
From chap 3: Definition of an analytic function
f (z) is complex differentiable at z0 if

f ′(z0) := lim
h→0

f (z0 + h)− f (z0)

h

exists, i.e. the limit is independent of how h→ 0.

A function f is analytic at z0 if f is differentiable at all points in
some neighbourhood of z0.

The Cauchy Riemann equations for f = u + iv

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

With certain conditions on u and v , f is analytic if and only if
these are satisfied.

Both of these were first met in chapter 3.
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From chap 5: Smooth arcs and contours
A set γ ⊂ C is a smooth arc if the set can be described in the form

{z(t) : a ≤ t ≤ b}, z ′(t) 6= 0 being continuous on [a, b].

A contour is 1 point or a finite sequence of directed smooth arcs
γk with the end of γk being the start of arc γk+1.

Examples of contours

z0

z1

z2

z3

Polygonal path with n = 3 arcs. Circle, anti-clockwise.

Closed polygonal path with n = 3 arcs. Closed path, n = 2 arcs.
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Definitions of integrals along an arc
A very small change ∆t in the parameter t gives a small change

∆z ≈ dz

dt
∆t.

The length of γ is

L =

∫ b

a
|z ′(t)| dt.

The contour integral of f (z) is∫
γ
f (z) dz =

∫ b

a
f (z(t))z ′(t) dt.

The ML inequality is∣∣∣∣∫
γ
f (z) dz

∣∣∣∣ ≤ ML, where M = max
z∈γ
|f (z)|.
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Contour integrals in the complex plane
Definition of the contour integral;

γ = {z(t) : a ≤ t ≤ b},
∫
γ
f (z) dz =

∫ b

a
f (z(t))z ′(t) dt.

Independence of path when f = F ′ (Note that F is analytic.)

If there exists an anti-derivative F along the path then

d

dt
F (z(t)) = F ′(z(t))z ′(t) = f (z(t))z ′(t).

This is the integrand in the expression for the contour integral as
given above and hence by the fundamental theorem of calculus∫

γ
f (z) dz =

∫ b

a
F ′(z(t))z ′(t) dt = F (z(b))− F (z(a)).

This is also true for a contour which is a union of directed arcs.
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Equivalent statements relating to path independence,
loop integrals and anti-derivatives

Γ1

Γ2

z1

z2

Γ1 ∪ (−Γ2) is a
closed loop.

The following are equivalent statements involving the integral of f .

(i) All loop integrals of f are 0.

(ii) The value of the integral of f only depends on the end points.

(iii) There exists an anti-derivative F , i.e. F ′ = f .

This was one of the last theory parts before the class test.
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Cauchy’s integral theorem
We now consider the following result and various ways it can be
proved. You need to know the result but you will not be examined
on any of the proofs discussed.

Recall that the following was mentioned in chapter 2.
Simply-connected: A domain which does not have holes.

Cauchy-Goursat theorem: If f is analytic in a simply connected
domain D and Γ is any loop (i.e. a closed contour) in D then∮

Γ
f (z) dz = 0.

This is sometimes just known as Cauchy’s integral theorem.
Goursat’s contribution was to show that the result could be proved
assuming only that f ′(z) exists.
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Contour integrals in C and line integrals in R2

Until 2019/0 year 2 students took a module in vector calculus and
would have met line integrals and the following Green’s formula
which relates an area integral to an integral around the boundary.∫∫

S

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
∂S

Pdx + Qdy . (∗)

This is relevant to loop integrals in the complex plane as

dz = dx + idy ,

f (z)dz = (u + iv)(dx + idy) = (udx − vdy) + i(vdx + udy).

The real and imaginary parts here relate to the RHS of (∗).

∂Q

∂x
−∂P
∂y

= −
(
∂v

∂x
+
∂u

∂y

)
= 0 or

∂Q

∂x
−∂P
∂y

=

(
∂u

∂x
− ∂v

∂y

)
= 0.

The integrands in the area integrals are 0 by the Cauchy Riemann
equations. This is the common proof given in text books of the
Cauchy’s integral theorem that I have seen.
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Green’s theorem to the multi-variable module
There are not too many steps from the area integrals in year 2 to
be able to cover Green’s theorem.

Firstly, for the jargon, the term line integral is used as with the
vector dot product

Pdx + Qdy =
(
Pi + Qj

)
·
(
dxi + dyj

)
.

