
Laurent series representation
Let f (z) be analytic in an annulus r < |z − z0| < R. Then

f (z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n.

The series converge uniformly in any closed sub-annulus
r < ρ1 ≤ |z − z0| ≤ ρ2 < R. The coefficients an are given by

an =
1

2πi

∮
C

f (z)

(z − z0)n+1
dz ,

where C is any positively orientated simple closed curve lying in
the annulus which has z0 as an interior point.
This indicates that the representation is unique.

Also note that in none of the examples did we obtain an by
evaluating this integral as we had other ways to get them.
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Isolated zeros of non-zero analytic functions
When f (z) has a zero of multiplicity m ≥ 1 at z0 we have

f (z) = am(z − z0)m + am+1(z − z0)m+1 + · · · = (z − z0)mg(z)

with g(z) being analytic at z0 and g(z0) = am 6= 0. These
properties of g(z) imply that in a neighbourhood
{z : |z − z0| < δ}, for some δ > 0, g(z) is non-zero and thus f (z)
is non-zero. The zeros of f (z) are isolated.
As an example suppose that the Cauchy Riemann equations are
used to show that the following is analytic.

f (x+iy) = (−2x2−10xy+6x+2y2+15y)+i(5x2−4xy−15x−5y2+6y).

f (x) = (−2x2 + 6x) + i(5x2 − 15x).

g(z) = (−2z2 + 6z) + i(5z2 − 15z).

f (x + iy) and g(z) are both analytic with f (z)− g(z) = 0 on the
real line. Hence f (z) = g(z) for all z .
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Complex identity and the related real relation
The isolated zeros property of non-zero analytic functions is a way
to quickly explain why many identities are also true in the complex
plane. For example,

cos2(x) + sin2(x)− 1 = 0,

sin(2x)− 2 sin(x) cos(x) = 0,

being true for all x ∈ R also hold for all z ∈ C, i.e.

cos2(z) + sin2(z)− 1 = 0,

sin(2z)− 2 sin(z) cos(z) = 0.
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Laurent series: Classifying poles
If f (z) has a removable singularity at z0 then it has a Laurent
series with no negative powers valid in 0 < |z − z0| < R, i.e.

f (z) =
∞∑
n=0

an(z − z0)n and lim
z→z0

f (z) = a0.

Example: sin(z)/z has a removable singularity at z = 0.

If f (z) has a pole of order m then in 0 < |z − z0| < R we have

f (z) =
∞∑

n=−m
an(z − z0)n =

φ(z)

(z − z0)m

with φ(z) being analytic at z0 and φ(z0) = a−m 6= 0.
An essential singularity at z0 has infinitely many negative powers

f (z) =
∞∑

n=−∞
an(z − z0)n, 0 < |z − z0| < R.

Example: exp(1/z) with z0 = 0.
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Integrating a Laurent Series
Let f (z) be analytic in an annulus with the following Laurent series
representation.

f (z) =
∞∑

n=−∞
an(z − z0)n, 0 < |z − z0| < R.

The coefficient a−1 is called the residue at z0. We write Res(f , z0).

Let Γ denote a loop traversed once in the anti-clockwise sense with
z0 inside Γ. Then term-by-term integration gives∮

Γ
f (z) dz =

∞∑
n=−∞

an

∮
Γ
(z − z0)n dz = 2πi a−1.
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Start of Chap 8 on Residue theory
We begin with a review of earlier results which involve the
following.

I The definition of analytic at a point. (chap 3)
I Loop integrals in the following situations.

I When we have an anti-derivative. (chap 5)
I Cauchy’s theorem. When f (z) is analytic inside a loop.

(chap 5)
I The generalised Cauchy integral formula. (chap 6)
I The use of partial fractions to express 1/Q(z), Q(z) being a

polynomial, to deal with f (z)/Q(z). (chap 4)

I Taylor’s series in a disk. (chap 7)

I Laurent series in an annulus. (chap 7)
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Definition of an analytic function
Complex derivative: Let f be a complex valued function defined
in a neighbourhood of z0. The derivative of f at z0 is given by

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h

provided the limit exists. Note that h is complex.

A function f is analytic at z0 if f is differentiable at all points in
some neighbourhood of z0.

Key results before chap 6 about analytic functions
The Cauchy Riemann equations for f = u + iv

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Cauchy-Goursat theorem: If f is analytic in a simply connected
domain D and Γ is any loop (i.e. a closed contour) in D then∮

Γ
f (z) dz = 0.
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Results about analytic functions in term 2
Generalised Cauchy integral formula
With the same conditions as above and with z0 inside Γ

f (n)(z0)

n!
=

1

2πi

∮
Γ

f (z)

(z − z0)n+1
dz , n = 0, 1, 2, . . .

Using the Cauchy integral formula we get series representations.
Taylor series: If f (z) is analytic in the disk |z − z0| < R then

f (z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

Laurent series: If f (z) is analytic in 0 ≤ r < |z − z0| < R then

f (z) =
∞∑
n=0

an(z−z0)n+
∞∑
n=1

a−n
(z − z0)n

, am =
1

2πi

∮
C

f (z)

(z − z0)m+1
dz ,

where C is simple closed loop in the annulus in the anti-clockwise
sense. The series are unique once z0 is specified.
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A recap of some results about loop integrals

1. If f has an anti-derivative continuous on Γ then∮
Γ
f (z) dz = 0.

f need not be analytic inside Γ, e.g. f (z) = 1/z2.

