theta}} & \rightarrow \frac{1}{\mathrm{e}^{i \theta}}\left(\frac{\partial \tilde{u}}{\partial r}+i \frac{\partial \tilde{v}}{\partial r}\right) .
\end{aligned}
$$

Analytic functions can be expressed in terms of z alone In the case of a polynomial we can use a finite Maclaurin series representation. More generally we have a Taylor series or a Laurent series.

MA3614 2023/4 Week 31, Page 4 of 16

Example of a function which is not analytic

$$
f(z)=\bar{z}=x-i y \quad \text { is not analytic anywhere. }
$$

This can be proved using the definition or by showing that the Cauchy Riemann equations are not satisfied when $u=x, v=-y$.

Examples of functions which are analytic (see Chap 4)

$$
\begin{aligned}
z & =x+i y, \\
z^{2} & =\left(x^{2}-y^{2}\right)+2 i x y, \quad\left(\text { and } z^{3}, z^{4}, \ldots, \text { all polynomials) },\right. \\
\frac{1}{z} & =\frac{\bar{z}}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}}, \quad z \neq 0, \\
\mathrm{e}^{z} & =\mathrm{e}^{\times}(\cos y+i \sin y), \\
\cos z & =\frac{\mathrm{e}^{i z}+\mathrm{e}^{-i z}}{2}, \quad \sin z=\frac{\mathrm{e}^{i z}-\mathrm{e}^{-i z}}{2 i}, \\
\cosh z & =\frac{\mathrm{e}^{z}+\mathrm{e}^{-z}}{2}, \quad \sinh z=\frac{\mathrm{e}^{z}-\mathrm{e}^{-z}}{2}, \\
\log z & =\ln |z|+i \operatorname{Arg} z, \quad z \neq 0, \quad \operatorname{Arg} z \neq \pi, \\
z^{\alpha} & =\exp (\alpha \log z), \quad z \neq 0, \quad \operatorname{Arg} z \neq \pi, \quad \alpha \in \mathbb{C} \text {. } \\
&
\end{aligned}
$$

Loop integrals and analytic functions

Here f is analytic in a simply connected domain D and Γ is any loop (i.e. a closed contour) in D.

Cauchy-Goursat theorem (near end of chap 5)

$$
\oint_{\Gamma} f(z) d z=0 .
$$

The Cauchy integral formula (chap 6)
Let z be a point inside a closed loop Γ traversed once in the anti-clockwise direction.

$$
f(z)=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta .
$$

The generalised Cauchy integral formula

$$
\begin{aligned}
f^{(n)}(z)= & \frac{n!}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} \mathrm{~d} \zeta . \\
& \text { MA3614 2023/4 Week 31, Page } 7 \text { of } 16
\end{aligned}
$$

Contour integrals: definition and anti-derivatives

Chap 5. With $\Gamma=\{z(t): a \leq t \leq b\}$ describing a curve we have

$$
\int_{\Gamma} f(z) \mathrm{d} z=\int_{a}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t
$$

In many places (e.g. chap 6 and chap 8) we used the following result.
$\left|\int_{\Gamma} f(z) \mathrm{d} z\right| \leq M L, \quad M=\max \{|f(z)|: \quad z \in \Gamma\}, \quad L=$ length of Γ.
When f has an anti-derivative F on Γ (i.e. $f=F^{\prime}$) we have

$$
\begin{aligned}
\int_{\Gamma} f(z) \mathrm{d} z & =\int_{a}^{b} F^{\prime}(z(t)) z^{\prime}(t) \mathrm{d} t=\int_{a}^{b} \frac{\mathrm{~d} F(z(t))}{\mathrm{d} t} \mathrm{~d} t \\
& =F(z(b))-F(z(a)) .
\end{aligned}
$$

When an anti-derivative exists on a closed loop

$$
\oint_{\Gamma} f(z) d z=0
$$

Taylor's series - the circle of convergence (chap 7)

If $f(z)$ is analytic at z_{0} then

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k} .
$$

If p is the nearest non-analytic point of $f(z)$ to z_{0} then $R=\left|p-z_{0}\right|$ is the radius of convergence, $\left|z-z_{0}\right|=R$ is the circle of convergence and the series converges uniformly in $\left|z-z_{0}\right| \leq R^{\prime}$ for all $R^{\prime}<R$. The series diverges for all z satisfying $\left|z-z_{0}\right|>R$.

