Revision: Key formula

Let f be a function which is analytic in a domain D and let Γ be a positively orientated loop in D and let z be a point inside D.

The generalised Cauchy integral formula giving $f^{(n)}(z_0)$

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz, \quad n = 0, 1, 2, \cdots$$

Taylor's series

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

If f(z) is analytic in $|z - z_0| < R$ then we have uniform convergence to f(z) in $|z - z_0| \le R' < R$ for all R' < R.

Results with power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad a_n = \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi r^n} \int_{-\pi}^{\pi} f(re^{it}) e^{-int} dt.$$

- Odd functions only involve odd powers. Even functions only involve even powers. Real valued functions have real coefficients.
- ▶ In the region where the series converges we can do the following.

We can differentiate and integrate term-by-term. We can multiply two series, i.e.

$$c_0+c_1z+c_2z^2+\cdots=(a_0+a_1z+a_2z^2+\cdots)(b_0+b_1z+b_2z^2+\cdots),$$

$$c_0 = a_0 b_0,$$

 $c_1 = a_1 b_0 + a_0 b_1,$
 $c_2 = a_2 b_0 + a_1 b_1 + a_0 b_2.$

The formula for c_n is known as the Cauchy product MA3614 2023/4 Week 22, Page 2 of 16

Power series

A series of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n.$$

The terms a_0, a_1, \ldots are the coefficients of the power series.

The series always converges at $z = z_0$. When it converges at other points the region where it converges is a disk $\{z : |z - z_0| < R\}$ and it is analytic in the disk. A proof was given last week.

The largest R is the **radius of convergence**. When $R < \infty$ $\{z : |z - z_0| = R\}$ is the **circle of convergence**. In all cases

$$R = \frac{1}{|\limsup |a_n|^{1/n}}.$$

In our examples we obtain R using the ratio test or the root test.

R=0 when we only have convergence at $z=z_0$.

 $R=\infty$ when we have convergence for all z.

Some examples of power series

1.

$$\sum_{n=0}^{\infty} (nz)^n, \qquad \sum_{n=0}^{\infty} \frac{2^n}{n!} z^n.$$

The first series only converges at z=0. The terms are not bounded when $z \neq 0$.

By the ratio test the second series converges for all z.

2.

$$\sum_{n=0}^{\infty} \frac{n+1}{n^2+2} (z-1)^n.$$

By the ratio test the circle of convergence is |z - 1| = 1.

3.

$$\sum_{n=0}^{\infty} (2 + \sin(n)) z^n.$$

With $a_n = 2 + \sin(n) \in [1, 3]$, $a_n^{1/n} \to 1$ as $n \to \infty$ and by the root test the circle of convergence is $|z|=1. \\ {\rm MA3614~2023/4~Week~22,~Page~4~of~16}$

Comments about the "general case"

Suppose the sequence $(|a_n|^{1/n})$ does not converge and thus the root test cannot be used. If the sequence $(|a_n|^{1/n})$ is not bounded then for all $z \neq z_0$ we have for some sufficiently large n

$$|a_n|^{1/n}>rac{1}{|z-z_0|}$$
 and hence $|a_n||z-z_0|^n>1$

and the terms $(a_n(z-z_0)^n)$ cannot tend to 0 as $n\to\infty$. Thus the series only converges at $z=z_0$.

If the sequence is bounded then we can define

$$b_n = \sup\{|a_m|^{1/m}: m \ge n\} \ge 0.$$

This is a decreasing sequence bounded below by 0 and converges by the monotone convergence theorem. We label the limit as $\alpha \geq 0$. There is a theorem known as the Cauchy-Hadamard theorem which is briefly that

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 has radius of convergence $R = \frac{1}{\alpha}$.

MA3614 2023/4 Week 22, Page 5 of 16

Properties of a function defined by a power series

Let

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
, $R = \frac{1}{|\lim \sup |a_n|^{1/n}}$.

When R > 0 this defines an analytic function in $|z - z_0| < R$.

