Rational functions - definition and singularities

A polynomial can be factored. Suppose that

$$
q(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) .
$$

The ratio of two polynomials is a rational function. Let

$$
R(z)=\frac{p(z)}{q(z)}
$$

The zeros z_{1}, \ldots, z_{n} of $q(z)$ are singular points of $R(z)$.
If the limit exists as $z \rightarrow z_{k}$ then z_{k} is a removable singularity. Otherwise $R(z)$ has a pole singularity at z_{k}. A simple pole is the case when $1 / R(z)$ has a simple zero at z_{k}.
The order of the pole of $R(z)$ is the multiplicity of the zero of $1 / R(z)$.

MA3614 2023/4 Week 07, Page 1 of 16

Getting the residues when we only have simple poles

$$
R(z)=\frac{p(z)}{q(z)}=(\text { some polynomial })+\sum_{k=1}^{n} \frac{A_{k}}{z-z_{k}}
$$

To get A_{k} we have

$$
\begin{aligned}
A_{k} & =\lim _{z \rightarrow z_{k}}\left(z-z_{k}\right) R(z)=\lim _{z \rightarrow z_{k}} \frac{\left(z-z_{k}\right) p(z)}{q(z)} \\
& =\lim _{z \rightarrow z_{k}} p(z) \lim _{z \rightarrow z_{k}} \frac{\left(z-z_{k}\right)}{q(z)}=\frac{p\left(z_{k}\right)}{q^{\prime}\left(z_{k}\right)} .
\end{aligned}
$$

With

$$
q(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)=\left(z-z_{k}\right) g_{k}(z)
$$

Here $g_{k}(z)$ is the product of the other factors.

$$
q^{\prime}(z)=\left(z-z_{k}\right) g_{k}^{\prime}(z)+g_{k}(z), \quad q^{\prime}\left(z_{k}\right)=g_{k}\left(z_{k}\right)
$$

Rational functions - partial fractions representation

$$
R(z)=\frac{p(z)}{q(z)}, \quad q(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

When $\operatorname{deg} p(z)<\operatorname{deg} q(z)$ and the zeros of $q(z)$ are simple we have the partial fraction representation of the form

$$
R(z)=\frac{p(z)}{q(z)}=\sum_{k=1}^{n} \frac{A_{k}}{z-z_{k}}
$$

When $\operatorname{deg} p(z) \geq \operatorname{deg} q(z)$ and the zeros of $q(z)$ are simple we have a representation of the form

$$
R(z)=\frac{p(z)}{q(z)}=(\text { some polynomial })+\sum_{k=1}^{n} \frac{A_{k}}{z-z_{k}}
$$

In either case A_{k} is the residue at z_{k}.
MA3614 2023/4 Week 07, Page 2 of 16

Multiple poles case

When $q(z)$ has a zero at z_{0} of multiplicity $r \geq 1$ we need terms involving

$$
\frac{1}{z-z_{0}}, \quad \frac{1}{\left(z-z_{0}\right)^{2}}, \quad \cdots, \quad \frac{1}{\left(z-z_{0}\right)^{r}} .
$$

Usually there is more work to get the representation when $r>1$. The residue comes from the term involving $\frac{1}{z-z_{0}}$.

Partial fraction examples in week 6

$f_{1}(z)=\frac{1}{z^{2}+1}=\frac{A}{z+i}+\frac{B}{z-i}$.
$f_{2}(z)=\frac{z^{3}}{z^{2}+1}=($ Degree 1 polynomial $)+\frac{A}{z+i}+\frac{B}{z-i}$.
$f_{3}(z)=\frac{4}{\left(z^{2}+1\right)(z-1)^{2}}=\frac{A}{z+i}+\frac{B}{z-i}+\frac{C_{1}}{z-1}+\frac{C_{2}}{(z-1)^{2}}$
In all cases we have $z^{2}+1=(z+i)(z-i)$ and we have pole singularities at $\pm i$. The residues are associated with the simple pole terms and are labelled as A and B in the case of f_{1} and f_{2} and are labelled as A, B and C_{1} in the case of f_{3}.
In the calculation in the $f_{3}(z)$ case we used

$$
(z-1)^{2} f_{3}(z)=\frac{4}{z^{2}+1}
$$

before differentiation and limits were considered
MA3614 2023/4 Week 07, Page 5 of 16

Special case of one multiple pole

Suppose

$$
R(z)=\frac{p(z)}{\left(z-z_{0}\right)^{n}}, \quad p(z) \text { being a polynomial of degree } m
$$

We use the Taylor series representation of $p(z)$ about z_{0}.

$$
p(z)=p\left(z_{0}\right)+p^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\cdots+\frac{p^{(m)}\left(z_{0}\right)}{m!}\left(z-z_{0}\right)^{m} .
$$

