Some formulae and some terms extracted from the module

Notation, ..., division.

$$
z=x+i y=r \mathrm{e}^{i \theta}=r(\cos (\theta)+i \sin (\theta)), \quad x, y, r, \theta \in \mathbb{R}, \quad r \geq 0 .
$$

When $\theta \in(-\pi, \pi], \operatorname{Arg} z=\theta . \bar{z}=x-i y, r^{2}=z \bar{z}=x^{2}+y^{2} \geq 0$.

$$
\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}=\frac{x-i y}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}} .
$$

The finite geometric series.

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z} . \quad \text { It tends to } \frac{1}{1-z} \text { as } n \rightarrow \infty \text { when }|z|<1
$$

Roots of unity. $\omega=\mathrm{e}^{2 \pi i / n} .1, \omega, \ldots, \omega^{n-1}$ all satisfy $z^{n}=1$ and are equally spaced.
Some functions of z.

$$
\begin{aligned}
& \mathrm{e}^{z}=\mathrm{e}^{x} \mathrm{e}^{i y}=\mathrm{e}^{x}(\cos (y)+i \sin (y)), \quad \log (z)=\ln r+i \operatorname{Arg}(z), \\
& z^{\alpha}=\exp (\alpha \log (z)), \quad \cos (z)=\frac{\mathrm{e}^{i z}+\mathrm{e}^{-i z}}{2}, \quad \sin (z)=\frac{\mathrm{e}^{i z}-\mathrm{e}^{-i z}}{2} .
\end{aligned}
$$

Polynomials, rational functions. When $p(z)$ is a polynomial of degree m,

$$
p(z)=p\left(z_{0}\right)+p^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\cdots+\frac{p^{(m)}\left(z_{0}\right)}{m!}\left(z-z_{0}\right)^{m}, \quad \text { for all points } z_{0}
$$

When $\operatorname{deg} p(z) \geq \operatorname{deg} q(z)$ and the zeros of $q(z)$ are simple we have a representation of the form

$$
R(z)=\frac{p(z)}{q(z)}=(\text { some polynomial })+\sum_{k=1}^{n} \frac{A_{k}}{z-z_{k}}, \quad A_{k}=\text { residue at } z_{k} .
$$

When $q(z)$ has a zero at z_{0} of multiplicity $r \geq 1$ the representation involves

$$
\cdots+\frac{B_{1}}{z-z_{0}}+\frac{B_{2}}{\left(z-z_{0}\right)^{2}}+\cdots+\frac{B_{r}}{\left(z-z_{0}\right)^{r}}+\cdots, \quad B_{1}=\text { residue at } z_{0} .
$$

The Cauchy Riemann equations for $f(z)=u(x, y)+i v(x, y), u, v \in \mathbb{R}$,

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

$f(z)$ is complex differentiable at a point if and only if these are satisfied. A function f is analytic at z_{0} if f is differentiable at all points in some neighbourhood of z_{0}.
Harmonic: $\phi(x, y)$ is harmonic if

$$
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 .
$$

If $f=u+i v$ is analytic then u and v are harmonic functions. v is said to be the harmonic conjugate of u and satisfies

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x} .
$$