One way to relate the coefficients a_n to the derivatives of f(z) is to use the generalised Cauchy integral formula. We take a loop Γ in the disk with z_0 inside the loop.

$$\frac{f^{(m)}(z_0)}{m!} = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z - z_0)^{m+1}} dz$$
$$= \frac{1}{2\pi i} \sum_{r=0}^{\infty} a_r \oint_{\Gamma} (z - z_0)^{n - (m+1)} dz.$$

The only integral in the last line which is non-zero is when n - (m + 1) = -1, i.e. when n = m and we get

$$\frac{f^{(m)}(z_0)}{m!}=a_m.$$

MA3614 2023/4 Week 22, Page 6 of 16

Laurent series

A Laurent series is a series of the form

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n.$$

When it converges the region is an annulus $\{z: r < |z - z_0| < R\}$.

$$\sum_{n=-\infty}^{-1} a_n (z-z_0)^n, \quad \text{converges in } |z-z_0| > r.$$

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n, \quad \text{converges in } |z-z_0| < R.$$

To be a function defined at some points we need the coefficients a_n to be such that r < R.

Example: construction of a Laurent series

$$f(z) = \frac{1}{(1-z)(2-z)} = \frac{A}{1-z} + \frac{B}{2-z}.$$

$$\frac{1}{1-z} \qquad \begin{array}{l} \text{This has a geometric series representation in } |z| < 1. \\ \text{It has a series representation in } |z| > 1 \text{ involving powers of } 1/z. \\ \\ \text{This has a geometric series representation in } |z| < 2 \\ \end{array}$$

involving powers of z/2. It has a series representation in |z| > 2 involving powers of 2/z.

Laurent series for f(z) in different regions. |z| < 1 Combine the geometric series.

$$1 < |z| < 2$$
 Combine the power series for the $1/(2-z)$ term with the series with negative powers for the $1/(1-z)$ term.

|z|>2 Combine the series involving only negative powers for both parts. MA3614 2023/4 Week 22, Page 8 of 16

Some points about the manipulation

$$g(z) = \frac{1}{c - z}.$$

$$c - z = c\left(1 - \frac{z}{c}\right) = -z\left(1 - \frac{c}{z}\right).$$

When |z/c| < 1 we have the geometric series

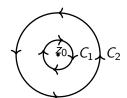
$$g(z) = \left(\frac{1}{c}\right)\left(1+\left(\frac{z}{c}\right)+\left(\frac{z}{c}\right)^2+\cdots\right)$$

When |z/c| > 1, |c/z| < 1 and we have

$$g(z) = -\left(\frac{1}{z}\right)\left(1 + \frac{c}{z} + \left(\frac{c}{z}\right)^2 + \cdots\right).$$

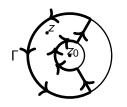
We get the representation involving negative powers.

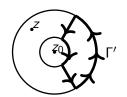
Steps in proving the Laurent series representation



 $C_1 \cup C_2$ is the boundary of an annulus where f(z) is analytic in a slightly larger annulus. Note that C_1 is clockwise, C_2 is anti-clockwise.

The loop Γ is such that z is inside Γ .





Due to cancellation on the radial lines we have for any function g

$$\oint_{\Gamma} g(\zeta) \ d\zeta + \oint_{\Gamma'} g(\zeta) \ d\zeta = \oint_{C_1} g(\zeta) \ d\zeta + \oint_{C_2} g(\zeta) \ d\zeta.$$

MA3614 2023/4 Week 22, Page 10 of 16

Steps in proving · · · continued

Let z be inside Γ and outside Γ' . By the Cauchy integral formula

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{\Gamma \cup \Gamma'} \frac{f(\zeta)}{\zeta - z} d\zeta$$
$$= \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

As in the Taylor series proof the non-negative powers part is

$$\frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad a_k = \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} \, d\zeta.$$

The negative powers come from re-writing the term

$$\frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k},$$

$$a_{-k} = -\frac{1}{2\pi i} \oint_C f(\zeta)(\zeta - z_0)^{k-1} d\zeta, \quad k = 1, 2, ...$$

Further effort enables C_2 and $-C_1$ to be replaced by a curve C.

