
Chap 3: some of the main points

Definitions: Complex differentiable, analytic . . .
As was introduced in week 03.

I Complex derivative: Let f be a complex valued function
defined in a neighbourhood of z0. The derivative of f at
z0 is given by

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h

provided the limit exists.

I A function f is analytic at z0 if f is differentiable at all
points in some neighbourhood of z0.

I A function f is analytic in a domain if f is analytic at
all points in the domain.

I A function f : C→ C is an entire function if it is
analytic on the whole complex plane C.
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The Cauchy Riemann equations for f (z) = u(x , y) + iv(x , y)

When f is analytic at z0 the following limit exists.

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h
.

By considering the case when h is real and then purely imaginary
we get

f ′(z) =
∂u

∂x
+ i

∂v

∂x
,

=
1

i

(
∂u

∂y
+ i

∂v

∂y

)
=
∂v

∂y
− i

∂u

∂y
.

The Cauchy Riemann equations are

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

If u and v have continuous first partial derivatives on a domain D
and the Cauchy Riemann equations are satisfied then f is analytic
on D. MA3614 2023/4 Week 06, Page 2 of 20



Representations for f ′(z)

f ′(z) =
∂u

∂x
+ i

∂v

∂x
, (only involving derivatives with respect to x),

=
∂v

∂y
− i

∂u

∂y
, (only involving derivatives with respect to y),

=
∂u

∂x
− i

∂u

∂y
, (only involving u),

=
∂v

∂y
+ i

∂v

∂x
, (only involving v).

The different versions are because of the CR equations.

f ′(z) is thus completely determined by ∇u.

f ′(z) is thus completely determined by ∇v .

Expressing in terms of z only

In the polynomial cases we directly showed how to write in terms
of z . MA3614 2023/4 Week 06, Page 3 of 20



The level curves of u and v are orthogonal
By using the CR equations

∇u · ∇v =
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
= 0.

As a non-zero gradient vector is normal to a level curve this implies
that the level curves of u and v are orthogonal.

Mapping of w = exp(z), level curves of z = Log(w)
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The circles and radial lines are level curves of Log(w), i.e. they are
the curves where the real and imaginary parts are constant.
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Harmonic functions and analytic function

I φ(x , y) is harmonic if

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0.

I If f = u + iv is analytic then u and v are harmonic functions.
v is said to be the harmonic conjugate of u.

If u is known then we can attempt to get v as follows.
∂v

∂x
= −∂u

∂y

Partially integrate w.r.t. x to get
v(x , y) = some function + g(y)

∂v

∂y
= deriv of some function + g ′(y) =

∂u

∂x

This gives g ′(y) and then we get g(y).
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Chap 4: Elementary functions of z
We consider the following.

1. Polynomials.

2. Rational functions.

3. ez = exp(z).

4. sin(z), cos(z), sinh(z), cosh(z), tan(z), cot(z), tanh(z).

5. log(z), Log(z).

6. Complex powers, i.e. zα.

With rational functions and the functions tan(z), cot(z) and
tanh(z) we mention pole singularities and residues for the first
time. They all have isolated singularities.

In the case of the logarithm and complex powers we mainly restrict
to the “principal value case” which involves using the principal
argument Arg(z).
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Representation of polynomials and zeros
Polynomials are entire functions and can be represented in several
ways.

pn(z) =
n∑

k=0

akz
k

=
n∑

k=0

p
(k)
n (0)

k!
zk , (finite Maclaurin series),

=
n∑

k=0

p
(k)
n (z0)

k!
(z − z0)k , (Taylor polynomial),

= an(z − α1)(z − α2) · · · (z − αn), (in terms of the zeros),

= an(z − z1)r1(z − z2)r2 · · · (z − zm)rm ,

where z1, . . . , zm are the distinct zeros and r1 + · · ·+ rm = n.