To show the result we can separately show∫∫
S

∂Q

∂x
dxdy =

∮
∂S

Q dy ,

∫∫
S
−∂P
∂y

dxdy =

∮
∂S

P dx .

MA3614 2023/4 Week 18, Page 8 of 28



Describing the domain S and the boundary ∂S
We stick here to fairly simple geometries for which either x or y
can be used as the parameter to describe the loop ∂S as the union
of two parts. Consider the following two versions of ∂S .

(x , f1(x))

(x , f2(x))

(g1(y), y) (g2(y), y)

Lower part of ∂S anti-clockwise = {(x , f1(x)) : xL ≤ x ≤ xR},
Upper part of ∂S clockwise = {(x , f2(x)) : xL ≤ x ≤ xR},

Left part of ∂S clockwise = {(g1(y), y) : yB ≤ y ≤ yT},
Right part of ∂S anti-clockwise = {(g2(y), y) : yB ≤ y ≤ yT}.
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The line integrals∮
∂S

P dx =

∫ xR

xL

P(x , f1(x))− P(x , f2(x)) dx ,∮
∂S

Q dy =

∫ yT

yB

Q(g2(y), y)− Q(g1(y), y) dy .

The area integrals

∫∫
S
−∂P
∂y

dxdy = −
∫ xR

xL

(∫ f2(x)

f1(x)

∂P

∂y
dy

)
dx ,

=

∫ xR

xL

P(x , f1(x))− P(x , f2(x)) dx ,∫∫
S

∂Q

∂x
dxdy =

∫ YT

yB

(∫ g2(y)

g1(y)

∂Q

∂x
dx

)
dy ,

=

∫ yT

yB

Q(g2(y), y)− Q(g1(y), y) dy .
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A proof involving deforming a contour to a point
Suppose for each s in [0, 1] we have a loop and a value I (s) as
follows.

Γs = {z(s, t) : 0 ≤ t ≤ 1}, a loop for each fixed s.

I (s) =

∮
Γs

f (z) dz =

∫ 1

0
f (z(s, t))

∂z

∂t
(s, t) dt.

We assume that z(s, t) is smooth in both s and t and note

I ′(s) =

∫ 1

0

(
f ′(z(s, t))

∂z

∂s

∂z

∂t
+ f (z(s, t))

∂2z

∂s∂t

)
dt.

∂

∂t

(
f (z(s, t))

∂z

∂s

)
= f ′(z(s, t))

∂z

∂t

∂z

∂s
+ f (z(s, t))

∂2z

∂t∂s
.

Detail is needed to justify all the steps. As we have a loop the
values at t = 0 and t = 1 are the same, i.e. z(s, 0) = z(s, 1) etc.
and it follows that I ′(s) = 0 and I (s) does not vary with s. With a
simply connected domain we can continuously deform the loop to
a point giving I (s) = 0.
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Comments on a proof given in Spiegel, p103–105
We wish to show that when f (z) is analytic inside a loop Γ∮

Γ
f (z) dz = 0.

An overview of the steps are as follows.

1. Show that it is true for a triangle of any size.

2. Deduce that it is true for any polygonal path. This follows as
we can construct a mesh of triangles for the region inside a
polygonal path.

3. As any loop can be approximated arbitrarily closely by a
polygonal path it follows that it is true for any loop.
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Dividing a triangle into 4 similar triangles

If Γ is the starting triangle and Γ1
i , i = 1, 2, 3, 4 are the 4 smaller

triangles then

I =

∮
Γ
f (z) dz =

4∑
i=1

I 1
i , I 1

i =

∮
Γ1
i

f (z) dz .

This is because all internal edges appear exactly two times and the
contributions cancel. MA3614 2023/4 Week 18, Page 13 of 28

Use of the triangle inequality and repeatedly dividing
For at least one of the smaller triangles we have

|I | ≤ 4
∣∣I 1
k1

∣∣ .
The triangle Γ1

k1
can be similarly divided and the process can be

repeated to give

|I | ≤ 4n
∣∣I nkn ∣∣ , n = 1, 2, . . .

Let z0 be a common point of the nested triangles, let ε > 0 and let
n be sufficiently large that inside Γn

kn

f (z) = f (z0) + f ′(z0)(z − z0) + λ(z)(z − z0), with |λ(z)| < ε.

