Rational functions — definition and singularities
A polynomial can be factored. Suppose that

q(z) = (z —2)(z = 22) - (2 = zn).

The ratio of two polynomials is a rational function. Let

R(z) = P2)
q(z)’
The zeros zi, ..., z, of q(z) are singular points of R(z).

If the limit exists as z — zx then z, is a removable singularity.

Otherwise R(z) has a pole singularity at z;. A simple pole is the
case when 1/R(z) has a simple zero at z.

The order of the pole of R(z) is the multiplicity of the zero of

1/R(2).
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Rational functions — partial fractions representation

R(z) = ’;ﬁ; 42) = (z— )z —22) (2~ zn).

When deg p(z) < deg q(z) and the zeros of g(z) are simple we
have the partial fraction representation of the form

When deg p(z) > deg q(z) and the zeros of g(z) are simple we
have a representation of the form

n

Ax

R(z) = p(2) = (some polynomial) + .
z—z

k=1

In either case Ay is the residue at z.
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Getting the residues when we only have simple poles

R(z) = ZZ; = (some polynomial) + kz; 2 éka.
To get A we have (2 — 2)p(2)
Ac = Jim (z—2)R(z) = lim %

= Jim e iy C 3 = 55

With
q(2) = (z = 21)(z = 22) -+ (2 = ) = (2 — 2 )&k (2)-
Here gi(z) is the product of the other factors.
q(2) = (z — z)ek'(z) + &k(2),  a'(2k) = gi(z).
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Multiple poles case

When q(z) has a zero at zy of multiplicity r > 1 we need terms
involving

1 1 1
z—zy (z—2z2) 7 (z—z2)"

Usually there is more work to get the representation when r > 1.

1
zZ—2y

The residue comes from the term involving

MA3614 2023/4 Week 07, Page 4 of 16



Partial fraction examples in week 6

1 A B
f = - '
1(2) 22—|—1 Z—|—I+Z—/

3 A B
h(z) = 22274_1 = (Degree 1 polynomial) + e 4 —

4 A B C.1 C2

f- = — _
5(2) (22 +1)(z —1)? z+i+z—i+z—1+(2_1)2

In all cases we have z2 + 1 = (z + i)(z — i) and we have pole
singularities at 4=i. The residues are associated with the simple
pole terms and are labelled as A and B in the case of f; and £ and
are labelled as A, B and (j in the case of f3.

In the calculation in the f3(z) case we used

4
2
(- 1) = 5.

before differentiation and limits were considered.
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Finer points about the residue

Suppose
2 A B

472 _ 1 2z—|—1+22—1'

R(z) =

To get A and B we have

A= lim M__L B = lim wzl.
z——1/2 472 —1 z—1/2 472 1
The residues are however
A 1 B
[i 1/2)R(z2) = = = —= d li —1/2)R(z) = — =
H'TW(H /2)R(2) = 5 5 an H'T/z(z /2)R(2) = 5
—-1/2 1/2
R(2) / /

TSV RV

MA3614 2023/4 Week 07, Page 6 of 16



Special case of one multiple pole

Suppose
_ p(2) . .
R(z) = ——=5, p(z) being a polynomial of degree m.
(z — 29)
We use the Taylor series representation of p(z) about zp.

(m)(
p(2) = plao) + P@0)(z — ) + -+ B P ym

If m < n—1 then the residue is 0. If m > n—1 then

b)), A V@)n-1)
R(z) = (z —2z)" * (z—z)" ! L z— 29 +

and the residue at z is

p(n—l)(ZO)
(n—1)! "~
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Is a partial fraction representation always possible?
Suppose deg(p(z)) < deg(q(z)) with

q(z) = (z—21)"(z = 2)" - (z = z)",

zj...,Zp being distinct, and let

Assuming a representation is possible, i.e.

A A A A
<m+...+nJ)+...+<m+...+w>

z—Z7 (z—2z)" zZ— z, (z—=z,)™

we can get the coefficients as in the examples. We have a formula
for each coefficient (see on the next slides).
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General case ...comments on the validity

_ p(z)
R(z) - (z _ Zl)n(z _ 22)f2 - (Z _ zn)rn'

With the procedures above we can get the coefficients in the
following candidate representation of R(z).