At the zero zk of multiplicity rk we have

pn(zk) = p′n(zk) = · · · = p
(rk−1)
n (zk) = 0, p

(rk )
n (zk) 6= 0.
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Rational functions
These are the ratio of two polynomials.

R(z) =
p(z)

q(z)
, q(z) = (z − z1)(z − z2) · · · (z − zn).

z1, . . . , zn are singular points.

If the limit exists as z → zk then zk is a removable singularity.

Otherwise R(z) has a pole singularity at zk . A simple pole is the
case when 1/R(z) has a simple zero at zk .

The order of the pole of R(z) is the multiplicity of the zero of
1/R(z).

These terms will appear again in term 2 when we classify functions
more generally which have isolated singularities. This will be in the
Laurent series section.
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Partial fractions representation – just simple poles case

R(z) =
p(z)

q(z)
, q(z) = (z − z1)(z − z2) · · · (z − zn).

When deg p(z) < deg q(z) and the zeros of q(z) are simple we
have the partial fraction representation of the form

R(z) =
p(z)

q(z)
=

n∑
k=1

Ak

z − zk
.

When deg p(z) ≥ deg q(z) and the zeros of q(z) are simple we
have a representation of the form

R(z) =
p(z)

q(z)
= (some polynomial) +

n∑
k=1

Ak

z − zk
.

In either case Ak is the residue at zk .
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Getting the residues when we only have simple poles

R(z) =
p(z)

q(z)
= (some polynomial) +

n∑
k=1

Ak

z − zk
.

To get Ak we have

Ak = lim
z→zk

(z − zk)R(z) = lim
z→zk

(z − zk)p(z)

q(z)

= p(zk) lim
z→zk

(z − zk)

q(z)
=

p(zk)

q′(zk)
.

Multiple poles case
When q(z) has a zero at ζ of multiplicity r ≥ 1 we need terms
involving

1

z − ζ
,

1

(z − ζ)2
, . . . ,

1

(z − ζ)r
.
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Partial fraction examples
Note that z2 + 1 = (z + i)(z − i)

f1(z) =
1

z2 + 1
=

A

z + i
+

B

z − i
,

we need to determine A and B.

f2(z) =
z3

z2 + 1
= (deg 1 polynomial) +

A

z + i
+

B

z − i
,

we need to determine A and B,

f3(z) =
4

(z2 + 1)(z − 1)2
=

A

z + i
+

B

z − i
+

C1

z − 1
+

C2

(z − 1)2

we need to determine A,B,C1,C2.

All the functions have pole singularities at ±i and f3(z) also has a
pole at 1.

The residues are associated with the simple pole terms and are
labelled as A and B in the case of f1 and f2 and are labelled as A1

and B1 in the case of f3. MA3614 2023/4 Week 06, Page 11 of 20



The representation when q(z) = (z − z0)m

Suppose the only singularity is at z = z0 and we have

R(z) =
p(z)

(z − z0)m
, p(z) is a polynomial of degree n.

In this case we use the finite Taylor polynomial representation of
p(z) about z0, i.e.

p(z) = p(z0) + p′(z0)(z − z0) + · · ·+ p(n)(z0)

n!
(z − z0)n.

R(z) =
p(z0)

(z − z0)m
+

p′(z0)

(z − z0)m−1
+ · · ·+ p(n)(z0)/n!

(z − z0)m−n
.

The residue is
p(m−1)(z0)

(m − 1)!
.
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Further comments about the f1(z) example

f1(z) =
1

z2 + 1
=

A

z + i
+

B

z − i
.

There is not too much to do by any of the methods in this case.

If we put the RHS on a common denominator (i.e. z2 + 1) and
equate the result numerators then we get

1 = A(z − i) + B(z + i).

As this is true for all z we can separately set z = i or z = −i to
get B and then A. Thus B = 1/(2i) = −i/2.