If $m<n-1$ then the residue is 0 . If $m \geq n-1$ then
$R(z)=\frac{p\left(z_{0}\right)}{\left(z-z_{0}\right)^{n}}+\frac{p^{\prime}\left(z_{0}\right)}{\left(z-z_{0}\right)^{n-1}}+\cdots+\frac{p^{(n-1)}\left(z_{0}\right) /(n-1)!}{z-z_{0}}+\cdots$
and the residue at z_{0} is

$$
\frac{p^{(n-1)}\left(z_{0}\right)}{(n-1)!}
$$

Finer points about the residue

Suppose

$$
R(z)=\frac{2}{4 z^{2}-1}=\frac{A}{2 z+1}+\frac{B}{2 z-1} .
$$

To get A and B we have

$$
A=\lim _{z \rightarrow-1 / 2} \frac{2(2 z+1)}{4 z^{2}-1}=-1, \quad B=\lim _{z \rightarrow 1 / 2} \frac{2(2 z-1)}{4 z^{2}-1}=1
$$

The residues are however

$$
\begin{gathered}
\lim _{z \rightarrow-1 / 2}(z+1 / 2) R(z)=\frac{A}{2}=-\frac{1}{2} \text { and } \lim _{z \rightarrow 1 / 2}(z-1 / 2) R(z)=\frac{B}{2}=\frac{1}{2} \\
R(z)=\frac{-1 / 2}{z+1 / 2}+\frac{1 / 2}{z-1 / 2}
\end{gathered}
$$

Is a partial fraction representation always possible?

Suppose $\operatorname{deg}(p(z))<\operatorname{deg}(q(z))$ with

$$
q(z)=\left(z-z_{1}\right)^{r_{1}}\left(z-z_{2}\right)^{r_{2}} \cdots\left(z-z_{n}\right)^{r_{n}},
$$

$z_{1} \ldots, z_{n}$ being distinct, and let

$$
R(z)=\frac{p(z)}{q(z)}
$$

Assuming a representation is possible, i.e.
$\left(\frac{A_{1,1}}{z-z_{1}}+\cdots+\frac{A_{r_{1}, 1}}{\left(z-z_{1}\right)^{r_{1}}}\right)+\cdots+\left(\frac{A_{1, n}}{z-z_{n}}+\cdots+\frac{A_{r_{n}, n}}{\left(z-z_{n}\right)^{r_{n}}}\right)$
we can get the coefficients as in the examples. We have a formula for each coefficient (see on the next slides).

General case ...comments on the validity

$$
R(z)=\frac{p(z)}{\left(z-z_{1}\right)^{r_{1}}\left(z-z_{2}\right)^{r_{2}} \cdots\left(z-z_{n}\right)^{r_{n}}}
$$

With the procedures above we can get the coefficients in the following candidate representation of $R(z)$.
$\left(\frac{A_{1,1}}{z-z_{1}}+\cdots+\frac{A_{r_{1}, 1}}{\left(z-z_{1}\right)^{r_{1}}}\right)+\cdots+\left(\frac{A_{1, n}}{z-z_{n}}+\cdots+\frac{A_{r_{n}, n}}{\left(z-z_{n}\right)^{r_{n}}}\right)$.
The coefficients are

$$
A_{i, j}=\frac{1}{\left(r_{j}-i\right)!} \lim _{z \rightarrow z_{j}}\left(\frac{\mathrm{~d}^{r_{j}-i}}{\mathrm{~d} z^{r_{j}-i}}\left(z-z_{j}\right)^{r_{j}} R(z)\right), \quad i=1,2, \ldots, r_{j}
$$

MA3614 2023/4 Week 07, Page 9 of 16

Exponential function

$$
\mathrm{e}^{z} \equiv \exp (z):=\mathrm{e}^{x} \mathrm{e}^{i y}=\mathrm{e}^{x}(\cos y+i \sin y) .
$$

As in the real case we have for all $z, z_{1}, z_{2} \in \mathbb{C}$,

$$
\frac{\mathrm{d}}{\mathrm{dz}} \mathrm{e}^{z}=\mathrm{e}^{z}, \quad \mathrm{e}^{-z}=\frac{1}{\mathrm{e}^{z}}, \quad \mathrm{e}^{z_{1}+z_{2}}=\mathrm{e}^{z_{1}} \mathrm{e}^{z_{2}}
$$

The function $w=\exp (z)$ is periodic with period $2 \pi i$ and is one-to-one on

$$
G=\{z=x+i y:-\pi<y \leq \pi\}
$$

with inverse

$$
\log w=\log |w|+i \operatorname{Arg} w
$$

which is the principal valued logarithm.
The principal valued logarithm will be discussed more after the reading week break.