As f (z0) + f ′(z0)(z − z0) has an anti-derivative

I nkn =

∮
Γn
kn

f (z) dz =

∮
Γn
kn

λ(z)(z − z0) dz .
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Completing the proof
From the previous steps

|I | ≤ 4n
∣∣I nkn ∣∣ , I nkn =

∮
Γn
kn

λ(z)(z − z0) dz .

If L is the length of Γ then we have the following.

1. L/2n is the length of Γn
kn

.

2. For z inside the triangle |z − z0| < L/2n.

3. For z inside the triangle |λ(z)| < ε.

Putting these parts together gives

|I | ≤ 4n
(

L

2n

)(
L

2n

)
ε = L2ε.

|I | < L2ε for all ε > 0 implies that I = 0.
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Cauchy’s integral theorem and a corollary
Recall that the following was mentioned in chapter 2.
Simply-connected: A domain which does not have holes.

Cauchy-Goursat theorem: If f is analytic in a simply connected
domain D and Γ is any loop (i.e. a closed contour) in D then∮

Γ
f (z) dz = 0.

Recall again the following equivalent statements.

(i) All loop integrals of f are 0.

(ii) The value of the integral of f only depends on the end points.

(iii) There exists an anti-derivative F , i.e. F ′ = f .

Corollary: If f is analytic in a simply connected region then there
exists an anti-derivative F (which is analytic) such that
f (z) = F ′(z).
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A domain bounded by two loops
Suppose that f (z) is just analytic between two loops.

The domain between loops Γ and Γ̃ can be divided into two simply
connected domains. In the diagram below we have an “upper part”
and a “lower part”. Note that

Γ = Γup ∪ Γlow , Γ̃ = Γ̃up ∪ Γ̃low .

A BÃ B̃

Γup

Γlow

−Γ̃up

−Γ̃low

Upper part

Lower part
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A domain bounded by two loops continued

Γ = Γup ∪ Γlow , Γ̃ = Γ̃up ∪ Γ̃low .

A BÃ B̃

Γup

Γlow

−Γ̃up

−Γ̃low

Upper part

Lower part

The upper and lower domains have boundaries with 4 parts.

Γup ∪ [A, Ã] ∪ (−Γ̃up) ∪ [B̃,B],

Γlow ∪ [B, B̃] ∪ (−Γ̃low) ∪ [Ã,A].
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A domain bounded by two loops continued

Γup ∪ [A, Ã] ∪ (−Γ̃up) ∪ [B̃,B],

Γlow ∪ [B, B̃] ∪ (−Γ̃low) ∪ [Ã,A].

As both of these bound simply connected domains where f is
analytic the integral of f (z) around each is 0. Also, the sum of
both integrals is 0 and the integrals on

[A, Ã], [Ã,A], [B, B̃], [B̃,B]

cancel. The remaining parts give∫
Γup

f (z) dz +

∫
−Γ̃up

f (z) dz +

∫
Γlow

f (z) dz +

∫
−Γ̃low

f (z) dz = 0.

Rearranging and using Γ = Γup ∪ Γlow and Γ̃ = Γ̃up ∪ Γ̃low gives∮
Γ
f (z) dz =

∮
Γ̃
f (z) dz .
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Results involving contour integration continued

z0

Cr

Γ

When f (z) is analytic between a contour Γ and a circle Cr we have∮
Γ
f (z) dz =

∮
Cr

f (z) dz .

Note that this is true for all r > 0 such that f (z) is analytic
inside Cr . When we just have one isolated singularity we can hence
consider the case r → 0. Manipulation of this type is done a few
times in the module. MA3614 2023/4 Week 18, Page 20 of 28



Rational functions and the Residue theorem
The following was in the week 11 slides. Let

R(z) =
p(z)

q(z)
, q(z) = (z − z1)r1(z − z2)r2 · · · (z − zn)rn .

R(z) =
p(z)

q(z)
= (some polynomial)+

n∑
k=1

Ak

z − zk
+(higher order poles).

Here Ak is the residue at zk . Note that with a rational function
we can write it as a finite sum of terms which we can handle
individually. If z1, . . . , zm are inside Γ then∮

Γ
R(z) dz =

m∑
k=1

Ak

∮
Γ

dz

z − zk
= 2πi

m∑
k=1

Ak .