A A A A
¢+..,+¢ﬂ 4oy 1’”*"*# '
z-z (2= =) 2z (z—z2)"

The coefficients are

1, di . .
Aij=——lim | —=(z—2)"R(z) |, i=12,...,n.

dzi™!
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General case ...comments on the validity continued
How do we show that the following are the same function for all z?
Rational function

p(2) p(z)
qz) (z—z2)"(z—2)" - (z—z:)"

Partial fraction representation denoted by R(z) given by

A A A A
< 1,1 _|_..._|_r171)r1>+..._|_< Ln +"'+Wr,,>'

z—2z (z—=zn zZ—zp (z — zp)
Let 5
g(z) = R(2) = R(2)-
This is a rational function. g(z) = 0 because it can be shown that

it has removable singularties at z, ..., z, and because it tends to 0
as |z| — oo. Details are long and are not examinable.
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Exponential function

e’ = exp(z) 1= e*e” = e*(cos y + isin y).
As in the real case we have for all z, z;, z, € C,

d 1
—e“=e", e =—

efit2 — o71 g2
dz e

T e”.

The function w = exp(z) is periodic with period 27/ and is
one-to-one on

G={z=x+1iy: -m<y<n}
with inverse
Logw = Log |w| + iArgw

which is the principal valued logarithm.

The principal valued logarithm will be discussed more after the
reading week break.
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cosh z, sinh z, cos z, sin z

We define
_ E z —z . _E z -z
cosh z = 2(e + e ), S|nhz—2(e e ),
1 iz —iz H _ 1 iz . —iz
cos z = E(e +e77), smz-—zi(e e 7).

As in the real case

. d .
— cosh z =sinh z, —sinh z = cosh z,
dz d
. d .
—CO0S Z= —sin z, —Sin Z = COSs Z.
dz " dz
We also have the identities
cos® z + sin? z = cosh® z — sinh? z = 1.
For all z;, zo € C we have the addition formulas

sin(z; = 2z) = sin z; cos zp + cos z; sin 2z,

cos(z; = 2z) = cos z; cos zp Fsin zisin zo.
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Further comments about the complex versions
Let

f(z) = cos® z +sin® z — 1,

g(z) = cosh? z —sinh? z — 1.

From the definitions these are entire functions and from the
identities in the case z = x € R we have that they are zero on the
real line.

As we see in term 2, the zeros of an analytic function which is not
identically zero everywhere are isolated. As f(x) =0 and g(x) =0
for all x € R this implies that f(z) = 0 and g(z) = 0 for all z in
the complex plane. Of course, in these two examples we can verify
that f(z) = 0 and g(z) = 0 without too much effort by just using
the definitions.
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The real and imaginary parts of sin(z) and cos(z)
With z = x + iy, x,y, € R we have

sin(x +iy) = sinxcoshy + icosxsinhy,

cos(x +iy) = cosxcoshy —isinxsinhy.

The real and imaginary parts of these functions are hence harmonic
functions.
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Representing a function in terms of its zeros

A polynomial of degree n with zeros at z;, ..., z, can be expressed
in the form

pn(z) =an(z—21)(z—22) - (z — zp).
Some of the standard functions with an infinite number of zeros
can also be written as a product of an infinite number of terms.

The following is beyond what will be covered in MA3614 but for
interest the Euler-Wallis formula for the sine function is

sinz:znlj (1— (,;)2>

The infinite product converges slowly.
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More advanced representations of cot z
Let z1,2,..., 2z, be points in the complex plane and let
pu(z) = (z— 21)(z — 22) - (2 — ).
In the exercise sheet there was a question about showing that

! 1 1 1
Pn(2) _ n o .
pn(z) z—zz z—2 zZ— 2z,

In the case of cot z we similarly have

cos 7 asln z
cot z = — = -
Sin z Sin z

The following is beyond what will be covered in MA3614 but it can
be shown that cot z has a partial fraction type representation in
terms of its simple poles in the following sense.

N
1
cot z= lim = - +2z
Naoozz—&—mr Z 2 n7'r
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