Geometric series, examples of R

Taylor's series

If $f(z)$ is analytic at z_{0} then the Taylor series is

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k} .
$$

If $f(z)$ is analytic in $\left|z-z_{0}\right|<R$ then the series converges to $f(z)$ in this disk with uniform convergence in $\left|z-z_{0}\right| \leq R^{\prime}<R$ for all $R^{\prime}<R$.

If $f(z)$ is not an entire function then the largest R is such that $f(z)$ has a non-analytic point on $\left|z-z_{0}\right|=R$.

Other examples of determining R

Consider the following function and expanding about $z_{0}=0$.

$$
f(z)=\frac{1}{\left(1+\mathrm{e}^{2 z}\right)\left(z^{2}-2\right)}
$$

The non-analytic points (simple poles) are where

$$
\mathrm{e}^{2 z}=-1 \quad \text { and when } \quad z^{2}=2
$$

$$
\mathrm{e}^{2 z}=-1 \quad \text { when } \quad 2 z=\log (-1)=i \pi+2 k \pi i, \quad z=\frac{i \pi}{2}+k \pi i
$$

In the above $k \in \mathbb{Z}$.
The points at $\pm \sqrt{2}$ are nearer to $z_{0}=0$ than the points $\pm i \pi / 2$ and thus $R=\sqrt{2}$.
material.

$$
f(z)=\frac{1}{1-z}
$$

The circles of convergence when we expand about $z_{0}=-1$ has $R=2$ and when we expand about $z_{0}=0$ has $R=1$. The simple pole at $z=1$ is on both circles.

MA3614 2023/4 Week 21, Page 2 of 16

A branch point case: $(1+z)^{\alpha}, z_{0}=0$, example of R

$$
f(z)=(1+z)^{\alpha}
$$

where the principal value is being used.
Apart from the cases where $\alpha \in\{0,1,2, \cdots\}$ there is a non-analytic point at $z=-1$. The non-analytic point is a pole if α is a negative integer but otherwise it is a branch point.

$$
R=1
$$

With the principal value meaning the branch cut is the set

$$
\{z=x: x \leq-1\}
$$

and $f(z)$ is analytic when $|z|<1$. The generalised binomial series representation is
$(1+z)^{\alpha}=1+\alpha z+\frac{\alpha(\alpha-1)}{2!} z^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} z^{n}+\cdots$

Series you are expected to know

Real coefficients, even functions, odd functions, etc

If $f(z)=u(x, y)+i v(x, y)$ is real when z is real then

$$
v(x, 0)=0 \quad \text { and } \quad f^{(n)}(0)=\left.\frac{\partial^{n} u(x, 0)}{\partial x^{n}}\right|_{x=0} \quad \text { is real. }
$$

If $R=$ radius of convergence and $0<r<R$ then we have

$$
\begin{aligned}
\frac{f^{(n)}(0)}{n!} & =\frac{1}{2 \pi r^{n}} \int_{-\pi}^{\pi} f\left(r \mathrm{e}^{i t}\right) \mathrm{e}^{-i n t} \mathrm{~d} t \\
& =\frac{1}{2 \pi r^{n}} \int_{0}^{\pi}\left(f\left(r \mathrm{e}^{i t}\right)+(-1)^{n} f\left(-r \mathrm{e}^{i t}\right)\right) \mathrm{e}^{-i n t} \mathrm{~d} t
\end{aligned}
$$

If $f(-z)=f(z)$ then the Maclaurin series only has even powers.
If $f(-z)=-f(z)$ then the Maclaurin series only has odd powers.

MA3614 2023/4 Week 21, Page 5 of 16

Some techniques with series

Inside the circle of convergence we can differentiate term-by-term and we integrate term-by-term, e.g. we can get $\sin (z)$ from $\cos (z)$ and conversely we can get $\cos (z)$ from $\sin (z)$ as $\cos (0)=1$.

$$
\begin{aligned}
& \cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots \\
& \sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots
\end{aligned}
$$

With knowledge of one series you can hence quickly get the other series. As examples obtained from the geometric series

$$
\begin{aligned}
\log (1-z) & =-\int_{0}^{z} \frac{\mathrm{~d} t}{1-t}=-\left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{n}}{n}+\cdots\right) \\
\frac{1}{(1-z)^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{1}{1-z}\right)=1+2 z+3 z^{2}+\cdots+n z^{n-1}+\cdots
\end{aligned}
$$

Any path in the disk from 0 to z is okay in the integral.
MA3614 2023/4 Week 21, Page 7 of 16

Geometric series

$$
\frac{1}{1-z}=1+z+z^{2}+\cdots+z^{n}+\cdots, \quad \text { valid for }|z|<1
$$

