Analytic functions

As was introduced last week (week 03).

- Complex derivative: Let f be a complex valued function defined in a neighbourhood of z_{0}. The derivative of f at z_{0} is given by

$$
\frac{\mathrm{d} f}{\mathrm{~d} z}\left(z_{0}\right) \equiv f^{\prime}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

provided the limit exists.

- A function f is analytic at z_{0} if f is differentiable at all points in some neighbourhood of z_{0}.
- A function f is analytic in a domain if f is analytic at all points in the domain.
- A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function if it is analytic on the whole complex plane \mathbb{C}.

The Cauchy Riemann equations for $f(z)=u(x, y)+i v(x, y)$ When f is analytic at z_{0} the following limit exists.

$$
\frac{\mathrm{d} f}{\mathrm{~d} z}\left(z_{0}\right) \equiv f^{\prime}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h} .
$$

By considering the case when h is real and then purely imaginary we get

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& =\frac{1}{i}\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right)=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
\end{aligned}
$$

Equating the real and imaginary parts gives the Cauchy Riemann equations.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Alternatively, when u and v have continuous first partial derivatives on a domain D and the Cauchy Riemann equations are satisfied then f is analytic on $D_{\text {MA3614 2023/4 Week 04, Page } 2 \text { of } 8}$

A comment about directional derivatives

The following uses vector notation.
Let $\phi(x, y)$ be a scalar valued function and let

$$
\underline{r}=x \underline{i}+y \underline{j}
$$

The gradient of ϕ is

$$
\nabla \phi=\frac{\partial \phi}{\partial x} \underline{i}+\frac{\partial \phi}{\partial y} \underline{j} .
$$

The directional derivative of ϕ in the direction of a unit vector \underline{n} is

$$
\begin{aligned}
\frac{\partial \phi}{\partial n}(\underline{r}) & =\left.\frac{\mathrm{d}}{\mathrm{~d} s} \phi(\underline{r}+s \underline{n})\right|_{s=0} \\
& =\left(n_{1} \frac{\partial \phi}{\partial x_{1}}+n_{2} \frac{\partial \phi}{\partial x_{2}}\right)(\underline{r})=\underline{n} \cdot \nabla \phi(\underline{r})
\end{aligned}
$$

When s is small

$$
\phi(\underline{r}+s \underline{n})-\phi(\underline{r}) \approx s \frac{\partial \phi}{\partial n}(\underline{r})=(s \underline{n}) \cdot \nabla \phi(\underline{r})
$$

The proof of the Cauchy Riemann equations

When the Cauchy Riemann equations hold

$$
\begin{aligned}
u\left(x_{0}+h_{1}, y_{0}+h_{2}\right)-u\left(x_{0}, y_{0}\right) & =\left(h_{1} \frac{\partial u}{\partial x}+h_{2} \frac{\partial u}{\partial y}\right)\left(x_{0}, y_{0}\right)+\mathcal{O}\left(|h|^{2}\right) \\
& =\left(h_{1} \frac{\partial u}{\partial x}-h_{2} \frac{\partial v}{\partial x}\right)\left(x_{0}, y_{0}\right)+\mathcal{O}\left(|h|^{2}\right) \\
v\left(x_{0}+h_{1}, y_{0}+h_{2}\right)-v\left(x_{0}, y_{0}\right) & =\left(h_{1} \frac{\partial v}{\partial x}+h_{2} \frac{\partial v}{\partial y}\right)\left(x_{0}, y_{0}\right)+\mathcal{O}\left(|h|^{2}\right) \\
& =\left(h_{1} \frac{\partial v}{\partial x}+h_{2} \frac{\partial u}{\partial x}\right)\left(x_{0}, y_{0}\right)+\mathcal{O}\left(|h|^{2}\right) .
\end{aligned}
$$

With $z_{0}=x_{0}+i y_{0}$ and $h=h_{1}+i h_{2}$
$f\left(z_{0}+h\right)-f\left(z_{0}\right) \approx\left(\left(h_{1} \frac{\partial u}{\partial x}-h_{2} \frac{\partial v}{\partial x}\right)+i\left(h_{1} \frac{\partial v}{\partial x}+h_{2} \frac{\partial u}{\partial x}\right)\right)\left(z_{0}\right)$
$f\left(z_{0}+h\right)-f\left(z_{0}\right)=\left(h_{1}+i h_{2}\right)\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)\left(z_{0}\right)+\mathcal{O}\left(|h|^{2}\right)$.
Dividing by $h=h_{1}+i h_{2}$ and letting $h \rightarrow 0$ shows that the limit exists.

