
Overview of chapter 7 about series

I Sections 7.1 and 7.2 are an introduction and revision about
sequences and series of numbers in C.

I Section 7.3 is about the uniform convergence of a series of
analytic functions. We show that the limit is also analytic.

I Section 7.4 is about proving that a given function f (z) which
is analytic in {z : |z − z0| < R} is equal to its Taylor series
representation about z0. When f (z) is not an entire function
the largest R is such that f (z) is not analytic at a point on
|z − z0| = R. This is the circle of convergence and R is the
radius of convergence.

f (z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k

= f (z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)2 + · · · .
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Overview of chapter 7 continued
I Section 7.4 will also include some standard series and some

manipulations such the Cauchy product technique to get the
series for a product of analytic functions f (z)g(z).

I Section 7.5 is concerned with the opposite of section 7.4 in
that the starting point is a function defined by a series

f (z) =
∞∑
n=0

an(z − z0)n.

We determine the circle of convergence and the radius of
convergence from the coefficients {an} by using the ratio test
or root test when possible.

I Section 7.6 is concerned with showing that when f is analytic
in 0 ≤ r < |z − z0| < R we have a Laurent series
representation

f (z) =
∞∑

n=−∞
an(z − z0)n.

MA3614 2023/4 Week 20, Page 2 of 16

Overview of chapter 7 continued
I Section 7.7 is concerned with classifying an isolated singularity

at z0 by considering its Laurent series in 0 < |z − z0| < R.

Res(f , z0) = a−1.

A key step in deriving the Taylor and Laurent series representations
is in starting with the Cauchy integral representation and doing
some manipulations with the following part of the integrand.

1

ζ − z
.

ζ − z = (ζ − z0)− (z − z0)

= (ζ − z0)

(
1−

(
z − z0

ζ − z0

))
= −(z − z0)

(
1−

(
ζ − z0

z − z0

))
,

(1− c)−1 =
1

1− c
= 1 + c + c2 + c3 + · · · when |c | < 1.
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Chapter 7: Definitions: sequences in C
I A sequence z0, z1, z2, . . . converges to z if for every ε > 0

there exists an N = N(ε) such that

|zn − z | < ε for all n ≥ N.

I A sequence z0, z1, z2, . . . is a Cauchy sequence if for every
ε > 0 there exists an N = N(ε) such that

|zn − zm| < ε for all n ≥ N and m ≥ N.

Result about convergence
A sequence in C converges if and only if it is a Cauchy sequence.

In this module we do not directly use these definitions but we use
results derived from them.
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Definitions: series in C
I Let c0, c1, c2, . . . denote a sequence. A series is an

expression of the form

c0 + c1 + c2 + · · · and we write as
∞∑
k=0

ck .

The sequence of partial sums are given by

sn =
n∑

k=0

ck , n = 0, 1, 2, . . .

I The series converges if the sequence of partial sums
converges and it diverges otherwise. When the series
convergence the sum of the series is

s =
∞∑
k=0

ck

I If
∑
|ck | converges then

∑
ck is absolutely convergent.
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Results about series in C
I If a series

∑
ck converges then cn → 0 as n→∞.

I If the series
∑
|ck | converges then

∑
ck converges.

I Comparison test: If there exists K such that |ck | ≤ Mk for
all k ≥ K and

∑
Mk converges then

∑
ck converges.

I From the identity

(1− c)(1 + c + c2 + · · ·+ cn) = 1− cn+1

we have that the geometric series

∞∑
k=0

ck =
1

1− c
, when |c | < 1.

I Ratio test: If |ck+1/ck | → L as k →∞ then the series
converges if L < 1 and it diverges if L > 1.

I Root test: If |ck |1/k → L as k →∞ then the series
converges if L < 1 and it diverges if L > 1.
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Series of functions
Suppose that f0(z), f1(z), . . . are all defined on D and let

Fn(z) =
n∑

k=0

fk(z), n = 0, 1, 2, . . .

∑
fk(z) converges pointwise on D if (Fn(z)) converges ∀z ∈ D.

The sequence converges uniformly to F (z) on D if

sup
z∈D
|Fn(z)− F (z)| → 0 as n→∞.

A sufficient condition for a series to converges uniformly is the
Weierstrass M-test: If |fk(z)| ≤ Mk for all z ∈ D and

∑
Mk

converges then the series converges uniformly in D.

Uniform convergence preserves continuity: If Fn(z), n = 0, 1,
2, . . . are continuous in D and Fn → F uniformly on D then the
limit function F (z) is also continuous in D.
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Uniform convergence and analytic functions
Theorem: Let Fn(z) be a sequence of analytic function in a
simply connected domain D and converging uniformly to F (z) in
D. Then F (z) is analytic in D.

The main step in the proof is the following.

The uniform convergence of the sequence of functions enables us
to deduce that for any loop Γ in D we have∮

Γ
F (z) dz = lim

n→∞

∮
Γ
Fn(z) dz = 0.

