
z = x + iy = r exp(iθ), z, |z |, Arg(z) etc.

z = x + iy = reiθ = r(cos θ + i sin θ)

z = x − iy = re−iθ

r

r

θ

θ

r cos θ

r sin θ

−r sin θ

0
Real axis

Imaginary axis
Argand diagram

Arg z ∈ (−π, π] =principal argument. (arg z is multi-valued.)

Note |z |2 = z z . |z | =absolute value.
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Multiplication, powers, roots of unity
Suppose z = reiθ, z1 = r1eiθ1 , z2 = r2eiθ2 .

Multiplication: z1z2 = r1r2ei(θ1+θ2).

Powers: zn = rneinθ, n = 0,±1,±2, . . ..

Observe e2πi = exp(2πi) = cos(2πi) + i sin(2πi) = 1.

Roots of unity: Let ω = exp(2πi/n).

1, ω, ω2, . . . , ωn−1

all satisfy zn − 1 = 0 and are uniformly spaced on the unit circle.

n = 7

1

ω
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Roots of any number, the case zn − ζ = 0
Roots of any number:
Let ζ = ρ exp(iφ), φ = Arg(ζ) and let z0 = n

√
ρ exp(iφ/n). This is

the principal value solution. All n roots are z0, z0ω, . . ., z0ω
n−1.

Example: z7 = −1 = exp(iπ).

n = 7, solutions of z7 = −1. Note z = −1 is one solution.

z0 = exp(iπ/7)

z0 = exp(−iπ/7) = z0ω
6

z0ω
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How does the complex case help?

1.

f : R→ R, f (x) =
1

1 + x2
.

This is bounded and infinitely differentiable on R. To
understand why its Maclaurin series only converges when
|x | < 1 you need to consider f (z) and the points ±i . Later
the term simple poles will be used to describe the
singularities at ±i .
The Maclaurin series is just a geometric series in this case.

2.

f : R→ R, f (x) =

{
exp(−1/x2), x 6= 0,

0, x = 0.

This is infinitely differentiable on R but it is unbounded when
we consider instead f (z) with z ∈ C.
In term 2 the type of singularity at z = 0 is called an
essential singularity of f (z).
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Further comments about an example
By the geometric series we have for |z | < 1

1

1 + z2
=

1

1−
(
−z2

) = 1− z2 + z4 − z6 + · · ·

When |z | > 1, 1/|z | < 1 and if we write

1 + z2 = z2
(

1 +

(
1

z2

))
then

1

1 + z2
=

(
1

z2

)(
1−

(
−1

z2

))−1
=

(
1

z2

)(
1− 1

z2
+

1

z4
+ · · ·

)
.

This is a Laurent series which is valid in |z | > 1.

Laurent series is a topic in term 2.

Both series do not converge when |z | = 1.
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Further comments: the geometric series
In many places in this module you will see the geometric series or
similar relations.

For example, we have the polynomial factorization

zn − 1 = (z − 1)(zn−1 + zn−2 + · · ·+ z + 1)

1− zn = (1− z)(1 + z + · · ·+ zn−2 + zn−1)

as well as in the geometric series form

1

1− z
= 1 + z + z2 + · · ·+ zn + · · · , when |z | < 1.
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Other versions of the factorization
Suppose a 6= 0.

an − zn = an
(

1−
(z
a

)n)
= an

(
1−

(z
a

))(
1 +

(z
a

)
+
(z
a

)2
+ · · ·+

(z
a

)n−1)
= (a− z)(an−1 + an−2z + · · ·+ azn−2 + zn−1).
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When did interest in complex numbers begin?
The roots of cubics

Cardano found that his method for finding roots of cubics needed
complex numbers and a summary of the steps is given below.

Consider the problem of solving

x3 + cx + d = 0.

Cardano’s method involves letting

x = u +
p

u
, p = −c/3, so that 3p + c = 0.

With a small amount of algebra we get

x3 + cx = u3 +
p3

u3
giving x3 + cx + d =

1

u3
(
u6 + du3 + p3

)
.

u3 =
−d ±

√
d2 − 4p3

2
. Often d2 − 4p3 < 0 and u3 is not real.

Often the intermediate quantity u is not real but the solution x is
real. MA3614 2023/4 Week 02, Page 8 of 32



We consider the following cubic

-5 -3 -1 1 3 5 x

y

y =
x3 − 15x − 4

10
.
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Cardano method example

x3 − 15x − 4 = (x − 4)(x2 + 4x + 1)

Here c = −15, p = 5 and d = −4.

u6 − 4u3 + 53 = 0 and d2 − 4p3 = 16− 4× 53 = −4× 112.

u3 = 2± 11i .

