
Topics in MA3614 in 2023/4

I Preliminaries (Chaps 1 and 2).

I Complex differentiation: Analytic functions, Cauchy
Riemann equations, harmonic functions, . . . (Chap 3).

I Elementary functions of a complex variable: Polynomials,
rational functions, exp(z), Log(z), zα, . . . (Chap 4).

I Contour integrals, loop integrals, Cauchy integral
theorem, Cauchy integral formula, . . . (Chaps 5 and 6).

I Taylor series, Laurent series representations (Chap 7).

I Residue theory and its use in evaluating real integrals
(Chap 8).
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Analytic functions – definitions

I Complex derivative: Let f be a complex valued function
defined in a neighbourhood of z0. The derivative of f at
z0 is given by

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h

provided the limit exists.
Note that the limit must be independent of how h→ 0.
This was used later to justify the generalised Cauchy
integral formula for f ′(z) at the start of term 2.

I A function f is analytic at z0 if f is differentiable at all
points in some neighbourhood of z0.

I A function f is analytic in a domain if f is analytic at
all points in the domain.

I A function f : C→ C is an entire function if it is
analytic on the whole complex plane C.
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The Cauchy Riemann equations for f (z) = u(x , y) + iv(x , y)

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

When u and v have continuous partial derivatives on a domain D
the function f = u + iv is analytic on D if and only if the Cauchy
Riemann (CR) equations are satisfied throughout D.

If f = u + iv is analytic then u and v are harmonic functions. v is
said to be the harmonic conjugate of u. By one CR equation

∂v

∂x
= −∂u

∂y

and we partially integrate to get

v(x , y) = (some function) + g(y).

Then by partially differentiating and using the other CR equation

∂v

∂y
= (deriv of some function) + g ′(y) =

∂u

∂x

This gives g ′(y).
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Some representations of f ′(z)
With the usual notation let z = x + iy = reiθ and let

f (z) = u(x , y) + i v(x , y) = ũ(r , θ) + i ṽ(r , θ)

be an analytic function. As we get the same value by differentiating
in any direction we can represent the derivative in many different
ways. Let h be real. We have the following as h→ 0.

f (z + h)− f (z)

h
→ ∂u

∂x
+ i

∂v

∂x
.

f (z + heiθ)− f (z)

heiθ
→ 1

eiθ

(
∂ũ

∂r
+ i

∂ṽ

∂r

)
.

Analytic functions can be expressed in terms of z alone

In the case of a polynomial we can use a finite Maclaurin series
representation. More generally we have a Taylor series or a Laurent
series.
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Example of a function which is not analytic

f (z) = z = x − iy is not analytic anywhere.

This can be proved using the definition or by showing that the
Cauchy Riemann equations are not satisfied when u = x , v = −y .

Examples of functions which are analytic (see Chap 4)
z = x + iy ,

z2 = (x2 − y2) + 2ixy , (and z3, z4, . . ., all polynomials),

1

z
=

z

|z |2
=

x − iy

x2 + y2
, z 6= 0,

ez = ex(cos y + i sin y),

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
,

cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2
,

Log z = ln |z |+ i Arg z , z 6= 0, Arg z 6= π,

zα = exp(αLog z), z 6= 0, Arg z 6= π, α ∈ C.
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Contour integrals: definition and anti-derivatives
Chap 5. With Γ = {z(t) : a ≤ t ≤ b} describing a curve we have∫

Γ
f (z) dz =

∫ b

a
f (z(t))z ′(t) dt.

In many places (e.g. chap 6 and chap 8) we used the following
result.∣∣∣∣∫

Γ
f (z) dz

∣∣∣∣ ≤ ML, M = max{|f (z)| : z ∈ Γ}, L = length of Γ.

When f has an anti-derivative F on Γ (i.e. f = F ′) we have∫
Γ
f (z) dz =

∫ b

a
F ′(z(t))z ′(t) dt =

∫ b

a

dF (z(t))

dt
dt

= F (z(b))− F (z(a)).

When an anti-derivative exists on a closed loop∮
Γ
f (z) dz = 0.
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Loop integrals and analytic functions
Here f is analytic in a simply connected domain D and Γ is any
loop (i.e. a closed contour) in D.
Cauchy-Goursat theorem (near end of chap 5)∮

Γ
f (z) dz = 0.

The Cauchy integral formula (chap 6)
Let z be a point inside a closed loop Γ traversed once in the
anti-clockwise direction.

f (z) =
1

2πi

∮
Γ

f (ζ)

ζ − z
dζ.

The generalised Cauchy integral formula

f (n)(z) =
n!

2πi

∮
Γ

f (ζ)

(ζ − z)n+1
dζ.
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Taylor’s series – the circle of convergence (chap 7)
If f (z) is analytic at z0 then

f (z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k .

p

z0

R

If p is the nearest non-analytic point of
f (z) to z0 then R = |p − z0| is the ra-
dius of convergence, |z − z0| = R is
the circle of convergence and the se-
ries converges uniformly in |z − z0| ≤ R ′

for all R ′ < R. The series diverges for all
z satisfying |z − z0| > R.

Example:

f (z) =
1

1− z
= 1 + z + z2 + · · ·+ zn + · · ·

The simple pole at p = 1 gives the circle of convergence as |z | = 1.
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Power series define analytic functions when R > 0
Let a function f (z) and let R be defined by

f (z) =
∞∑
n=0

an(z − z0)n, R =
1

lim sup |an|1/n
≥ 0.