As this is true for all loops Morera’s theorem tells us that F (z) is
analytic.
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Taylor series for analytic functions
If f (z) is analytic at z0 then the series

f (z0)+f ′(z0)(z−z0)+
f ′′(z0)

2!
(z−z0)2 +· · · =

∞∑
k=0

f (k)(z0)

k!
(z−z0)k

is called the Taylor series for f (z) around z0.

Theorem: If f (z) is analytic in the disk |z − z0| < R then the
Taylor series converges to f (z) for all z in this disk and in any
closed disk |z − z0| ≤ R ′ < R the convergence is uniform.
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The circles used in the proof

z0

C

The closed disk D ′

Disk of radius R ′

Circle of radius R.

With the largest R

f (z) is not analytic

at 1 or more points

on the circle.

z is in the shaded region. C is the circle in the loop integral,
ζ ∈ C . f (z) is analytic inside the outer cirle.
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Key formula in the proof of the Taylor series

f (z) =
1

2πi

∮
C

f (ζ)

ζ − z
dζ,

f (k)(z0)

k!
=

1

2πi

∮
C

f (ζ)

(ζ − z0)k+1
dζ.

ζ − z = (ζ − z0)− (z − z0) = (ζ − z0)

(
1−

(
z − z0

ζ − z0

))
.

f (ζ)

ζ − z
=

f (ζ)

ζ − z0

(
1 + α + α2 + · · ·+ αn +

(
αn+1

1− α

))
, α =

z − z0

ζ − z0
.

Note that with |z − z0| ≤ R ′ and R ′ < |ζ − z0|, ζ ∈ C , we have

|α| < 1.
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Key formula in the proof continued

f (ζ)

ζ − z
=

f (ζ)

ζ − z0

(
1 + α + α2 + · · ·+ αn +

(
αn+1

1− α

))
, α =

z − z0

ζ − z0
.

1

2πi

∮
C

f (ζ)

ζ − z0

(
1 + α + α2 + · · ·+ αn

)
dζ =

n∑
k=0

f (k)(z0)

k!
(z − z0)k

Thus

f (z) =
n∑

k=0

f (k)(z0)

k!
(z − z0)k + Tn(z),

Tn(z) =
(z − z0)n+1

2πi

∮
C

f (ζ)

(ζ − z0)n+1(ζ − z)
dζ.

It can be shown that max{|Tn(z)| : |z − z0| ≤ R ′} → 0 as n→∞.
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Taylor’s series, comments about R
If f (z) is analytic at z0 then the Taylor series is

f (z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k .

If f (z) is analytic in |z − z0| < R then the series converges to f (z)
in this disk with uniform convergence in |z − z0| ≤ R ′ < R for all
R ′ < R.

If f (z) is not an entire function then the largest R is such that
f (z) has a non-analytic point on |z − z0| = R.
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Maclaurin series case
Maclaurin series is the case of Taylor series when z0 = 0.

f (z) =
∞∑
k=0

f (k)(0)

k!
zk .

If f (z) is analytic in |z | < R then the series converges to f (z) in
this disk with uniform convergence in |z | ≤ R ′ < R for all R ′ < R.

As an example,

tan(z) =
sin(z)

cos(z)

is analytic in |z | < π/2 but is not analytic at the points ±π/2. In
this case R = π/2.
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Real coefficients, even functions, odd functions, etc
If f (z) = u(x , y) + iv(x , y) is real when z is real then

v(x , 0) = 0 and f (n)(0) =
∂nu(x , 0)

∂xn

∣∣∣∣
x=0

is real.

If R =radius of convergence and 0 < r < R then by considering
the following integral on [−π, 0] and [0, π] involving the
generalised CIF we have

f (n)(0)

n!
=

1

2πrn

∫ π

−π
f (reit) e−int dt

=
1

2πrn

∫ π

0

(
f (reit) + (−1)nf (−reit)

)
e−int dt.

If f (−z) = f (z) then the Maclaurin series only has even powers.

If f (−z) = −f (z) then the Maclaurin series only has odd powers.

MA3614 2023/4 Week 20, Page 15 of 16

Series you are expected to know
Geometric series

1

1− z
= 1 + z + z2 + · · ·+ zn + · · · , valid for |z | < 1.

The following are entire functions:

ez = 1 + z +
z2

2!
+ · · ·+ zn

n!
+ · · ·

e−z = 1− z +
z2

2!
+ · · ·+ (−z)n

n!
+ · · ·

cos(z) = 1− z2

2!
+

z4

4!
+ · · · sin(z) = z − z3

3!
+

z5

5!
+ · · ·

cosh(z) = 1 +
z2

2!
+

z4

4!
+ · · · sinh(z) = z +

z3

3!
+

z5

5!
+ · · ·

Remember that

eiz = cos(z) + i sin(z), ez = cosh(z) + sinh(z).
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