
Rational functions – definition and singularities
A polynomial can be factored. Suppose that

q(z) = (z − z1)(z − z2) · · · (z − zn).

The ratio of two polynomials is a rational function. Let

R(z) =
p(z)

q(z)
,

The zeros z1, . . . , zn of q(z) are singular points of R(z).

If the limit exists as z → zk then zk is a removable singularity.

Otherwise R(z) has a pole singularity at zk . A simple pole is the
case when 1/R(z) has a simple zero at zk .

The order of the pole of R(z) is the multiplicity of the zero of
1/R(z).
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Rational functions – partial fractions representation

R(z) =
p(z)

q(z)
, q(z) = (z − z1)(z − z2) · · · (z − zn).

When deg p(z) < deg q(z) and the zeros of q(z) are simple we
have the partial fraction representation of the form

R(z) =
p(z)

q(z)
=

n∑
k=1

Ak

z − zk
.

When deg p(z) ≥ deg q(z) and the zeros of q(z) are simple we
have a representation of the form

R(z) =
p(z)

q(z)
= (some polynomial) +

n∑
k=1

Ak

z − zk
.

In either case Ak is the residue at zk .
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Getting the residues when we only have simple poles

R(z) =
p(z)

q(z)
= (some polynomial) +

n∑
k=1

Ak

z − zk
.

To get Ak we have

Ak = lim
z→zk

(z − zk)R(z) = lim
z→zk

(z − zk)p(z)

q(z)

= lim
z→zk

p(z) lim
z→zk

(z − zk)

q(z)
=

p(zk)

q′(zk)
.

With

q(z) = (z − z1)(z − z2) · · · (z − zn) = (z − zk)gk(z).

Here gk(z) is the product of the other factors.

q′(z) = (z − zk)gk
′(z) + gk(z), q′(zk) = gk(zk).
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Multiple poles case
When q(z) has a zero at z0 of multiplicity r ≥ 1 we need terms
involving

1

z − z0
,

1

(z − z0)2
, . . . ,

1

(z − z0)r
.

Usually there is more work to get the representation when r > 1.

The residue comes from the term involving 1
z − z0

.
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Partial fraction examples in week 6

f1(z) =
1

z2 + 1
=

A

z + i
+

B

z − i
.

f2(z) =
z3

z2 + 1
= (Degree 1 polynomial) +

A

z + i
+

B

z − i
.

f3(z) =
4

(z2 + 1)(z − 1)2
=

A

z + i
+

B

z − i
+

C1

z − 1
+

C2

(z − 1)2
.

In all cases we have z2 + 1 = (z + i)(z − i) and we have pole
singularities at ±i . The residues are associated with the simple
pole terms and are labelled as A and B in the case of f1 and f2 and
are labelled as A, B and C1 in the case of f3.

In the calculation in the f3(z) case we used

(z − 1)2f3(z) =
4

z2 + 1
,

before differentiation and limits were considered.
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Finer points about the residue
Suppose

R(z) =
2

4z2 − 1
=

A

2z + 1
+

B

2z − 1
.

To get A and B we have

A = lim
z→−1/2

2(2z + 1)

4z2 − 1
= −1, B = lim

z→1/2

2(2z − 1)

4z2 − 1
= 1.

The residues are however

lim
z→−1/2

(z+1/2)R(z) =
A

2
= −1

2
and lim

z→1/2
(z−1/2)R(z) =

B

2
=

1

2
.

R(z) =
−1/2

z + 1/2
+

1/2

z − 1/2
.
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Special case of one multiple pole
Suppose

R(z) =
p(z)

(z − z0)n
, p(z) being a polynomial of degree m.

We use the Taylor series representation of p(z) about z0.

p(z) = p(z0) + p′(z0)(z − z0) + · · ·+ p(m)(z0)

m!
(z − z0)m.

If m < n − 1 then the residue is 0. If m ≥ n − 1 then

R(z) =
p(z0)

(z − z0)n
+

p′(z0)

(z − z0)n−1
+ · · ·+ p(n−1)(z0)/(n − 1)!

z − z0
+ · · ·

and the residue at z0 is

p(n−1)(z0)

(n − 1)!
.
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Is a partial fraction representation always possible?
Suppose deg(p(z)) < deg(q(z)) with

q(z) = (z − z1)r1(z − z2)r2 · · · (z − zn)rn ,

z1 . . . , zn being distinct, and let

R(z) =
p(z)

q(z)
.