2. If f (z) is analytic on and inside Γ, i.e. we have no isolated
singularities, then by Cauchy’s theorem∮

Γ
f (z) dz = 0.

3. If the integrand is of the form

f (z) =
g(z)

(z − z0)m+1
,

where m is an integer and where g(z) is analytic on and inside
Γ, then by the generalised Cauchy integral formula∮

Γ
f (z) dz =

∮
Γ

g(z)

(z − z0)m+1
dz = 2πi

g (m)(z0)

m!
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What if there are several isolated singularities?

Example: 4 isolated singularities of f (z) inside Γ
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From chap 4: The case of rational functions
Let

R(z) =
p(z)

q(z)
, q(z) = (z − z1)r1(z − z2)r2 · · · (z − zn)rn .

R(z) =
p(z)

q(z)
= (some polynomial)+

n∑
k=1

Ak

z − zk
+(higher order poles).

Here Ak is the residue at zk .

The polynomial part has an anti-derivative (another polynomial)
and a (z − zk)−j−1 term has an anti-derivative (z − zk)−j/(−j)
when j ≥ 1 and hence loop integrals of these part are 0.

1/(z − zk) has an anti-derivative throughout a loop when zk is
outside the loop and hence loop integrals of such terms are 0.
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Residue theorem for rational functions
If z1, . . . , zm are points inside Γ at which R(z) has poles then∮

Γ
R(z) dz =

m∑
k=1

Ak

∮
Γ

dz

z − zk

= 2πi
m∑

k=1

Ak

= 2πi
m∑

k=1

Res(R, zk).

The answer just depends on the residues at the poles inside Γ.
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A more general numerator
Suppose Q(z) is a polynomial and g(z) is analytic on and inside Γ.

f (z) =
g(z)

Q(z)
, with Q(z) = (z − z1)r1 · · · (z − zn)rn .

By partial fractions we have the form

1

Q(z)
=

n∑
k=1

(
A1,k

z − zk
+ · · ·+

Ark ,k

(z − zk)rk

)
.

We can then separately determine∮
Γ

g(z)

(z − zk)rj
dz .

using the generalised Cauchy integral formula.
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Dealing with a more general denominator
The following slides enable us to deal with any denominator which
is analytic and has zeros.

Joining the points and dividing the domain

We have two simply
connected domains, a
top part and a bottom
part. f (z) is analytic
in both simply connected
domains.
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The path Γt of the top part

∫
Γt

f (z) dz = 0.
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The path Γb of the bottom part

∫
Γb

f (z) dz = 0.
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The Residue theorem
If z1, z2, . . . , zn are isolated singularities inside Γ and C1,C2, . . . ,Cn

are non-intersecting circles traversed once in the anti-clockwise
direction then Γ ∪ (−C1) ∪ · · · ∪ (−Cn) is the boundary of a region
in which f (z) is analytic and∮

Γ
f (z) dz =

n∑
k=1

∮
Ck

f (z) dz

= 2πi
n∑

k=1

Res(f , zk).

Previously this was just shown to be true when we could split the
integrand up using partial fractions for integrands which had a
polynomial in the denominator. With the knowledge of Laurent
series to describe the behaviour in the vicinity of each point we
have now generalised to the above.

MA3614 2023/4 Week 23, Page 17 of 28

Techniques to calculate the residue
In the case of a simple pole of f (z) at z0 most examples for
calculating the residue have involved calculating the limit

Res(f , z0) = lim
z→z0

(z − z0)f (z).

In many of the examples L’Hopital’s rule has been used.

More generally when we have a pole of order m ≥ 1 we can
calculate the residue by using

Res(f , z0) =
1

(m − 1)!
lim
z→z0

dm−1

dzm−1
((z − z0)mf (z)) .

We need to know the order of the pole to use the above.
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Trig integrals evaluated using residue theory

1−1

I =

∫ 2π

0
R(cos θ, sin θ) dθ =

∮
C

1

i
F (z) dz = 2π

∑
k

Res(F , zk).

Here C is the unit circle and F (z) is obtained by using

z = eiθ,
dθ

dz
=

1

iz
, cos θ =

z + z−1

2
, sin θ =

z − z−1

2i
.

We determine I by the Residue theorem involving the residues of
F (z) at the poles zk which are inside C . F (z) is a rational
function of z . Examples of these first appeared in chap 5.
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Integrals on (−∞,∞) evaluated using residue theory
With P(z)and Q(z) being polynomials we consider

f (z) =
P(z)

Q(z)
(weeks 23/24) and f (z) =

P(z)

Q(z)
emiz . (week 24)

x

y

−R 0 R

C+
R

Suppose that f (z) has poles at
points z1, . . . , zn in the upper
half plane. Suppose that Q(z)
has no zeros on the real axis.