General case ...comments on the validity continued

How do we show that the following are the same function for all z ? Rational function

$$
R(z)=\frac{p(z)}{q(z)}=\frac{p(z)}{\left(z-z_{1}\right)^{r_{1}}\left(z-z_{2}\right)^{r_{2}} \cdots\left(z-z_{n}\right)^{r_{n}}}
$$

Partial fraction representation denoted by $\tilde{R}(z)$ given by
$\left(\frac{A_{1,1}}{z-z_{1}}+\cdots+\frac{A_{r_{1}, 1}}{\left(z-z_{1}\right)^{r_{1}}}\right)+\cdots+\left(\frac{A_{1, n}}{z-z_{n}}+\cdots+\frac{A_{r_{n}, n}}{\left(z-z_{n}\right)^{r_{n}}}\right)$.
Let

$$
g(z)=R(z)-\tilde{R}(z)
$$

This is a rational function. $g(z)=0$ because it can be shown that it has removable singularties at z_{1}, \ldots, z_{n} and because it tends to 0 as $|z| \rightarrow \infty$. Details are long and are not examinable.

MA3614 2023/4 Week 07, Page 10 of 16
$\cosh z, \sinh z, \cos z, \sin z$
We define

$$
\begin{aligned}
& \cosh z=\frac{1}{2}\left(\mathrm{e}^{z}+\mathrm{e}^{-z}\right), \quad \sinh z=\frac{1}{2}\left(\mathrm{e}^{z}-\mathrm{e}^{-z}\right) \\
& \cos z=\frac{1}{2}\left(\mathrm{e}^{i z}+\mathrm{e}^{-i z}\right), \quad \sin z=\frac{1}{2 i}\left(\mathrm{e}^{i z}-\mathrm{e}^{-i z}\right) .
\end{aligned}
$$

As in the real case

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} z} \cosh z=\sinh z, \quad \frac{\mathrm{~d}}{\mathrm{~d} z} \sinh z=\cosh z \\
& \frac{\mathrm{~d}}{\mathrm{~d} z} \cos z=-\sin z, \quad \frac{\mathrm{~d}}{\mathrm{~d} z} \sin z=\cos z
\end{aligned}
$$

We also have the identities

$$
\cos ^{2} z+\sin ^{2} z=\cosh ^{2} z-\sinh ^{2} z=1
$$

For all $z_{1}, z_{2} \in \mathbb{C}$ we have the addition formulas

$$
\begin{aligned}
\sin \left(z_{1} \pm z_{2}\right)= & \sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2} \\
\cos \left(z_{1} \pm z_{2}\right)= & \cos z_{1} \cos z_{2} \mp \sin z_{1} \sin z_{2} . \\
& \text { MA3614 2023/4 Week 07, Page } 12 \text { of } 16
\end{aligned}
$$

Further comments about the complex versions

 Let$$
\begin{array}{r}
f(z)=\cos ^{2} z+\sin ^{2} z-1 \\
g(z)=\cosh ^{2} z-\sinh ^{2} z-1
\end{array}
$$

From the definitions these are entire functions and from the identities in the case $z=x \in \mathbb{R}$ we have that they are zero on the real line.
As we see in term 2, the zeros of an analytic function which is not identically zero everywhere are isolated. As $f(x)=0$ and $g(x)=0$ for all $x \in \mathbb{R}$ this implies that $f(z)=0$ and $g(z)=0$ for all z in the complex plane. Of course, in these two examples we can verify that $f(z)=0$ and $g(z)=0$ without too much effort by just using the definitions.

Representing a function in terms of its zeros

A polynomial of degree n with zeros at z_{1}, \ldots, z_{n} can be expressed in the form

$$
p_{n}(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) .
$$

Some of the standard functions with an infinite number of zeros can also be written as a product of an infinite number of terms. The following is beyond what will be covered in MA3614 but for interest the Euler-Wallis formula for the sine function is

$$
\sin z=z \prod_{n=1}^{\infty}\left(1-\left(\frac{z}{n \pi}\right)^{2}\right)
$$

The infinite product converges slowly.

More advanced representations of $\cot z$
The real and imaginary parts of $\sin (z)$ and $\cos (z)$ With $z=x+i y, x, y, \in \mathbb{R}$ we have

$$
\begin{aligned}
\sin (x+i y) & =\sin x \cosh y+i \cos x \sinh y \\
\cos (x+i y) & =\cos x \cosh y-i \sin x \sinh y
\end{aligned}
$$

The real and imaginary parts of these functions are hence harmonic functions.

Let $z_{1}, z_{2}, \ldots, z_{n}$ be points in the complex plane and let

$$
p_{n}(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

In the exercise sheet there was a question about showing that

$$
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\frac{1}{z-z_{1}}+\frac{1}{z-z_{2}}+\cdots+\frac{1}{z-z_{n}}
$$

In the case of cot z we similarly have

$$
\cot z=\frac{\cos z}{\sin z}=\frac{\frac{\mathrm{d}}{\mathrm{~d} z} \sin z}{\sin z}
$$

The following is beyond what will be covered in MA3614 but it can be shown that $\cot z$ has a partial fraction type representation in terms of its simple poles in the following sense.

$$
\cot z=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \frac{1}{z+n \pi}=\frac{1}{z}+2 z \sum_{\substack{n=1 \\ \text { MA3614 2023/4 Week 07, Page } 16 \text { of } 16}}^{\infty} \frac{1}{z^{2}-n^{2} \pi^{2}}
$$

