Taylor’s series
If f(z) is analytic at zy then the Taylor series is

© £(K)(4
flz) =) =) k(! 0) (2 — ).
k=0

If f(z) is analytic in |z — zp| < R then the series converges to f(z)
in this disk with uniform convergence in |z — zp| < R’ < R for all
R' < R.

If f(z) is not an entire function then the largest R is such that
f(z) has a non-analytic point on |z — z| = R.
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Geometric series, examples of R

The following example was given at the start of lectures on chap 7
material.

The circles of convergence when we expand about zg = —1 has
R = 2 and when we expand about zy = 0 has R = 1. The simple

pole at z =1 is on both circles,
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Other examples of determining R
Consider the following function and expanding about zy = 0.

1
(1+e7)(Z-2)

f(z) =
The non-analytic points (simple poles) are where
e’ = -1 and when z>=2.

e*? = -1 when 2z=Llog(—1)=in+2kmi, z= % + kmi.

In the above k € Z.

The points at 4-1/2 are nearer to zp = 0 than the points 47 /2
and thus R = v/2.
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A branch point case: (1+ z)%, z = 0, example of R

f(z) = (1+2)°
where the principal value is being used.

Apart from the cases where o € {0,1,2,---} there is a
non-analytic point at z = —1. The non-analytic point is a pole if «
is a negative integer but otherwise it is a branch point.

R=1.
With the principal value meaning the branch cut is the set
{z=x:x< -1}

and f(z) is analytic when |z| < 1. The generalised binomial series
representation is
—1)-(a— 1
(14+2)* = 1+az+ alo - 1 el JE S Gt ) I(a nt L)y
! n!
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Real coefficients, even functions, odd functions, etc
If f(z) = u(x,y) + iv(x, y) is real when z is real then

~0"u(x,0)

v(x.0)=0 and f(0)= ==
x=0

is real.

If R =radius of convergence and 0 < r < R then we have

(n) ™ . :
f (0) — 1 / f(re’t) efmt dl’

n! 27r"

= 1 /07r (f(reit) + (—1)”f(—reit)) e Nt dt.

27r”

If f(—z) = f(z) then the Maclaurin series only has even powers.

If f(—z) = —f(z) then the Maclaurin series only has odd powers.
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Series you are expected to know
Geometric series

: =14z4+2%4+--- 42"+, valid for |z| < 1.
—Z

The following are entire functions:
2 n

€ = lfz4 it
2! n!
2 _\n
e ? = 1_z+7+ (z) 4.
2! n!
2 4 3 5
V4 V4 . V4 V4
cos()—1—§+—+ sm(z):z_§+a+...
2z . 2 P
cosh()—1+§+—+ smh(z):z—|—§—|—a+---

Remember that

e”? = cos(z) + isin(z), e? = cosh(z) + sinh(z).
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Some techniques with series
Inside the circle of convergence we can differentiate term-by-term
and we integrate term-by-term, e.g. we can get sin(z) from cos(z)
and conversely we can get cos(z) from sin(z) as cos(0) = 1.

2 4

V4 V4
COS(Z) = l_j—i_ﬂ—i_
. Z3 25
SIn(Z) = Z—y—i-a—i-

With knowledge of one series you can hence quickly get the other
series. As examples obtained from the geometric series

Z dt z? z"
Log(1 — - _ — s H
og(l—2z) 1ot <z+2+ + ),
1 d 1
— = — =142z4+32%4+ - +nz"t4...
(1-2) dz \1-=~z

Any path in the disk from 0 to z is okay in the integral.
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The Koebe function, de Branges’ theorem and a conjecture

From the previous slide we immediately get the series for the
Koebe function
f2)= s =242 +33 4 nz" 4

(1-2)

This function has the property that f(0) = 0, f/(0) = 1. Also we

could give an expression for the inverse to confirm that it is

one-to-one in |z| < 1.

Suppose that you consider all functions g(z) which are analytic in

the unit disk, are one-to-one and satisfy g(0) = 0 and g’(0) = 1.

Such functions have Maclaurin series of the form

g(z):Z+a222+3323+...+an2”+...

In 1985 de Branges proved that |a,| < n.