With ΓR = [−R,R] ∪ C+
R denoting the closed contour∮

ΓR

f (z) dz =

∫ R

−R
f (x) dx +

∫
C+
R

f (z) dz = 2πi
n∑

k=1

Res(f , zk).

When the integral involving C+
R tends to 0 as R →∞ we get∫ ∞

−∞
f (x) dx or p.v.

∫ ∞
−∞

f (x) dx = lim
R→∞

∫ R

−R
f (x) dx .
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Want does an infinite integral mean?
Let a ∈ R we define∫ ∞

a
f (x) dx := lim

b→∞

∫ b

a
f (x) dx .

∫ a

−∞
f (x) dx := lim

c→−∞

∫ a

c
f (x) dx .

When both limits exist∫ ∞
−∞

f (x) dx =

∫ a

−∞
f (x) dx +

∫ ∞
a

f (x) dx .

The principal value version only needs that the following exists.

p.v.

∫ ∞
−∞

f (x) dx = lim
R→∞

∫ R

−R
f (x) dx .

When our workings give the principal value a comment is made to
justify when we do not put the p.v. notation as the integral exists
in the “other sense” as well. MA3614 2023/4 Week 23, Page 21 of 28

Example: When only the principal value exists
Consider

f (x) =
i

x + i
,

∫ 0

−R
f (x) dx ,

∫ R

0
f (x) dx ,

∫ R

−R
f (x) dx .

f (x) =
i

x + i
=

i(x − i)

x2 + 1
=

1 + ix

x2 + 1
when x ∈ R.

Let

F (z) = iLog(z + i), F ′(z) = f (z) =
i

z + i
.∫ 0

−R
f (x) dx = F (0)− F (−R),

∫ R

0
f (x) dx = F (R)− F (0)

∫ R

−R
f (x) dx = F (R)− F (−R) = Arg(−R + i)− Arg(R + i)→ π

as R →∞. Both |F (−R)| and |F (R)| are unbounded as R →∞.
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Singularities on R and Cauchy principal values
In the lectures and in the exercises of about weeks 24/25 we will
also consider integrals of the form∫ ∞

−∞
f (x) dx

when f (x) has poles on the real axis. The integrals need to be
considered in a principal valued sense. In the case of a singularity
at 1 the indented contour is illustrated below.

x

y

1−R 0 R

C+
R

The knowledge of the Laurent series enables us to determine the
contribution from the smaller half circle as this shrinks to a point.
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Examples this week

I =

∫ ∞
−∞

dx

x2 + 2x + 2
= π.

Let

f (z) =
1

z2 + 2z + 2
.

The magnitude on |z | = R is of order 1/R2 when R is large. By
the ML inequality the parts on C+

R tends to 0 as R →∞.

One simple pole at z1 = −1 + i in the upper half plane.

Res(f , z1) =
1

2i
.

MA3614 2023/4 Week 23, Page 24 of 28



Examples this week continued

I =

∫ ∞
−∞

1

x4 + 16
dx =

π
√

2

16
.

Let

f (z) =
1

z4 + 16
.

f (z) has 4 simple poles in the complex plane and 2 of these are in
the upper half plane at the points

z1 = 2eiπ/4 =
√

2(1 + i), z2 = 2e3iπ/4 =
√

2(−1 + i).

The magnitude on |z | = R is of order 1/R4 when R is large. By the
ML inequality the parts on C+

R tends to 0 as R →∞. In this case

I = 2πi (Res(f , z1) + Res(f , z2)) .
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Use of the ML inequality
Consider again the following contour.

x

y

−R 0 R

C+
R

The length of the half circle C+
R is πR. Suppose

MR = max{|f (z)| : z ∈ C+
R }. By the ML inequality.∣∣∣∣∣

∫
C+
R

f (z) dz

∣∣∣∣∣ ≤ πRMR .

This tends to 0 as R →∞ when MR → 0 sufficiently rapidly.
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A sufficient condition for the C+
R part

Suppose that f (z) is a rational function of the form

f (z) =
P(z)

Q(z)
,

with P(z) = apz
p + · · ·+ a1z + a0 and

Q(z) = bqz
q + · · ·+ b1z + b0 where ap 6= 0, bq 6= 0. When

|z | = R is large

|f (z)| = O
(
Rp−q) = O

(
1

Rq−p

)
.

RMR → 0 as R →∞ when q − p ≥ 2, i.e. q ≥ p + 2.
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The integrals on C+
R when we have a eimz term

After this week.

With z = x + iy , imz = −my + imx , eimz = e−myeimx . When
m > 0, |eimz | = e−my ≤ 1 when y ≥ 0.

When deg(Q) ≥ deg(P) + 2 we have∫
C+
R

P(z)

Q(z)
dz → 0 and

∫
C+
R

P(z)

Q(z)
eimz dz → 0

as R →∞ by using the ML inequality as in the case when m = 0.

When deg(Q) = deg(P) + 1 Jordan’s lemma also gives∫
C+
R

P(z)

Q(z)
eimz dz → 0

as R →∞. Jordan’s lemma should be covered next week.
If m < 0 then the lower half circle needs to be used for a similar
result.
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