One solution to u3 = 2 + 11i is u = 2 + i .

To verify

(2 + i)2 = 3 + 4i ,

(2 + i)3 = (2 + i)(2 + i)2 = (2 + i)(3 + 4i) = 2 + 11i .

Hence one solution is

x = u +
p

u
= (2 + i) +

5

2 + i
= (2 + i) + (2− i) = 4.
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The roots of polynomials
For a polynomial of any degree Gauss proved the following.

Fundamental theorem of algebra: A polynomial of degree n can
always be factorised in the form

pn(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

= an(z − α1)(z − α2) · · · (z − αn)

where a0, · · · , an, α1, . . . , αn ∈ C and an 6= 0. This will be proved
in term 2 (the proof is not examinable).

When the polynomial coefficients are real the non-real roots occur
in complex conjugate pairs as a consequence of

p(z) = p(z).

This is on the first exercise sheet.

MA3614 2023/4 Week 02, Page 11 of 32



A related comment about f (z)
Let f : R→ R.

When f is such that we can generalise and consider f (z), with
z ∈ C, we will see that

f (z) = f (z).

when f (z) is analytic (analytic will appear from chapter 3).

Note for example

exp(x + iy) = ex(cos y + i sin y),

exp(x − iy) = ex(cos y − i sin y) = exp(x + iy).
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Functions of a complex variable
Some comments to start

The chapter 2 material will have very few exercises but a few
terms should be noted.

I The neighbourhood of a point z0.

I What is meant by a domain and a region.

I Simply-connected. (Only loosely defined here.)

I The definition of a limit and continuity in C.
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Functions of a complex variable – some jargon
Let A ⊂ C. We write

f : A→ C

with A denoting the domain of definition of f .

We define here what we mean by ‘domain’ and ‘region’ in the
context of this module and this requires some intermediate terms.

Open disk: A set of the form

{z ∈ C : |z − z0| < ρ}, ρ > 0.

The boundary is the circle |z − z0| = ρ which is not part of the set.

Unit disk: This is the set

{z ∈ C : |z | < 1}.

A neighbourhood of a point z0 means a disk of the form
{z ∈ C : |z − z0| < ρ} for some ρ > 0.
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Jargon continued
Interior point of A: A point z0 ∈ A such that a neighbourhood of
z0 is also in A.

Open set: A set such that every point is an interior point.

Boundary point of A: A point z0 such that every neighbourhood
of z0 contains points which are in A and also contains points which
are not in A.

Some points in this disk are inside the
ellipse and some points are outside

Ellipse

Boundary of A: the set of all boundary points.
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Jargon continued
Polygonal path: Let w1,w2, . . . ,wn+1 be points in C and let Ik be
the straight line segment joining wk to wk+1. The successive line
segments I1, I2, . . . , In+1 is a polygonal path joining w1 to wn+1.

Connected: A set A is connected if every pair of points z1 and z2
in A can be joined by a polygonal path which is contained in A.

Domain: In this module a domain refers to an open connected
set.

Region: A domain or a domain together with some or all of the
boundary points.

MA3614 2023/4 Week 02, Page 16 of 32



Jargon continued
Bounded: A set A is bounded if there exists R > 0 such that the
set is contained in the disk {z : |z | < R}.
Unbounded: A set is unbounded if it is not bounded.

Simply-connected: A domain (which is thus connected) and does
not have holes. A precise mathematical definition of this can be
given.

The term simply connected will appear again when loop integrals
are considered.
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Examples of sets
C: an unbounded domain.

R: is not a domain.

All neighbourhoods of a point in R contains points with non-zero
imaginary part.

A = {z : |z − 1| < 2} ∪ {z : |z + 1| < 2}.
is a simply-connected domain.

1 3−3 −1
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Examples continued
The set

A = {z : |z − 1| < 1} ∪ {z : |z + 1| < 0.5}

is not connected.

