Overview of chapter 7 about series

- Sections 7.1 and 7.2 are an introduction and revision about sequences and series of numbers in \mathbb{C}.
- Section 7.3 is about the uniform convergence of a series of analytic functions. We show that the limit is also analytic.
- Section 7.4 is about proving that a given function $f(z)$ which is analytic in $\left\{z:\left|z-z_{0}\right|<R\right\}$ is equal to its Taylor series representation about z_{0}. When $f(z)$ is not an entire function the largest R is such that $f(z)$ is not analytic at a point on $\left|z-z_{0}\right|=R$. This is the circle of convergence and R is the radius of convergence.

$$
\begin{aligned}
f(z) & =\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k} \\
& =f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{f^{\prime \prime}\left(z_{0}\right)}{2!}\left(z-z_{0}\right)^{2}+\cdots
\end{aligned}
$$

$$
\text { MA3614 2023/4 Week 20, Page } 1 \text { of } 16
$$

Overview of chapter 7 continued

- Section 7.7 is concerned with classifying an isolated singularity at z_{0} by considering its Laurent series in $0<\left|z-z_{0}\right|<R$.

$$
\operatorname{Res}\left(f, z_{0}\right)=a_{-1}
$$

A key step in deriving the Taylor and Laurent series representations is in starting with the Cauchy integral representation and doing some manipulations with the following part of the integrand.

$$
\begin{aligned}
& \frac{1}{\zeta-z} \\
& \zeta-z=\left(\zeta-z_{0}\right)-\left(z-z_{0}\right) \\
&=\left(\zeta-z_{0}\right)\left(1-\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)\right) \\
&=-\left(z-z_{0}\right)\left(1-\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)\right) \\
&(1-c)^{-1}= \frac{1}{1-c}=1+c+c^{2}+c^{3}+\cdots \quad \text { when }|c|<1 . \\
& \text { MA3614 } 2023 / 4 \text { Week 20, Page } 3 \text { of } 16
\end{aligned}
$$

Overview of chapter 7 continued

- Section 7.4 will also include some standard series and some manipulations such the Cauchy product technique to get the series for a product of analytic functions $f(z) g(z)$.
- Section 7.5 is concerned with the opposite of section 7.4 in that the starting point is a function defined by a series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

We determine the circle of convergence and the radius of convergence from the coefficients $\left\{a_{n}\right\}$ by using the ratio test or root test when possible.

- Section 7.6 is concerned with showing that when f is analytic in $0 \leq r<\left|z-z_{0}\right|<R$ we have a Laurent series representation

$$
f(z)=\sum_{\substack{n=-\infty \\ \text { MA3614 2023/4 Week 20, Page } 2 \text { of } 16}}^{\infty} a_{n}\left(z-z_{0}\right)^{n} .
$$

Chapter 7: Definitions: sequences in \mathbb{C}

- A sequence $z_{0}, z_{1}, z_{2}, \ldots$ converges to z if for every $\epsilon>0$ there exists an $N=N(\epsilon)$ such that

$$
\left|z_{n}-z\right|<\epsilon \quad \text { for all } n \geq N
$$

- A sequence $z_{0}, z_{1}, z_{2}, \ldots$ is a Cauchy sequence if for every $\epsilon>0$ there exists an $N=N(\epsilon)$ such that

$$
\left|z_{n}-z_{m}\right|<\epsilon \quad \text { for all } n \geq N \text { and } m \geq N
$$

Result about convergence

A sequence in \mathbb{C} converges if and only if it is a Cauchy sequence.
In this module we do not directly use these definitions but we use results derived from them.

