Exercises involving the use of residue theory

Question 1 is a trig. integral and similar to what was asked in the exercises associated with chapter 5 . The past exam questions in questions 5 and 6 just involve rational functions of z and be tackled as a result of what is taught in the first week of the material on chapter 8, i.e. from what is taught in week 23 . Question 12 is a slight variation of something in the lecture notes with the difference here that a quarter of a circle is used instead of a half circle. Question 11 also just involves a rational function but has the additional difficulty in that the residue at a double pole must be obtained.

The past exam questions in questions 7,8 , and 9 all have an integrand which contains an $\exp ($.$) term and the material on this should be taught in week 24$. Questions 2, 3, 4 and 10 all involve indented contours and the material on this should be taught in week 24 . In the case of question 10 there is the additional difficulty of a double pole as well.

Questions 14 and 13 involve loops which are respectively a rectangle and a square. These can be considered at any time although they may be considered as among the more difficult questions.

1. Show the following by first using the substitution $z=\mathrm{e}^{i \theta}$.

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \sin \theta}=\frac{2 \pi}{3}
$$

2. Suppose that $f(z)$ is analytic in an annulus $\left\{z: 0<\left|z-x_{0}\right|<r\right\}$ and has a simple pole at $x_{0} \in \mathbb{R}$. Let $0<\epsilon<r$ and let $C_{\epsilon}^{+}=\left\{x_{0}+\epsilon \mathrm{e}^{i \theta}: 0 \leq \theta \leq \pi\right\}$ denote a half circle with centre at x_{0} and radius ϵ. If the half circle is traversed once in the anti-clockwise direction then show that

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}^{+}} f(z) \mathrm{d} z=\pi i \operatorname{Res}\left(f, x_{0}\right) .
$$

3. Show the following.

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{\cos (3 x)}{x-1} \mathrm{~d} x=-\pi \sin (3) \quad \text { and } \quad \text { p.v. } \int_{-\infty}^{\infty} \frac{\sin (3 x)}{x-1} \mathrm{~d} x=\pi \cos (3) .
$$

4. Verify that

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x=\frac{\pi}{2}
$$

5. The following was part of question 4 in the May 2023 MA3614 exam paper. This part of the question was worth 9 marks of the 20 marks in the entire question.
Let a, b and c be real numbers with $a>0$ and let

$$
f(z)=\frac{1}{a z^{2}+b z+c} .
$$

(a) When $b^{2} \neq 4 a c$ indicate all the poles of $f(z)$ and determine the residue at each pole. Similarly, in the case $b^{2}=4 a c$ indicate all the poles of $f(z)$ and determine the residue at each pole.
(b) Let C_{R} denote the circle with centre 0 and radius $R>0$ traversed once in the anti-clockwise sense. By any means explain why

$$
\oint_{C_{R}} f(z) \mathrm{d} z=0
$$

when R is sufficiently large.
(c) Let C_{R}^{+}denote the half circle with centre at 0 and radius $R>0$ in the upper half plane traversed in the anti-clockwise direction and let Γ_{R} denote the closed loop composed of the real interval $[-R, R]$ followed by the half circle C_{R}^{+}. The half circle C_{R}^{+}and the closed loop are illustrated in the diagram below.

Use the $M L$ inequality to explain why

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z=0
$$

Further, in the case $4 a c>b^{2}$ use the loop Γ_{R} to determine an expression in terms of a, b and c of the value

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x .
$$

You need to explain all your steps.
6. The following was part of question 4 in the May 2022 MA3614 exam paper. This part of the question was worth 10 marks.
Let

$$
f(z)=\frac{1}{1+z^{2}+z^{4}} .
$$

Let C_{R}^{+}denote the half circle with centre at 0 and radius $R>1$ in the upper half plane traversed in the anti-clockwise direction and let Γ_{R} denote the closed loop composed of the real interval $[-R, R]$ followed by the half circle C_{R}^{+}. The half circle C_{R}^{+}and the closed loop are illustrated in the diagram below.

