
Definition of a limit and continuity in C
A neighbourhood of a point z0 means a disk of the form
{z ∈ C : |z − z0| < ρ} for some ρ > 0.

Limit: Let f be a function defined in a neighbourhood of z0

and let f0 ∈ C. If for every ε > 0 there exists a real number
δ > 0 such that

|f (z)− f0| < ε for all z satisfying 0 < |z − z0| < δ

then we say that
lim
z→z0

f (z) = f0.

Continuity: A function w = f (z) is continuous at z = z0

provided f (z0) is defined and

lim
z→z0

f (z) = f (z0).
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Examples of continuous functions

1. All the monomials 1, z , z2, . . . are continuous on C and hence
all polynomials are continuous at all points in C.

2. Let p(z) and q(z) be polynomials and let

f (z) =
p(z)

q(z)
,

which is rational function. This is continuous on C except at
a finite number of points which are the roots of q(z).

3.
exp(z) = ex(cos y + i sin y)

is continuous on C.

All of the above are often classified as “elementary functions”.

MA3614 2023/4 Week 03, Page 2 of 16

Points where limits do not exist

1.

f (z) =
1

z
is unbounded as z → 0.

2.
f (z) = Arg z ∈ (−π, π]

is not defined at z = 0 and it does not have a limit on the
negative real axis. As we cross the negative real axis the
magnitude of the jump in the function value is 2π.

3.
f (z) = exp(−1/z2)

is unbounded as z → 0 when z ∈ C. It is however bounded
when we restrict to z ∈ R.

4.

f (z) =
z

z
does not have a limit as z → 0 but it is bounded.
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Points where limits do not exist, more jargon
We meet the term analytic this week. Later we meet the terms
simple pole, isolated singularity and essential singularity.

1.

f (z) =
1

z
, a simple pole at z = 0, an isolated singularity.

2.

f (z) = Arg z ∈ (−π, π], this is not analytic anywhere.

The singularity on the negative real axis is not isolated.

3.

f (z) = exp(−1/z2), an essential singularity at z = 0.

4.

f (z) =
z

z
, this is not analytic anywhere.
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When some of the terms will be defined

1.
1

z
, exp(−1/z2).

These have isolated singularities at z = 0.
The term isolated singularity will appear many times from
about chapter 4 onwards.
A formal definition will be when Laurent series is done in
term 2.

2. Arg z , and the jump discontinuity, will appear when the
principal valued Log z and complex powers zα are considered
in chapter 4.
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The definition of a derivative in the real case
If f (x) denotes a real valued function defined in a neighbourhood
of x0 then

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

If g(x , y) denotes a real valued function defined in a
neighbourhood of (x0, y0) then

∂g

∂x
(x0, y0) = lim

h→0

g(x0 + h, y0)− g(x0, y0)

h
,

∂g

∂y
(x0, y0) = lim

h→0

g(x0, y0 + h)− g(x0, y0)

h
.

Note that in the above definitions the division is by h, which is
real, and we are just considering “the change in one direction”.
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Analytic functions

I Complex derivative: Let f be a complex valued function
defined in a neighbourhood of z0. The derivative of f at
z0 is given by

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h

provided the limit exists. Note that here h ∈ C.

I A function f is analytic at z0 if f is differentiable at all
points in some neighbourhood of z0.

I A function f is analytic in a domain if f is analytic at
all points in the domain.

I A function f : C→ C is an entire function if it is
analytic on the whole complex plane C.
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Continuity/analytic comments summary
f (z) is continuous at z0 if f (z) is close to f (z0) whenever z is
close to z0.

Let

λ(z) =

{
f (z)− f (z0)

z − z0
− f ′(z0), z 6= z0,

0, z = z0

If f (z) is analytic at z0 then

f (z) = f (z0) + f ′(z0)(z − z0) + λ(z)(z − z0)

with λ(z) being continuous and λ(z0) = 0. Continuity of λ(z)
implies that λ(z) ≈ 0 when |z − z0| is small. Later in the
module we show that actually λ(z) is analytic and there is a
Taylor series representation of f (z) which is valid in a
neighbourhood of z0.
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Taylor series comment
In term 2 we show that when is analytic we have the Cauchy
integral formula representation

f (z) =
1

2πi

∮
Γ

f (ζ)

ζ − z
dζ.