Definitions: series in \mathbb{C}

- Let $c_{0}, c_{1}, c_{2}, \ldots$ denote a sequence. A series is an expression of the form

$$
c_{0}+c_{1}+c_{2}+\cdots \quad \text { and we write as } \sum_{k=0}^{\infty} c_{k}
$$

The sequence of partial sums are given by

$$
s_{n}=\sum_{k=0}^{n} c_{k}, \quad n=0,1,2, \ldots
$$

- The series converges if the sequence of partial sums converges and it diverges otherwise. When the series convergence the sum of the series is

$$
s=\sum_{k=0}^{\infty} c_{k}
$$

- If $\sum\left|c_{k}\right|$ converges then $\sum c_{k}$ is absolutely convergent. MA3614 2023/4 Week 20, Page 5 of 16

Results about series in \mathbb{C}

- If a series $\sum c_{k}$ converges then $c_{n} \rightarrow 0$ as $n \rightarrow \infty$.
- If the series $\sum\left|c_{k}\right|$ converges then $\sum c_{k}$ converges.
- Comparison test: If there exists K such that $\left|c_{k}\right| \leq M_{k}$ for all $k \geq K$ and $\sum M_{k}$ converges then $\sum c_{k}$ converges.
- From the identity

$$
(1-c)\left(1+c+c^{2}+\cdots+c^{n}\right)=1-c^{n+1}
$$

we have that the geometric series

$$
\sum_{k=0}^{\infty} c^{k}=\frac{1}{1-c}, \quad \text { when }|c|<1
$$

- Ratio test: If $\left|c_{k+1} / c_{k}\right| \rightarrow L$ as $k \rightarrow \infty$ then the series converges if $L<1$ and it diverges if $L>1$.
- Root test: If $\left|c_{k}\right|^{1 / k} \rightarrow L$ as $k \rightarrow \infty$ then the series converges if $L<1$ and it diverges if $L>1$. MA3614 2023/4 Week 20, Page 6 of 16

Series of functions

Suppose that $f_{0}(z), f_{1}(z), \ldots$ are all defined on D and let

$$
F_{n}(z)=\sum_{k=0}^{n} f_{k}(z), \quad n=0,1,2, \ldots
$$

$\sum f_{k}(z)$ converges pointwise on D if $\left(F_{n}(z)\right)$ converges $\forall z \in D$.
The sequence converges uniformly to $F(z)$ on \mathbf{D} if

$$
\sup _{z \in D}\left|F_{n}(z)-F(z)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

A sufficient condition for a series to converges uniformly is the Weierstrass M-test: If $\left|f_{k}(z)\right| \leq M_{k}$ for all $z \in D$ and $\sum M_{k}$ converges then the series converges uniformly in D.
Uniform convergence preserves continuity: If $F_{n}(z), n=0,1$, $2, \ldots$ are continuous in D and $F_{n} \rightarrow F$ uniformly on D then the limit function $F(z)$ is also continuous in D.

The circles used in the proof

Taylor series for analytic functions

If $f(z)$ is analytic at z_{0} then the series
$f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{f^{\prime \prime}\left(z_{0}\right)}{2!}\left(z-z_{0}\right)^{2}+\cdots=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}$
is called the Taylor series for $f(z)$ around z_{0}.
Theorem: If $f(z)$ is analytic in the disk $\left|z-z_{0}\right|<R$ then the Taylor series converges to $f(z)$ for all z in this disk and in any closed disk $\left|z-z_{0}\right| \leq R^{\prime}<R$ the convergence is uniform.

Key formula in the proof of the Taylor series

$$
\begin{gathered}
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta, \quad \frac{f^{(k)}\left(z_{0}\right)}{k!}=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} \mathrm{~d} \zeta . \\
\zeta-z=\left(\zeta-z_{0}\right)-\left(z-z_{0}\right)=\left(\zeta-z_{0}\right)\left(1-\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)\right) . \\
\frac{f(\zeta)}{\zeta-z}=\frac{f(\zeta)}{\zeta-z_{0}}\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{n}+\left(\frac{\alpha^{n+1}}{1-\alpha}\right)\right), \quad \alpha=\frac{z-z_{0}}{\zeta-z_{0}} .
\end{gathered}
$$

Note that with $\left|z-z_{0}\right| \leq R^{\prime}$ and $R^{\prime}<\left|\zeta-z_{0}\right|, \zeta \in C$, we have

$$
|\alpha|<1
$$

Circle of radius R.
With the largest R
$f(z)$ is not analytic at 1 or more points on the circle.
z is in the shaded region. C is the circle in the loop integral,
$\zeta \in C . f(z)$ is analytic inside shee

