
A summary of some key points of MA3614 so far

I Complex derivative: Let f be a complex valued function
defined in a neighbourhood of z0. The derivative of f at z0
is given by

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h

provided the limit exists. This will be directly used again when
the generalised Cauchy integral formula is derived.

I A function f is analytic at z0 if f is differentiable at all
points in some neighbourhood of z0.

I Suppose z = x + iy , f (z) = u(x , y) + iv(x , y), x , y , u, v ∈ R.
This is analytic in a domain if and only if Cauchy Riemann
equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

are satisfied in the domain.
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A summary continued

I If f = u + iv is analytic, with u, v ∈ R, then u and v are
harmonic functions. v is said to be the harmonic conjugate
of u.

I Given a harmonic function u in a domain we can find a
harmonic conjugate v such that f = u + iv is analytic in the
domain when the domain is simply connected.
This will be justified in term 2.
Examples have been done when the domain is C.

I An analytic function cannot depend on z and can be written
in terms of z only.

I When the analytic function f (z) is a polynomial of degree n
we have the finite Maclaurin expansion

f (z) = f (0) + f ′(0)z +
f ′′(0)

2!
z2 + · · ·+ f (n)(0)

n!
zn.
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A summary continued, rational functions
Suppose p and q are polynomials with deg(p(z)) < deg(q(z)) and
with

q(z) = (z − z1)r1(z − z2)r2 · · · (z − zn)rn

and let

R(z) =
p(z)

q(z)
.

This function has a partial fraction representation of the form(
A1,1

z − z1
+ · · ·+ Ar1,1

(z − z1)r1

)
+ · · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
R(z) has poles at the zeros of q(z). R(z) is analytic at all other
points and as such we say that the zeros of q(z) are isolated
singularities of R(z).

The coefficients A1,k , k = 1, . . . , n are the residues of R(z). These
are important later when we consider integration.
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Some things that are generalised later
In term 2 one of the topics is series.

This will generalise somethings done with polynomials and rational
functions which can be described with a finite number of
parameters.

I If f (z) is analytic in a disk {z : |z − z0| < R} then the Taylor
series

f (z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k

= f (z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)2 + · · ·

is valid in the disk.
I If f (z) be analytic in an annulus r < |z − z0| < R then it has

a Laurent series representation

f (z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n.
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Exponential function

ez ≡ exp(z) := ex eiy = ex(cos y + i sin y).

As in the real case we have for all z , z1, z2 ∈ C,

d

dz
ez = ez , e−z =

1

ez
, ez1+z2 = ez1 ez2 .

The function w = exp(z) is periodic with period 2πi and is
one-to-one on

G = {z = x + iy : −π < y ≤ π}

with inverse
Logw = ln |w |+ iArgw

which is the principal valued logarithm.

Note that ez is not 0 for any z and we need to exclude w = 0
when we consider Logw .

MA3614 2023/4 Week 09, Page 5 of 16

cosh z, sinh z, cos z, sin z
We define

cosh z =
1

2

(
ez + e−z

)
, sinh z =

1

2

(
ez − e−z

)
,

cos z =
1

2

(
eiz + e−iz

)
, sin z =

1

2i

(
eiz − e−iz

)
.

As in the real case

d

dz
cosh z = sinh z ,

d

dz
sinh z = cosh z ,

d

dz
cos z = − sin z ,

d

dz
sin z = cos z .

We also have the identities

cos2 z + sin2 z = cosh2 z − sinh2 z = 1.

For all z1, z2 ∈ C we have the addition formulas

sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2,

cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2.
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cot and tan
As

sin z =
1

2i

(
eiz − e−iz

)
=

e−iz

2i

(
e2iz − 1

)
it follows that sin z = 0 if and only if e2iz = 1 which is if and only
if z = kπ where k is an integer.

cot z =
cos z

sin z
, tan z =

sin z

cos z
= − cot(z−π/2) =

1

tan(π/2− z)
.

cot z has simple poles at kπ and tan z has simple poles at
π/2 + kπ where k ∈ Z.

In term 2 we will define properly what we mean by poles of
functions which have isolated singularities. At the moment we
have only done this properly in the case of rational functions. The
residue will also be defined in this context.