In 1916 Bierberbach had proved that |az| < 2 and he conjectured
that |a,| < n for all functions with the above properties. See a
Wolfram web page for a history of the progress to prove this result
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Multiplying series — the Cauchy product
If f(z) and g(z) are both analytic in |z — z| < R then
h(z) = f(z)g(z) is also analytic in |z — z5| < R.
To shorten the expressions let zg = 0.

f(z) = ag+arz+anz®+---,
g(z) = bo+biz+ b2+,
h(z) = ctazt+oz®+ .

The following expression for ¢, is known as the Cauchy product.

o = aobo,

c = agby + aibo,

¢ = agby+ aibs + axbo,

¢, = aob,+ aibp_1+ -+ anbo.
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Leibnitz’s formula for the nth derivative of a product

If we repeatedly use the product rule then we get

h = fg,
W = fg+fg
h// — f‘//g + 2f‘/g/ + fg’”,

n

pn) Z(/’(’)f(k)g(n—k),

k=0

The last result is known as Leibnitz's rule for the nth derivative of
a product.

The validity of the Cauchy product formula for the coefficients in
the series for h(z) about z, follows by noting the following.

K (z) = nle,,  FR)(z0) = klag, g™ (z0) = (n— k)bp_s,

(&) = Fo oy
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Examples using the Cauchy product technique

n

€ z
= <]__|_Z_|_..._|_n|_|_...)(]__|_z_|_..._|_2”_|_...)

= qtaz+a?+- 4"+

o = 1,

g = 1+41=2,
1 5

= 1414+-==

(&} + +2 27
1 1

cph = 14+1+—-+---4+—.
2 n!

We can get the series for tan(z) = sin(z)/ cos(z) by first writing
tan(z) cos(z) = sin(z).

We use the known series for cos(z) and sin(z) to deduce the terms
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The generalised L'Hopital’s rule
If we have

g(z0) =g'(z0) =+ =g!™ () =0 and g{™(z) #0
f(z0) = f'(z0) = -+ = FIM D(z) = 0
then for z near zg we have

f(z) am(z — ZO)m 4 3m+1(z _ Zo)m+1 4.
g(z) = bm(z—20)"+ bmi1(z — Zo)m+1 T

)

as Z — 7.

If the multiplicity of the zero of g(z) at zp is greater than the
multiplicity of the zero of f(z) then there is no limit and
f(z)/g(z) has a singularity at z.
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Power series

A power series is a series of the form

oo
Z an(z — z9)".
n=0

The terms ag, a1, ... are the coefficients of the power series.

The series always converges at z = zy. When it converges at other
points the region where it converges is a disk {z: |z — z9| < R}
and it is analytic in the disk.

The largest R is the radius of convergence. When R < oo
{z: |z — z| = R} is the circle of convergence. In all cases

_ 1
lim sup|an|*/"

In our examples R is obtained using the ratio test or the root test.

R = 0 when we only have convergence at z = z.

R = o0 when we have convergengs fos all 7, week 21, Page 13 of 16



Obtaining R in the exercise sheet examples

an, b, = an(z — 2)".

n=0
b a
n+1 _ n+1 |Z—Zo|, ‘bn‘l/n: |a,,|1/”|z—zo|.
b, an

By the ratio test, when

dn+1
an

1
—a asn—oo, R=-—.
Q

By the root test, when

1
" s a asn— oo, R=—.
|an| ,

o

The lim sup version deals with the case when the sequence
(Jan|*'™) does not converge but is bounded.

a= lim ¢, ¢, =sup{lam|/¥/™: m>n}.
n—oo
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Why must the region where it converges be a disk?

oo
Z an(z — z9)".
n=0

Suppose this converges at z; # zp and let r = |z; — zg| > 0. The
series may not converge at all points on |z — zp| = r but the
following argument proves that the series converges uniformly in
the region

{z: |lz—z| <F<r}.
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The Proof

Convergence of the power series at z; means that
lan(z1 — 20)"| = |an|r" — 0 as n — .

This implies that the set {|an|r": n=0,1,2,...} is bounded and
we have
M = sup{|ap|r": n=10,1,2,...} < 0.

If we take 7 < r and take z such that |z — zp| < 7 then

Jem(y

The right hand side is a term in a convergent geometric series and
thus by the Weierstrass M-test the series converges uniformly in
the disk {z: |z — z| < F}.

S I
~ =

an(z — 20)") < |anl 7 = |anr” (
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