If we just get B by the above then equating the coefficient of z
gives

0 = A + B, A = −B.
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Further comments about the f1(z) example continued

We can use limits and L’Hopital’s rule. This is because we have
the following.

(z + i)f1(z) = A + (z + i)(func analytic at −i)→ A as z → −i ,
(z − i)f1(z) = B + (z − i)(func analytic at i)→ B as z → i .

A = lim
z→−i

z + i

z2 + 1
=

1

2z

∣∣∣∣
z=−i

= − 1

2i
=

i

2
,

B = lim
z→i

z − i

z2 + 1
=

1

2z

∣∣∣∣
z=i

=
1

2i
= − i

2
.
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Further comments about the f2(z) example

f2(z) =
z3

z2 + 1
= (deg 1 polynomial) +

A

z + i
+

B

z − i
.

A = lim
z→−i

(z + i)z3

z2 + 1
,

B = lim
z→i

(z − i)z3

z2 + 1
.

We can use properties of limits before L’Hopital’s rule is used. In
the case of getting A we have

A =

(
lim

z→−i
z3
)(

lim
z→−i

z + i

z2 + 1

)
,

=
(
z3
∣∣
z=−i

)( 1

2z

∣∣∣∣
z=−i

)
=

(−i)3

2(−i)
=

(−i)2

2
= −1

2
.
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Is a partial fraction representation always possible?
Suppose deg(p(z)) < deg(q(z)) with

q(z) = (z − z1)r1(z − z2)r2 · · · (z − zn)rn

and let

R(z) =
p(z)

q(z)
.

Assuming a representation is possible, i.e.(
A1,1

z − z1
+ · · ·+ Ar1,1

(z − z1)r1

)
+ · · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
we can get the coefficients as in the examples and see the next
slides.

MA3614 2023/4 Week 06, Page 16 of 20



Getting the residue and the other coefficients
Re-label to concentrate on one of zeros of q(z) at ζ and write

R(z) = · · ·+ B1

z − ζ
+ · · ·+ Br

(z − ζ)r
+ · · ·

Then

(z − ζ)rR(z) = Br + Br−1(z − ζ) + · · ·+ B1(z − ζ)r−1

+(z − ζ)r (a function analytic at ζ).

To get Bj we have

(r − j)!Bj = lim
z→ζ

dr−j

dz r−j
((z − ζ)rR(z)) j = 1, 2, . . . , r .
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General case ...comments on the validity
Let

R(z) =
p(z)

(z − z1)r1(z − z2)r2 · · · (z − zn)rn

and let

R̃(z) =

(
A1,1

z − z1
+ · · ·+ Ar1,1

(z − z1)r1

)
+· · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
with the coefficients as given above and let

g(z) = R(z)− R̃(z).

g is a rational function and z1, . . . , zn are the only possible points
where it might have poles.
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General case ...comments on the validity continued
Without giving too many details the following are the main steps
to show that g(z) = R(z)− R̃(z) = 0.

1. In case of z1 consider

R(z)−
(

A1,1

z − z1
+ · · ·+ Ar1,1

(z − z1)r1

)
=

φ1(z)

(z − z1)r1Q(z)
, Q(z) = (z − z2)r2 · · · (z − zn)rn ,

where φ1(z) is a polynomial. The detail is in showing that
φ1(z) has a zero at z1 of multiplicity of at least r1 which
implies that there is no pole singularity at z1.
A similar argument applies to all the points z1, . . . , zn.
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General case ...comments on the validity ..last step

g(z) = R(z)− R̃(z).

2. As a consequence of the previous step the rational function
g(z) has no poles and hence it is a polynomial.
As we have R(z)→ 0 and R̃(z)→ 0 as |z | → ∞ we have
g(z)→ 0 as |z | → ∞. This implies that g(z) = 0 as
non-constant polynomials are unbounded in the complex
plane.

By considering the details in the complex case justifies the rules
you are likely to have used earlier when constructing partial
fraction representations.
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