The following are entire functions:

$$
\begin{gathered}
\mathrm{e}^{z}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots \\
\mathrm{e}^{-z}=1-z+\frac{z^{2}}{2!}+\cdots+\frac{(-z)^{n}}{n!}+\cdots \\
\cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots \quad \sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots \\
\cosh (z)=1+\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots \quad \sinh (z)=z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots
\end{gathered}
$$

Remember that

$$
\mathrm{e}^{i z}=\cos (z)+i \sin (z), \quad \mathrm{e}^{z}=\cosh (z)+\sinh (z)
$$

MA3614 2023/4 Week 21, Page 6 of 16

The Koebe function, de Branges' theorem and a conjecture
From the previous slide we immediately get the series for the Koebe function

$$
f(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+\cdots+n z^{n}+\cdots
$$

This function has the property that $f(0)=0, f^{\prime}(0)=1$. Also we could give an expression for the inverse to confirm that it is one-to-one in $|z|<1$.
Suppose that you consider all functions $g(z)$ which are analytic in the unit disk, are one-to-one and satisfy $g(0)=0$ and $g^{\prime}(0)=1$. Such functions have Maclaurin series of the form

$$
g(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots+a_{n} z^{n}+\cdots
$$

In 1985 de Branges proved that $\left|a_{n}\right| \leq n$.
In 1916 Bierberbach had proved that $\left|a_{2}\right| \leq 2$ and he conjectured that $\left|a_{n}\right| \leq n$ for all functions with the above properties. See a Wolfram web page for a history of the progress to prove this result which took nearly 70 years.

MA3614 2023/4 Week 21, Page 8 of 16

Multiplying series - the Cauchy product

If $f(z)$ and $g(z)$ are both analytic in $\left|z-z_{0}\right|<R$ then
$h(z)=f(z) g(z)$ is also analytic in $\left|z-z_{0}\right|<R$.
To shorten the expressions let $z_{0}=0$.

$$
\begin{aligned}
f(z) & =a_{0}+a_{1} z+a_{2} z^{2}+\cdots \\
g(z) & =b_{0}+b_{1} z+b_{2} z^{2}+\cdots \\
h(z) & =c_{0}+c_{1} z+c_{2} z^{2}+\cdots
\end{aligned}
$$

The following expression for c_{n} is known as the Cauchy product.

$$
\begin{aligned}
c_{0} & =a_{0} b_{0} \\
c_{1} & =a_{0} b_{1}+a_{1} b_{0} \\
c_{2} & =a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} \\
\cdots & \cdots \\
c_{n} & =a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}
\end{aligned}
$$

Examples using the Cauchy product technique

$$
\begin{aligned}
& \frac{\mathrm{e}^{z}}{1-z}=\left(1+z+\cdots+\frac{z^{n}}{n!}+\cdots\right)\left(1+z+\cdots+z^{n}+\cdots\right) \\
&= c_{0}+c_{1} z+c_{2} z^{2}+\cdots+c_{n} z^{n}+\cdots \\
& c_{0}=1 \\
& c_{1}=1+1=2 \\
& c_{2}=1+1+\frac{1}{2}=\frac{5}{2} \\
& c_{n}=1+1+\frac{1}{2}+\cdots+\frac{1}{n!}
\end{aligned}
$$

We can get the series for $\tan (z)=\sin (z) / \cos (z)$ by first writing

$$
\tan (z) \cos (z)=\sin (z)
$$

We use the known series for $\cos (z)$ and $\sin (z)$ to deduce the terms for $\tan (z)$.

Leibnitz's formula for the nth derivative of a product

If we repeatedly use the product rule then we get

$$
\begin{aligned}
h= & f g \\
h^{\prime}= & f^{\prime} g+f g^{\prime} \\
h^{\prime \prime}= & f^{\prime \prime} g+2 f^{\prime} g^{\prime}+f g^{\prime \prime} \\
\cdots & \cdots \\
h^{(n)}= & \sum_{k=0}^{n}\binom{n}{k} f^{(k)} g^{(n-k)} .
\end{aligned}
$$

The last result is known as Leibnitz's rule for the nth derivative of a product.
The validity of the Cauchy product formula for the coefficients in the series for $h(z)$ about z_{0} follows by noting the following.

$$
\begin{aligned}
h^{(n)}\left(z_{0}\right) & =n!c_{n}, \quad f^{(k)}\left(z_{0}\right)=k!a_{k}, \quad g^{(n-k)}\left(z_{0}\right)=(n-k)!b_{n-k}, \\
\binom{n}{k} & =\frac{n!}{k!(n-k)!} .
\end{aligned}
$$