When R > 0 this defines a function analytic in |z − z0| < R and R
is the radius of convergence. Thus

an =
f (n)(z0)

n!
=

1

2πi

∮
Γ

f (z)

(z − z0)n+1
dz .

Often R can be determined using the ratio test or the root test.

bn = an(z−z0)n,

∣∣∣∣bn+1

bn

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |z−z0|, |bn|1/n = |an|1/n|z−z0|.

If |an+1/an| → α or if |an|1/n → α as n→∞ then we get a
condition on |z − z0| for convergence and for divergence.
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Laurent series (near the end of chap 7)

p1

p2z0

r1

r2

Suppose f (z) has non-analytic points at
p1 and p2 and

r1 = |p1 − z0|, r2 = |p2 − z0|.

If f (z) is analytic in r1 < |z−z0| < r2 then
it has a Laurent series representation

f (z) =
∞∑
−∞

an(z − z0)n.

Example: f (z) = 1
1− z has a pole at z = 1. Take z0 = 0.

Power series in |z | < 1.

Laurent series in 1 < |z | only involving negative powers.
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Laurent series – expanding in negative powers
Example: When |z | > 2 we have

2− z = −z
(

1− 2

z

)

f (z) =
1

2− z
=

(
−1

z

)(
1− 2

z

)−1

=

(
−1

z

)(
1 +

2

z
+

(
2

z

)2

+ · · ·

)
.

Laurent series – classifying isolated singularities
Suppose

f (z) =
∞∑

n=−∞
an(z − z0)n, 0 < |z − z0| < R.

Res(f , z0) = a−1 is the residue at z0.

If an = 0 for n < 0 then f (z) has a removable singularity.

If m < 0, am 6= 0 and an = 0 for n < m, then f (z) has a
pole of order |m|.
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Manipulations with power series and Laurent series
With series with the same expansion point we can add them
term-by-term, differentiate term-by-term and integrate
term-by-term. We can also multiply two series together. Examples:

f (z) = tan z =
sin z

cos z
= b1z + b3z

3 + b5z
5 + · · · |z | < π/2.

As sin z = (tan z)(cos z) we have

z− z3

6
+

z5

120
+· · · =

(
1− z2

2
+

z4

24
+ · · ·

)
(b1z+b3z

3+b5z
5+· · · ).

By equating coefficients we can get b1, b3 and b5 etc.

g(z) =
1

ez − 1
=

c−1

z
+c0+c1z+· · · , 0 < |z | < 2π, e±2πi = 1.

1 = g(z)(ez−1) =
(c−1

z
+ c0 + c1z + · · ·

)(
z +

z2

2
+

z3

6
+ · · ·

)
.

By equating coefficients we can get c−1, c0 and c1 etc.
MA3614 2023/4 Week 31, Page 12 of 16



The Residue theorem (chap 8)

Let f (z) be analytic inside the outer
contour Γ except at 4 isolated points
at the centres of the disks shown. f (z)
is analytic between Γ and the circles. A
set-up such as this was used to explain
residue theorem stated below.

Cauchy residue theorem: If Γ is a simple closed positively
orientated contour and f is analytic inside and on Γ, except at
points z1, . . . , zn inside Γ, then∮

Γ
f (z) dz = 2πi

n∑
k=1

Res(f , zk).
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Trig integrals evaluated using residue theory

1−1

I =

∫ 2π

0
R(cos θ, sin θ) dθ =

∮
C

1

i
F (z) dz .

Here C is the unit circle and F (z) is obtained by using

z = eiθ,
dθ

dz
=

1

iz
, cos θ =

z + z−1

2
, sin θ =

z − z−1

2i
.

We determine I by the Residue theorem involving the residues of
F (z) at the poles which are inside C , i.e. have magnitude less
than 1. (F (z) is a rational function of z and examples were in
chap 5.)
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Integrals on (−∞,∞) evaluated using residue theory
With P(z) and Q(z) being polynomials we considered

f (z) =
P(z)

Q(z)
and f (z) =

P(z)

Q(z)
emiz .

x

y

−R 0 R

C+
R

f (z) has poles at points
z1, . . . , zn in the upper half
plane. Q(z) has no zeros on
the real axis.

With ΓR = [−R,R] ∪ C+
R denoting the closed contour∮

ΓR

f (z) dz =

∫ R

−R
f (x) dx +

∫
C+
R

f (z) dz = 2πi
n∑

k=1

Res(f , zk).

Using the ML inequality we show that the integral on C+
R tends to
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Indented contours and principal values

x

y

−R −r 0 r R

−C+
r

C+
R

When f (z) has a pole on the
real axis then we use an in-
dented contour. There may be
a contribution as r → 0. The
limit as r → 0 and R → ∞ is
known as the principal value.

We typically get Res(f , zk) by using L’Hopitals’s rule or with
manipulations involving the Laurent series.

The ML inequality is used to explain why integrals involving C+
R

tend to 0 as R →∞ and it is used as part of the explanation to
get the contribution from C+

r as r → 0.

When z = x + iy , miz = −my + imx and∣∣emiz
∣∣ = e−my ≤ 1, when m ≥ 0 and y ≥ 0.

Jordans’ lemma is needed when deg(Q) = deg(P) + 1.
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