Example:

$$
f(z)=\frac{1}{1-z}=1+z+z^{2}+\cdots+z^{n}+\cdots
$$

The simple pole at $p=1$ gives the circle of convergence as $|z|=1$ MA3614 2023/4 Week 31, Page 8 of 16

Power series define analytic functions when $R>0$

Let a function $f(z)$ and let R be defined by

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad R=\frac{1}{\lim \sup \left|a_{n}\right|^{1 / n}} \geq 0
$$

When $R>0$ this defines a function analytic in $\left|z-z_{0}\right|<R$ and R is the radius of convergence. Thus

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
$$

Often R can be determined using the ratio test or the root test.
$b_{n}=a_{n}\left(z-z_{0}\right)^{n}, \quad\left|\frac{b_{n+1}}{b_{n}}\right|=\left|\frac{a_{n+1}}{a_{n}}\right|\left|z-z_{0}\right|, \quad\left|b_{n}\right|^{1 / n}=\left|a_{n}\right|^{1 / n}\left|z-z_{0}\right|$.
If $\left|a_{n+1} / a_{n}\right| \rightarrow \alpha$ or if $\left|a_{n}\right|^{1 / n} \rightarrow \alpha$ as $n \rightarrow \infty$ then we get a
condition on $\left|z-z_{0}\right|$ for convergence and for divergence.
MA3614 2023/4 Week 31, Page 9 of 16

Laurent series - expanding in negative powers

Example: When $|z|>2$ we have

$$
\begin{gathered}
2-z=-z\left(1-\frac{2}{z}\right) \\
f(z)=\frac{1}{2-z}=\left(\frac{-1}{z}\right)\left(1-\frac{2}{z}\right)^{-1}=\left(\frac{-1}{z}\right)\left(1+\frac{2}{z}+\left(\frac{2}{z}\right)^{2}+\cdots\right) .
\end{gathered}
$$

Laurent series - classifying isolated singularities

Suppose

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad 0<\left|z-z_{0}\right|<R
$$

$\operatorname{Res}\left(f, z_{0}\right)=a_{-1}$ is the residue at z_{0}.
If $a_{n}=0$ for $n<0$ then $f(z)$ has a removable singularity.
If $m<0, a_{m} \neq 0$ and $a_{n}=0$ for $n<m$, then $f(z)$ has a
pole of order $|m|$.
ma3614 2023/4 Week 31, Page 11 of 16

Laurent series (near the end of chap 7)

Suppose $f(z)$ has non-analytic points at
 p_{1} and p_{2} and

$$
r_{1}=\left|p_{1}-z_{0}\right|, \quad r_{2}=\left|p_{2}-z_{0}\right|
$$

If $f(z)$ is analytic in $r_{1}<\left|z-z_{0}\right|<r_{2}$ then it has a Laurent series representation

$$
f(z)=\sum_{-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Example: $f(z)=\frac{1}{1-z}$ has a pole at $z=1$. Take $z_{0}=0$.
Power series in $|z|<1$.
Laurent series in $1<|z|$ only involving negative powers.

MA3614 2023/4 Week 31, Page 10 of 16

Manipulations with power series and Laurent series

With series with the same expansion point we can add them term-by-term, differentiate term-by-term and integrate term-by-term. We can also multiply two series together. Examples:

$$
f(z)=\tan z=\frac{\sin z}{\cos z}=b_{1} z+b_{3} z^{3}+b_{5} z^{5}+\cdots \quad|z|<\pi / 2
$$