Let zk = kπ. The residue of cot z at zk is

lim
z→zk

(z − zk) cot z = cos(zk) lim
z→zk

z − zk
sin z

= 1.
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More advanced representations of cot z and sin z
The following is beyond what will be covered in MA3614 but it can
be shown that cot z has a partial fraction type representation in
terms of its poles and sin z can be ‘factorised in terms of its zeros’
in the following sense.

cot z = lim
N→∞

N∑
n=−N

1

z + nπ
=

1

z
+ 2z

∞∑
n=1

1

z2 − n2π2
.

The Euler-Wallis formula for the sine function is

sin z = z
∞∏
n=1

(
1−

( z

nπ

)2)
.
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Log z and the multi-valued log z
The principal valued logarithm is

Log z = ln |z |+ iArg z .

The multi-valued version w = log z means all complex numbers w
such that

ew = z

and the set of values is

{Log z + 2kπi : k ∈ Z}.

In both cases
eLog z = elog z = z .

(In the last case we technically get the set {z} which just has one
entry and we interpret this as z .)
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Complex powers zα

The principal value of zα is defined as

eαLog z .

The possibly multi-valued version is

eαlog z .

In the multi-valued case how many values depends on α. If
α = n ∈ Z then there is just 1 value and when α = 1/n, n being
an integer w = z1/n gives the n roots of z , i.e. all solutions of

wn = z .

If α is irrational or not-real then the multi-valued version means
infinitely many different numbers.

In all cases the principal value is one of the values that the
multi-valued version gives.
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The case i i

As
|i | = 1 and Arg i =

π

2

we have
Log i = i

π

2
.

The principal value is

i i = exp(iLog i) = e−π/2.
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Mapping of w = exp(z), level curves of z = Log(w)
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The circles and radial lines are curves where the real and imaginary
parts of Log(w) are constant. These are orthogonal.
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The mapping w = sin z

G ′ = {z = x + iy : −π/2 ≤ x ≤ π/2, 0 ≤ y <∞}.

The image of the semi-infinite strip G ′ under the mapping
w = sin z , z = x + iy is the upper half plane shown below.

y

x−π/2 π/20

A

B C

DE

z-plane

A′ B ′

−1 0 1

C ′ D ′

E ′

w -plane

d

dz
sin z = cos z .

At points B and C the derivative is 0.
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The mapping w = sin z on a rectangle
Let

Gb = {z = x + iy : −π/2 ≤ x ≤ π/2, 0 ≤ y < b}.

The image of the rectangle Gb under the mapping w = sin z ,
z = x + iy is half an ellipse.

The points

sin(x + ib) = sin x cosh b + i cos x sinh b, −π
2
≤ x ≤ π

2

are on an upper part of an ellipse. The semi-axes of the ellipse
have lengths cosh b and sinh b respectively.
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The mapping w = tan z on lines x = 0 and x = π/4
Let z = x + iy and w = u + iv where x , y , u, v ∈ R.

w = tan z =
sin z

cos z
= (−i)

(
1− e−2iz

1 + e−2iz

)
.

tan(iy) = i tanh y = i
sinh y

cosh y
.

The image of {iy : y ∈ R} is {iv : v ∈ (−1, 1)} which is a segment
of the imaginary axis.

In the exercises you are asked to show that

| tan(π/4 + iy)| = 1.

The image of {π/4 + iy : y ∈ R} is {eiφ, −π/2 < φ < π/2} which
is a half circle.
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Rational functions – where they will appear later
Consider a real interval −π < θ < π. By the substitution z = eiθ

we get the unit circle C for z .

dz

dθ
= ieiθ = iz ,

dθ

dz
=

1

iz
.

Observe that

cos θ =
1

2

(
eiθ + e−iθ

)
=

1

2

(
z +

1

z

)
.

∫ π

−π

dθ

a + cos θ
=

∮
C

dθ

dz

 1

a +
1

2

(
z +

1

z

)
 dz .

We get the integration of a rational function around the unit circle.

As we will see later that the answer depends on the residues at the
poles which are inside the unit circle.
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