We extend this in chapter 8 to any function analytic inside Γ
except for a finite number of isolated singularities at z1, . . . , zm.∮

Γ
f (z) dz = 2πi

m∑
k=1

Res(f , zk).
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Trig integrals evaluated using residue theory

1−1

I =

∫ 2π

0
R(cos θ, sin θ) dθ =

∮
C

1

i
F (z) dz .

Here C is the unit circle and F (z) is obtained by using

z = eiθ,
dθ

dz
=

1

iz
, cos θ =

z + z−1

2
, sin θ =

z − z−1

2i
.

When R is a “rational function of its arguments” the function F (z)
is a rational function of z . We determine I by the Residue theorem
involving the residues of F (z) at the poles which are inside C .
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Trig. integral examples

1.

I =

∫ π

−π

4dθ

5 + 2 cos θ
generates F (z) =

4

z2 + 5z + 1
.

If z1 denotes the zero of the quadratic inside the unit circle
then

I = 2πRes(F , z1) = 2π

(
4

2z1 + 5

)
.

2.

I =

∫ 2π

0
(cos θ)2n dθ generates F (z) =

1

22n

1

z

(
z +

1

z

)2n

.

I = 2πRes(F , 0).

Using the binomial expansion we can get the coefficient
of 1/z which is the residue Res(F , 0).
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Trig. integral examples continued

3.

I =

∫ π

−π

dθ

1 + sin2 θ
generates F (z) =

4z

−z4 + 6z2 − 1
.

Two simple poles inside the unit circle at ±z1 where
z2

1 = 3−
√

8.

I = 2π (Res(F , z1) + Res(F , −z1)) .

Alternatively we can first let t = 2θ and write as

1

1 + sin2 θ
=

2

2 + 2 sin2 θ
=

2

2 + (1− cos(2θ))
=

2

3− cos(t)
.

I =
1

2

∫ 2π

−2π

2dt

3− cos(t)
=

∫ π

−π

2dt

3− cos(t)
.

The expression we get for F (z) in this case is simpler and we
have just 1 simple pole in the unit circle.
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4.

I =

∫ 2π

0

sin2 θ

5 + 4 cos2 θ
dθ = −π

2
+

9

4

∫ 2π

0

dt

7 + 2 cos(t)
.

The second version follows from the first version by writing in
terms of cos(2θ) and then letting t = 2θ. The integral term
generates

F (z) =
1

z2 + 7z + 1
.
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Chapter 6 comments
Cauchy’s integral formula, consequences and bounds

Chapter 6 is a bit more theoretical than other chapters and after a
certain point the material of the main notes is not examinable.
The exercises, when available, should also clarify this a bit further.

The chapter has integral representations of functions and these are
used to get the series representations which will be covered in
chapter 7.
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The Cauchy integral formula
If f (z) is analytic in a domain D and Γ is a positively orientated
loop in D and z is inside D then

f (z) =
1

2πi

∮
Γ

f (ζ)

ζ − z
dζ.

It is from this representation that we can get a similar
representation for f ′ and deduce that f ′ is also analytic. The
reasoning can be continued to deduce that all derivatives also have
representations and are all analytic. It can be shown that it is valid
to differentiate through the integral to get the following as these
representations.

The generalised Cauchy integral formula

f (n)(z) =
n!

2πi

∮
Γ

f (ζ)

(ζ − z)n+1
dζ, n = 0, 1, 2, . . .
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Steps to show the expression for f ′(z)
By using the Cauchy integal form two times we have

f (z) =
1

2πi

∮
Γ

f (ζ)

ζ − z
dζ and f (z + h) =

1

2πi

∮
Γ

f (ζ)

ζ − (z + h)
dζ.

We then get the representation

f (z + h)− f (z)

h
=

1

2πi

∮
Γ

f (ζ)

(ζ − z)(ζ − (z + h))
dζ.

The detail is to justify that∮
Γ

f (ζ)

(ζ − z)(ζ − (z + h))
dζ −

∮
Γ

f (ζ)

(ζ − z)2
dζ

= h

∮
Γ

f (ζ)

(ζ − z)2(ζ − (z + h))
dζ → 0 as h→ 0.

MA3614 2023/4 Week 18, Page 28 of 28