As $\sin z=(\tan z)(\cos z)$ we have
$z-\frac{z^{3}}{6}+\frac{z^{5}}{120}+\cdots=\left(1-\frac{z^{2}}{2}+\frac{z^{4}}{24}+\cdots\right)\left(b_{1} z+b_{3} z^{3}+b_{5} z^{5}+\cdots\right)$.
By equating coefficients we can get b_{1}, b_{3} and b_{5} etc.
$g(z)=\frac{1}{\mathrm{e}^{z}-1}=\frac{c_{-1}}{z}+c_{0}+c_{1} z+\cdots, \quad 0<|z|<2 \pi, \quad \mathrm{e}^{ \pm 2 \pi i}=1$.
$1=g(z)\left(\mathrm{e}^{z}-1\right)=\left(\frac{c_{-1}}{z}+c_{0}+c_{1} z+\cdots\right)\left(z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\cdots\right)$.
By equating coefficients we can get c_{-1}, c_{0} and c_{1} etc.
MA3614 2023/4 Week 31, Page 12 of 16

The Residue theorem (chap 8)

Let $f(z)$ be analytic inside the outer contour Γ except at 4 isolated points at the centres of the disks shown. $f(z)$ is analytic between Γ and the circles. A set-up such as this was used to explain residue theorem stated below.

Cauchy residue theorem: If Γ is a simple closed positively orientated contour and f is analytic inside and on Γ, except at points z_{1}, \ldots, z_{n} inside Γ, then

$$
\oint_{\Gamma} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right) .
$$

MA3614 2023/4 Week 31, Page 13 of 16

Integrals on $(-\infty, \infty)$ evaluated using residue theory

With $P(z)$ and $Q(z)$ being polynomials we considered

$$
f(z)=\frac{P(z)}{Q(z)} \quad \text { and } \quad f(z)=\frac{P(z)}{Q(z)} e^{m i z}
$$

$f(z)$ has poles at points z_{1}, \ldots, z_{n} in the upper half plane. $Q(z)$ has no zeros on the real axis.

With $\Gamma_{R}=[-R, R] \cup C_{R}^{+}$denoting the closed contour

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z=\int_{-R}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right) .
$$

Using the $M L$ inequality we show that the integral on C_{R}^{+}tends to 0 as $R \rightarrow \infty$.
ma3614 2023/4 Week 31, Page 15 of 16

Trig integrals evaluated using residue theory

$$
I=\int_{0}^{2 \pi} R(\cos \theta, \sin \theta) \mathrm{d} \theta=\oint_{C} \frac{1}{i} F(z) \mathrm{d} z
$$

Here C is the unit circle and $F(z)$ is obtained by using

$$
z=\mathrm{e}^{i \theta}, \quad \frac{\mathrm{~d} \theta}{\mathrm{~d} z}=\frac{1}{i z}, \quad \cos \theta=\frac{z+z^{-1}}{2}, \quad \sin \theta=\frac{z-z^{-1}}{2 i}
$$

We determine I by the Residue theorem involving the residues of $F(z)$ at the poles which are inside C, i.e. have magnitude less than 1. $(F(z)$ is a rational function of z and examples were in chap 5.)
ma3614 2023/4 Week 31, Page 14 of 16

Indented contours and principal values

When $f(z)$ has a pole on the real axis then we use an indented contour. There may be a contribution as $r \rightarrow 0$. The limit as $r \rightarrow 0$ and $R \rightarrow \infty$ is known as the principal value.

We typically get $\operatorname{Res}\left(f, z_{k}\right)$ by using L'Hopitals's rule or with manipulations involving the Laurent series.
The $M L$ inequality is used to explain why integrals involving C_{R}^{+} tend to 0 as $R \rightarrow \infty$ and it is used as part of the explanation to get the contribution from C_{r}^{+}as $r \rightarrow 0$.
When $z=x+i y, m i z=-m y+i m x$ and

$$
\left|\mathrm{e}^{m i z}\right|=\mathrm{e}^{-m y} \leq 1, \quad \text { when } m \geq 0 \text { and } y \geq 0
$$

Jordans' lemma is needed when $\operatorname{deg}(Q)=\operatorname{deg}(P)+1$.
ma3614 2023/4 Week 31, Page 16 of 16