MA3614 2023/4 Week 21, Page 10 of 16

The generalised L'Hopital's rule

If we have

$$
\begin{gathered}
g\left(z_{0}\right)=g^{\prime}\left(z_{0}\right)=\cdots=g^{(m-1)}\left(z_{0}\right)=0 \quad \text { and } g^{(m)}\left(z_{0}\right) \neq 0 \\
f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)=0
\end{gathered}
$$

then for z near z_{0} we have

$$
\begin{aligned}
f(z) & =a_{m}\left(z-z_{0}\right)^{m}+a_{m+1}\left(z-z_{0}\right)^{m+1}+\cdots, \\
g(z) & =b_{m}\left(z-z_{0}\right)^{m}+b_{m+1}\left(z-z_{0}\right)^{m+1}+\cdots . \\
& \frac{f(z)}{g(z)} \rightarrow \frac{a_{m}}{b_{m}}=\frac{f^{(m)}\left(z_{0}\right)}{g^{(m)}\left(z_{0}\right)} \quad \text { as } z \rightarrow z_{0} .
\end{aligned}
$$

If the multiplicity of the zero of $g(z)$ at z_{0} is greater than the multiplicity of the zero of $f(z)$ then there is no limit and $f(z) / g(z)$ has a singularity at z_{0}.

Power series

A power series is a series of the form

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

The terms a_{0}, a_{1}, \ldots are the coefficients of the power series.
The series always converges at $z=z_{0}$. When it converges at other points the region where it converges is a disk $\left\{z:\left|z-z_{0}\right|<R\right\}$ and it is analytic in the disk.
The largest R is the radius of convergence. When $R<\infty$ $\left\{z:\left|z-z_{0}\right|=R\right\}$ is the circle of convergence. In all cases

$$
R=\frac{1}{\lim \sup \left|a_{n}\right|^{1 / n}} .
$$

In our examples R is obtained using the ratio test or the root test.
$R=0$ when we only have convergence at $z=z_{0}$.
$R=\infty$ when we have convergennce for adb $\lim _{4}$ Week 21, Page 13 of 16

Why must the region where it converges be a disk?

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Suppose this converges at $z_{1} \neq z_{0}$ and let $r=\left|z_{1}-z_{0}\right|>0$. The series may not converge at all points on $\left|z-z_{0}\right|=r$ but the following argument proves that the series converges uniformly in the region

$$
\left\{z:\left|z-z_{0}\right| \leq \tilde{r}<r\right\}
$$

Obtaining R in the exercise sheet examples

$$
\begin{gathered}
\sum_{n=0}^{\infty} b_{n}, \quad b_{n}=a_{n}\left(z-z_{0}\right)^{n} . \\
\left|\frac{b_{n+1}}{b_{n}}\right|=\left|\frac{a_{n+1}}{a_{n}}\right|\left|z-z_{0}\right|, \quad\left|b_{n}\right|^{1 / n}=\left|a_{n}\right|^{1 / n}\left|z-z_{0}\right| .
\end{gathered}
$$

By the ratio test, when

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \alpha \quad \text { as } n \rightarrow \infty, \quad R=\frac{1}{\alpha}
$$

By the root test, when

$$
\left|a_{n}\right|^{1 / n} \rightarrow \alpha \quad \text { as } n \rightarrow \infty, \quad R=\frac{1}{\alpha} .
$$

The lim sup version deals with the case when the sequence
$\left(\left|a_{n}\right|^{1 / n}\right)$ does not converge but is bounded.

$$
\alpha=\lim _{n \rightarrow \infty} c_{n}, \quad c_{n}=\sup \left\{\left|a_{m}\right|^{1 / m}: m \geq n\right\}
$$

MA3614 2023/4 Week 21, Page 14 of 16

The Proof

Convergence of the power series at z_{1} means that

$$
\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|=\left|a_{n}\right| r^{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

This implies that the set $\left\{\left|a_{n}\right| r^{n}: n=0,1,2, \ldots\right\}$ is bounded and we have

$$
M=\sup \left\{\left|a_{n}\right| r^{n}: \quad n=0,1,2, \ldots\right\}<\infty
$$

If we take $\tilde{r}<r$ and take z such that $\left|z-z_{0}\right| \leq \tilde{r}$ then

$$
\left|a_{n}\left(z-z_{0}\right)^{n}\right| \leq\left|a_{n}\right| \tilde{r}^{n}=\left|a_{n}\right| r^{n}\left(\frac{\tilde{r}}{r}\right)^{n} \leq M\left(\frac{\tilde{r}}{r}\right)^{n}
$$

The right hand side is a term in a convergent geometric series and thus by the Weierstrass M-test the series converges uniformly in the disk $\left\{z:\left|z-z_{0}\right| \leq \tilde{r}\right\}$.