Here Γ is a closed loop traversed once in the anti-clockwise
direction and z is a point inside Γ.

It is essentially a re-write of this which gives the Taylor series
representation in a neighbourhood of a point z0.

f (z) = f (z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)2 + · · ·

=
∞∑
k=0

f (k)(z0)

k!
(z − z0)k .
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The derivative of monomials
As in the real case when n = 0, 1, . . . we have

d

dz
zn = n zn−1.

The proof is as in the real case and can be done using the binomial
theorem with f (z) = zn and

f (z + h)− f (z) = (z + h)n − zn = nhzn−1 + · · ·+ hn.

Dividing by h and letting h→ 0 gives the result.

Alternatively the geometric series gives the factorization

f (z)− f (z0) = (z − z0)(zn−1 + z0z
n−2 + · · ·+ zn−1

0 ).

Dividing by z − z0 and letting z → z0 gives the result.
Later we define zα for any α ∈ C and it is shown that we have the
corresponding result where zα is differentiable.
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Combining differentiable functions
Let f and g be differentiable at z0. We have the following.

(i)
(f ± g)′(z0) = f ′(z0)± g ′(z0).

(ii)
(cf )′(z0) = cf ′(z0) for all constants c ∈ C.

(iii)
(fg)′(z0) = f (z0)g ′(z0) + f ′(z0)g(z0).

This is the product rule.
(iv) (

f

g

)′
(z0) =

g(z0)f ′(z0)− f (z0)g ′(z0)

g(z0)2
, if g(z0) 6= 0.

This is the quotient rule.
(v) Let now f be a function which is differentiable at g(z0). Then

d

dz
f (g(z))

∣∣∣∣
z=z0

= f ′(g(z0))g ′(z0).
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The derivative of powers of z
For the negative power of −1 we have

d

dz

(
1

z

)
= − 1

z2
.

Hence if n > 0 is an integer then by the chain rule

d

dz

(
1

zn

)
= −

(
1

zn

)2

nzn−1 = − n

zn+1
.

Thus as in the real case we have that for all non-zero integers

d

dz
zn = n zn−1.

Also
d

dz
1 = 0.
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A comment about an anti-derivative
We just had that for all integers n

d

dz
zn = n zn−1.

Thus when m 6= −1 we have

d

dz

(
zm+1

m + 1

)
= zm

When integration is done this means that zm has an anti-derivative
which is another monomial for all integers except m = −1.

Roughly speaking, many of the results of the module are concerned
with the special case of m = −1.
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Functions which are not analytic anywhere
There are several ways to show that a function is not analytic
which include showing that the limit in the complex derivative
expression does not exist and/or showing that the Cauchy Riemann
equations are not satisfied (see later). In term 2 we also briefly
describe Morera’s theorem as yet another way of characterising
when a function is analytic or not analytic.

Examples of functions which are not analytic include the following.

I f (z) = z .

I f (z) = x or f (z) = y or f (z) = |z |.
I If g(z) is analytic and not constant then f (z) = g(z) is not

analytic.

Later in the chapter 3 material we show that “analytic functions
cannot depend on the complex conjugate z” once we have defined
more precisely what this means.
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The Cauchy Riemann equations for f (z) = u(x , y) + iv(x , y)

When f is analytic at z0 the following limit exists.

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h
.

By considering the case when h is real and then purely imaginary
we get

f ′(z) =
∂u

∂x
+ i

∂v

∂x
,

=
1

i

(
∂u

∂y
+ i

∂v

∂y

)
=
∂v

∂y
− i

∂u

∂y
.

Equating the real and imaginary parts gives the Cauchy Riemann
equations.

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Next week we show that the converse is true, i.e. when u and v
have continuous first partial derivatives on a domain D and the
Cauchy Riemann equations are satisfied then f is analytic on D.
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The representation of f ′ when f = u + iv
When f is analytic we have

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y
.

If f (x) is real when x is real then

v(x , 0) = 0, which implies that
∂v

∂x
(x , 0) = 0.

Hence in this case on the real axis we have

f ′(x) =
∂u

∂x
(x , 0).

That is the expressions that you have met for the derivative in the
real case are correct in the complex case when the derivative exists
in the complex sense.
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