Assuming a representation is possible, i.e.(
A1,1

z − z1
+ · · ·+ Ar1,1

(z − z1)r1

)
+ · · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
we can get the coefficients as in the examples. We have a formula
for each coefficient (see on the next slides).
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General case ...comments on the validity

R(z) =
p(z)

(z − z1)r1(z − z2)r2 · · · (z − zn)rn
.

With the procedures above we can get the coefficients in the
following candidate representation of R(z).(

A1,1

z − z1
+ · · ·+ Ar1,1

(z − z1)r1

)
+ · · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
.

The coefficients are

Ai ,j =
1

(rj − i)!
lim
z→zj

(
drj−i

dz rj−i
(z − zj)

rjR(z)

)
, i = 1, 2, . . . , rj .
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General case ...comments on the validity continued
How do we show that the following are the same function for all z?

Rational function

R(z) =
p(z)

q(z)
=

p(z)

(z − z1)r1(z − z2)r2 · · · (z − zn)rn
.

Partial fraction representation denoted by R̃(z) given by(
A1,1

z − z1
+ · · ·+ Ar1,1

(z − z1)r1

)
+ · · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
.

Let
g(z) = R(z)− R̃(z).

This is a rational function. g(z) = 0 because it can be shown that
it has removable singularties at z1, . . . , zn and because it tends to 0
as |z | → ∞. Details are long and are not examinable.
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Exponential function

ez ≡ exp(z) := ex eiy = ex(cos y + i sin y).

As in the real case we have for all z , z1, z2 ∈ C,

d

dz
ez = ez , e−z =

1

ez
, ez1+z2 = ez1 ez2 .

The function w = exp(z) is periodic with period 2πi and is
one-to-one on

G = {z = x + iy : −π < y ≤ π}

with inverse
Logw = Log |w |+ iArgw

which is the principal valued logarithm.

The principal valued logarithm will be discussed more after the
reading week break.
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cosh z, sinh z, cos z, sin z
We define

cosh z =
1

2

(
ez + e−z

)
, sinh z =

1

2

(
ez − e−z

)
,

cos z =
1

2

(
eiz + e−iz

)
, sin z =

1

2i

(
eiz − e−iz

)
.

As in the real case

d

dz
cosh z = sinh z ,

d

dz
sinh z = cosh z ,

d

dz
cos z = − sin z ,

d

dz
sin z = cos z .

We also have the identities

cos2 z + sin2 z = cosh2 z − sinh2 z = 1.

For all z1, z2 ∈ C we have the addition formulas

sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2,

cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2.
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Further comments about the complex versions
Let

f (z) = cos2 z + sin2 z − 1,

g(z) = cosh2 z − sinh2 z − 1.

From the definitions these are entire functions and from the
identities in the case z = x ∈ R we have that they are zero on the
real line.

As we see in term 2, the zeros of an analytic function which is not
identically zero everywhere are isolated. As f (x) = 0 and g(x) = 0
for all x ∈ R this implies that f (z) = 0 and g(z) = 0 for all z in
the complex plane. Of course, in these two examples we can verify
that f (z) = 0 and g(z) = 0 without too much effort by just using
the definitions.

MA3614 2023/4 Week 07, Page 13 of 16

The real and imaginary parts of sin(z) and cos(z)
With z = x + iy , x , y ,∈ R we have

sin(x + iy) = sin x cosh y + i cos x sinh y ,

cos(x + iy) = cos x cosh y − i sin x sinh y .

The real and imaginary parts of these functions are hence harmonic
functions.
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Representing a function in terms of its zeros
A polynomial of degree n with zeros at z1, . . . , zn can be expressed
in the form

pn(z) = an(z − z1)(z − z2) · · · (z − zn).

Some of the standard functions with an infinite number of zeros
can also be written as a product of an infinite number of terms.
The following is beyond what will be covered in MA3614 but for
interest the Euler-Wallis formula for the sine function is

sin z = z
∞∏
n=1

(
1−

( z

nπ

)2)
.

The infinite product converges slowly.
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More advanced representations of cot z
Let z1, z2, . . . , zn be points in the complex plane and let

pn(z) = (z − z1)(z − z2) · · · (z − zn).

In the exercise sheet there was a question about showing that

p′n(z)

pn(z)
=

1

z − z1
+

1

z − z2
+ · · ·+ 1

z − zn
.

In the case of cot z we similarly have

cot z =
cos z

sin z
=

d

dz
sin z

sin z
.

The following is beyond what will be covered in MA3614 but it can
be shown that cot z has a partial fraction type representation in
terms of its simple poles in the following sense.

cot z = lim
N→∞

N∑
n=−N

1

z + nπ
=

1

z
+ 2z

∞∑
n=1

1

z2 − n2π2
.
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