MA3614 2023/4 Week 04, Page 4 of 8

Remarks about polars

$z=r e^{i \theta}, \quad x=r \cos \theta, \quad y=r \sin \theta, \quad r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}$.

$$
\frac{\partial z}{\partial r}=\mathrm{e}^{i \theta}, \quad \frac{\partial z}{\partial \theta}=i r \mathrm{e}^{i \theta}
$$

If r is fixed and $g(\theta)=r e^{i \theta}$ then

$$
\begin{aligned}
g(\theta+\Delta \theta)-g(\theta) & =g^{\prime}(\theta) \Delta \theta+\frac{g^{\prime \prime}(\theta)}{2} \Delta \theta^{2}+\cdots \\
& =\underset{\text { re } e^{i \theta}\left(i \Delta \theta-\Delta \theta^{2} / 2+\cdots\right)}{\text { MA3614 2023/4 Week 04, Page } 5 \text { of } 8}
\end{aligned}
$$

Partial derivatives of θ and r wrt x and y

$$
\begin{gathered}
r^{2}=x^{2}+y^{2}, \quad 2 r \frac{\partial r}{\partial x}=2 x, \quad 2 r \frac{\partial r}{\partial y}=2 y \\
\frac{\partial r}{\partial x}=\frac{x}{r}, \quad \frac{\partial r}{\partial y}=\frac{y}{r}
\end{gathered}
$$

If $\theta=\arg (z)$ then

$$
\tan (\theta)=\frac{y}{x}, \quad \cot (\theta)=\frac{x}{y}
$$

We can partially differentiate either wrt x or y to get, after about two intermediate lines,

$$
\frac{\partial \theta}{\partial x}=\frac{-y}{x^{2}+y^{2}}=-\frac{y}{r^{2}}, \quad \frac{\partial \theta}{\partial y}=\frac{x}{x^{2}+y^{2}}=\frac{x}{r^{2}} .
$$

The expressions are valid on the axis when $x^{2}+y^{2}>0$.

The Cauchy Riemann equations in polars

Suppose

$$
\begin{aligned}
f\left(r \mathrm{e}^{i \theta}\right) & =\tilde{u}(r, \theta)+i \tilde{v}(r, \theta) \\
f^{\prime}(z) & =\frac{1}{\mathrm{e}^{i \theta}}\left(\frac{\partial \tilde{u}}{\partial r}+i \frac{\partial \tilde{v}}{\partial r}\right) \\
& =\frac{1}{i r \mathrm{e}^{i \theta}}\left(\frac{\partial \tilde{u}}{\partial \theta}+i \frac{\partial \tilde{v}}{\partial \theta}\right)
\end{aligned}
$$

The Cauchy Riemann equations in polar coordinates are

$$
\frac{\partial \tilde{u}}{\partial r}=\frac{1}{r} \frac{\partial \tilde{v}}{\partial \theta}, \quad \frac{1}{r} \frac{\partial \tilde{u}}{\partial \theta}=-\frac{\partial \tilde{v}}{\partial r} .
$$

Functions which are analytic

$$
\exp (z)=\exp (x+i y)=\mathrm{e}^{x} \mathrm{e}^{i y}=\mathrm{e}^{x}(\cos (y)+i \sin (y))
$$

Here

$$
u=\mathrm{e}^{x} \cos (y), \quad v=\mathrm{e}^{x} \sin (y)
$$

The Cauchy Riemann equations are satisfied and

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \mathrm{e}^{z}=\mathrm{e}^{z}
$$

as in the real case.
Observe that the value of e^{z} is in polar form and thus

$$
\left|\mathrm{e}^{z}\right|=\mathrm{e}^{x} \quad \text { and } \quad \arg \left(\mathrm{e}^{z}\right)=y .
$$

$$
\log (z)=\ln r+i \operatorname{Arg} z
$$

is analytic except on $\{z=x+i y: x \leq 0, y=0\}$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \log (z)=\frac{1}{z} .
$$

MA3614 2023/4 Week 04, Page 8 of 8