MA3614 2023/4 Week 22, Page 11 of 16

Laurent series representation

Let f(z) be analytic in an annulus $r < |z - z_0| < R$. Then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n}.$$

The series converge uniformly in any closed sub-annulus $r < \rho_1 \le |z - z_0| \le \rho_2 < R$. The coefficients a_n are given by

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} \, \mathrm{d}z,$$

where C is any positively orientated simple closed curve lying in the annulus which has z_0 as an interior point.

This indicates that the representation is unique.

Also note that in none of the examples that have been done did we obtain a_n by evaluating this integral.

Laurent series: Classifying zeros and poles

When f(z) has a **zero of multiplicity** $m \ge 1$ **at** z_0 we have

$$f(z) = a_m(z-z_0)^m + a_{m+1}(z-z_0)^{m+1} + \cdots = (z-z_0)^m g(z)$$

with g(z) being analytic at z_0 and $g(z_0) = a_m \neq 0$.

If f(z) has a removable singularity at z_0 then it has a Laurent series valid in $0 < |z - z_0| < R$ with no negative powers, i.e.

$$f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$$
 and $\lim_{z\to z_0} f(z) = a_0$.

If f(z) has a **pole of order** m then in $0 < |z - z_0| < R$ we have

$$f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n = \frac{\phi(z)}{(z - z_0)^m}$$

with $\phi(z)$ being analytic at z_0 and $\phi(z_0) = a_{-m} \neq 0$.

An essential singularity at z_0 has infinitely many negative powers

$$f(z) = \sum_{n=-\infty} a_n (z-z_0)^n, \quad 0 < |z-z_0| < R.$$
 MA3614 2023/4 Week 22, Page 13 of 16

Isolated zeros of non-zero analytic functions

When f(z) has a **zero of multiplicity** $m \ge 1$ **at** z_0 we have

$$f(z) = a_m(z-z_0)^m + a_{m+1}(z-z_0)^{m+1} + \cdots = (z-z_0)^m g(z)$$

with g(z) being analytic at z_0 and $g(z_0) = a_m \neq 0$. These properties of g(z) imply that in a neighbourhood $\{z: |z-z_0| < \delta\}$, for some $\delta > 0$, g(z) is non-zero and thus f(z) is non-zero. The zeros of f(z) are isolated.

As an example suppose that the Cauchy Riemann equations are used to show that the following is analytic.

$$f(x+iy) = (-2x^2 - 10xy + 6x + 2y^2 + 15y) + i(5x^2 - 4xy - 15x - 5y^2 + 6y).$$

$$f(x) = (-2x^2 + 6x) + i(5x^2 - 15x).$$

$$g(z) = (-2z^2 + 6z) + i(5z^2 - 15z).$$

f(x + iy) and g(z) are both analytic with f(z) - g(z) = 0 on the real line. Hence f(z) = g(z) for all z.

MA3614 2023/4 Week 22, Page 14 of 16

Complex identity and the related real relation

The isolated zeros property of non-zero analytic functions is a way to quickly explain why many identities are also true in the complex plane. For example,

$$\cos^{2}(x) + \sin^{2}(x) = 1,$$

$$\sin(2x) = 2\sin(x)\cos(x),$$

being true for all $x \in \mathbb{R}$ also hold for all $z \in \mathbb{C}$, i.e.

$$\cos^{2}(z) + \sin^{2}(z) = 1,$$

$$\sin(2z) = 2\sin(z)\cos(z).$$

Integrating a Laurent Series

Let f(z) be analytic in an annulus with the following Laurent series representation.

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n, \quad 0 < |z-z_0| < R.$$

The coefficient a_{-1} is called the residue at z_0 . We write Res (f, z_0) . Let Γ denote a loop traversed once in the anti-clockwise sense with z_0 inside Γ . Then term-by-term integration gives

$$\oint_{\Gamma} f(z) \, \mathrm{d}z = 2\pi i a_{-1}.$$

This is one of properties we need to show residue theorem which is in chapter 8 of the main notes.