1−1

If f is defined on A then we have two separate problems.
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An unbounded polygon
The infinite strip A = {z = x + iy : −∞ < x <∞, −π < y ≤ π}
is an unbounded polygonal region.

y = 0

y = π

y = −π

The function

ex+iy = exp(x + iy) = exp(x)(cos y + i sin y)

is one-to-one on this strip.
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Examples of bounded polygons

Another unbounded polygon
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An annulus

A = {z ∈ C : r1 < |z − z0| < r2}.

z0 r1 r2

We will consider cases when r1 = 0 when we have an isolated
singularity at z = z0 and we consider cases when r2 =∞.
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An attempt to graphically represent f : C→ C

Radial mesh of w = f (z) = z2 centred about z = 0

-0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

z plane

-2 -1 0 1 2 3

-2

-1

0

1

2

w plane

w = f (z) = z2, z = reiθ, |θ| ≤ π/3, r ≤ 1.5.
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Radial mesh of w = f (z) = z2 centred about z = 1

0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

z plane

0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

w plane

w = f (z) = z2, |z − 1| ≤ 0.5.
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The situation close to z = 1
With a polynomial of degree 2 the Taylor series representation is
finite and we have

f (z) = z2 = f (1) + f ′(1)(z − 1) +
f ′′(1)

2!
(z − 1)2,

= 1 + 2(z − 1) + (z − 1)2,

≈ 1 + 2(z − 1), when |z − 1| is small.

The image of the circles close to z = 1 are nearly circles.
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Bilinear function: f (z) = (z − z0)/(1− z0z), |z0| < 1.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
z plane

-1 -0.5 0 0.5 1

-0.5

0

0.5

w plane

w = f (z) = z − z0
1− z0z

, with z0 = 0.4(1 + i) and |z | ≤ 1.

It can be shown that this maps the unit disk onto itself (see the
exercise sheet as to why the unit circle maps to the unit circle).
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Comments about the bilinear example
Recall that |z0| < 1.

w =
z − z0

1− z0z
,

(1− z0z)w = z − z0,

w + z0 = z(1 + z0w),

z =
w + z0

1 + z0w
.

w = f (z) and the inverse z = g(w) have a similar form.

Observe the following limits:

As z → 1/z0, |w | → ∞.
As |z | → ∞, w → −1/z0.

As |w | → ∞, z → 1/z0.
As w → −1/z0, |z | → ∞.
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Limits and continuity

Limit: Let f be defined in a neighbourhood of z0 and let
f0 ∈ C. If for every ε > 0 there exists a real number δ > 0
such that

|f (z)− f0| < ε for all z satisfying 0 < |z − z0| < δ

then we say that
lim
z→z0

f (z) = f0.

Continuity: A function w = f (z) is continuous at z = z0
provided f (z0) is defined and

lim
z→z0

f (z) = f (z0).

Different possibilities of how z → z0
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Limit at ∞
Let f be defined in a region of the form {z : |z | > ρ}. If for every
ε > 0 there exists a real number r > 0 such that

|f (z)− f0| < ε for all z satisfying |z | > r

then we say that
lim
z→∞

f (z) = f0.

Examples:

1

z
→ 0 as z →∞ and

z + 1

2z + 1
=

1 + (1/z)

2 + (1/z)
→ 1

2
as z →∞.
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Combining continuous functions
Suppose that f (z) and g(z) are continuous at z0.

f (z)± g(z) and f (z)g(z) are continuous at z0.

f (z)/g(z) is continuous at z0 provided g(z0) 6= 0.

Suppose that f (z) is continuous at z0 and g(z) is continuous
at f (z0) then g(f (z)) is continuous at z0.

Continuity of the real and imaginary parts
Let f (z) = u(x , y) + iv(x , y). If f is continuous at
z0 = x0 + iy0 then u and v are both continuous as functions
on R2 at (x0, y0). Conversely, if u and v are both continuous
at (x0, y0) then f is continuous at z0 = x0 + iy0.
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Examples of continuous functions

1. All the monomials 1, z , z2, . . . are continuous on C and hence
all polynomials are continuous everywhere.

2. Let p(z) and q(z) be polynomials and let

f (z) =
p(z)

q(z)

which is rational function. This is continuous on C except at
a finite number of points which are the roots of q(z).

3.
exp(z) = ex(cos y + i sin y)

is continuous on C.
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Points where limits do not exist

1.

f (z) =
1

z

is unbounded as z → 0.

2.
f (z) = Arg z ∈ (−π, π]

is not defined at z = 0 and it does not have a limit on the
negative real axis. The function jumps by 2π as we cross the
negative real axis.

3.
f (z) = exp(−1/z2)

is unbounded as z → 0 when z ∈ C.

4.

f (z) =
z

z

does not have a limit as z → 0 but it is bounded.
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