Key formula in the proof continued

$\frac{f(\zeta)}{\zeta-z}=\frac{f(\zeta)}{\zeta-z_{0}}\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{n}+\left(\frac{\alpha^{n+1}}{1-\alpha}\right)\right), \quad \alpha=\frac{z-z_{0}}{\zeta-z_{0}}$.
$\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z_{0}}\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{n}\right) \mathrm{d} \zeta=\sum_{k=0}^{n} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}$
Thus

$$
\begin{gathered}
f(z)=\sum_{k=0}^{n} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}+T_{n}(z), \\
T_{n}(z)=\frac{\left(z-z_{0}\right)^{n+1}}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}(\zeta-z)} \mathrm{d} \zeta .
\end{gathered}
$$

It can be shown that $\max \left\{\left|T_{n}(z)\right|:\left|z-z_{0}\right| \leq R^{\prime}\right\} \rightarrow 0$ as $n \rightarrow \infty$.

Taylor's series, comments about R

If $f(z)$ is analytic at z_{0} then the Taylor series is

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k} .
$$

If $f(z)$ is analytic in $\left|z-z_{0}\right|<R$ then the series converges to $f(z)$ in this disk with uniform convergence in $\left|z-z_{0}\right| \leq R^{\prime}<R$ for all $R^{\prime}<R$.

If $f(z)$ is not an entire function then the largest R is such that $f(z)$ has a non-analytic point on $\left|z-z_{0}\right|=R$.

Real coefficients, even functions, odd functions, etc

If $f(z)=u(x, y)+i v(x, y)$ is real when z is real then

$$
v(x, 0)=0 \quad \text { and } \quad f^{(n)}(0)=\left.\frac{\partial^{n} u(x, 0)}{\partial x^{n}}\right|_{x=0} \quad \text { is real. }
$$

If $R=$ radius of convergence and $0<r<R$ then by considering the following integral on $[-\pi, 0]$ and $[0, \pi]$ involving the generalised CIF we have

$$
\begin{aligned}
\frac{f^{(n)}(0)}{n!} & =\frac{1}{2 \pi r^{n}} \int_{-\pi}^{\pi} f\left(r \mathrm{e}^{i t}\right) \mathrm{e}^{-i n t} \mathrm{~d} t \\
& =\frac{1}{2 \pi r^{n}} \int_{0}^{\pi}\left(f\left(r \mathrm{e}^{i t}\right)+(-1)^{n} f\left(-r \mathrm{e}^{i t}\right)\right) \mathrm{e}^{-i n t} \mathrm{~d} t
\end{aligned}
$$

If $f(-z)=f(z)$ then the Maclaurin series only has even powers.
If $f(-z)=-f(z)$ then the Maclaurin series only has odd powers.

Maclaurin series case

Maclaurin series is the case of Taylor series when $z_{0}=0$.

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^{k}
$$

If $f(z)$ is analytic in $|z|<R$ then the series converges to $f(z)$ in this disk with uniform convergence in $|z| \leq R^{\prime}<R$ for all $R^{\prime}<R$. As an example,

$$
\tan (z)=\frac{\sin (z)}{\cos (z)}
$$

is analytic in $|z|<\pi / 2$ but is not analytic at the points $\pm \pi / 2$. In this case $R=\pi / 2$.

Series you are expected to know

Geometric series

$$
\frac{1}{1-z}=1+z+z^{2}+\cdots+z^{n}+\cdots, \quad \text { valid for }|z|<1
$$

The following are entire functions:

$$
\begin{gathered}
\mathrm{e}^{z}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots \\
\mathrm{e}^{-z}=1-z+\frac{z^{2}}{2!}+\cdots+\frac{(-z)^{n}}{n!}+\cdots \\
\cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots \quad \sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots \\
\cosh (z)=1+\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots \quad \sinh (z)=z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots
\end{gathered}
$$

Remember that

$$
\begin{aligned}
& \mathrm{e}^{i z}=\cos (z)+i \sin (z), \quad \mathrm{e}^{z}=\cosh (z)+\sinh (z) . \\
& \text { MA3614 2023/4 Week 20, Page } 16 \text { of } 16
\end{aligned}
$$