(a) The function $f(z)$ has simple poles at the points $\pm z_{1}$ and $\pm z_{2}$ where $z_{1}=\mathrm{e}^{i \pi / 3}$ and $z_{2}=\mathrm{e}^{i 2 \pi / 3}$. Indicate which two points are in the upper half plane, give the cartesian form of these points and give workings to confirm that $1+z_{1}^{2}+z_{1}^{4}=0$.
(b) Determine the residue at each of the two simple poles in the upper half plane and determine

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z .
$$

(c) Determine, giving reasons, the value of

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z
$$

(d) By using the loop Γ_{R}, determine

$$
\int_{0}^{\infty} f(x) \mathrm{d} x .
$$

7. The following was part of question 4 in the May 2021 MA3614 exam paper. This part of the question was worth 10 marks.
Let C_{R}^{+}denote the half circle with centre at 0 and radius $R>0$ in the upper half plane traversed in the anti-clockwise direction and let Γ_{R} denote the closed loop composed of the real interval $[-R, R]$ followed by the half circle C_{R}^{+}, that is $\Gamma_{R}=[-R, R] \cup C_{R}^{+}$. The half circle C_{R}^{+}and the closed loop are illustrated in the diagram below.

In the following which function you consider depends on the 4th digit of your 7-digit student id.. If your 4th digit is one of $0,2,4,6,8$ then your function $f(z)$ is on the left hand side whilst if it is one of the digits $1,3,5,7,9$ then your function $f(z)$ is on the right hand side.
$f(z)=\frac{4+\mathrm{e}^{3 i z}}{1+2 z^{2}} \quad$ (even digit case) \quad or $\quad f(z)=\frac{2-\mathrm{e}^{5 i z}}{1+3 z^{2}} \quad$ (odd digit case).
(a) Give all the poles of your version of the function $f(z)$ in the complex plane and determine the residue at each pole in the upper half plane.
(b) For your version of $f(z)$, determine, giving reasons, the value of

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z
$$

(c) For your version of $f(z)$, determine, giving reasons, the value of the integrals

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x \quad \text { and } \quad \int_{-\infty}^{\infty} \operatorname{Re}(f(x)) \mathrm{d} x .
$$

Here $\operatorname{Re}(f(x))$ means the real part of $f(x)$.
8. The following was part of question 4 in the May 2020 MA3614 exam paper. This part of the question was worth 9 marks.
Let C_{R}^{+}denote the half circle with centre at 0 and radius $R>1$ in the upper half plane traversed in the anti-clockwise direction and let Γ_{R} denote the closed loop composed of the real interval $[-R, R]$ followed by the half circle C_{R}^{+}, that is $\Gamma_{R}=[-R, R] \cup C_{R}^{+}$. The half circle C_{R}^{+}and the closed loop are illustrated in the diagram below.

Also let $a>0$ and let

$$
f(z)=\frac{\mathrm{e}^{i a z}}{4+z^{2}}
$$

(a) Show that

$$
\int_{C_{R}^{+}} f(z) \mathrm{d} z \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

(b) When $R>2$ determine, giving reasons,

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z
$$

(c) By giving appropriate reasoning, determine

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x .
$$

9. The following was part of question 4 in the May 2019 MA3614 exam paper. This part of the question was worth 12 marks.
Let

$$
f(z)=\frac{1-\mathrm{e}^{i z}}{z^{2}\left(z^{2}+1\right)},
$$

and for any $\rho>0$ let $C_{\rho}^{+}=\left\{\rho \mathrm{e}^{i \theta}: 0 \leq \theta \leq \pi\right\}$ denote an upper half circle. When contour integrals are considered on such half circles, the direction of integration corresponds to increasing θ. The notation $-C_{\rho}$ means the same path but in the opposite direction. For this function, it can be shown that

$$
\lim _{r \rightarrow 0} \int_{C_{r}^{+}} f(z) \mathrm{d} z=\pi .
$$

(a) State all of the poles of $f(z)$ and determine the residue at each pole.
(b) Explain why

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z=0
$$

(c) For $0<r<R$, let Γ_{R}^{r} denote the closed loop

$$
\Gamma_{R}^{r}=[r, R] \cup C_{R}^{+} \cup[-R,-r] \cup\left(-C_{r}^{+}\right)
$$

illustrated below.

When $r<1<R$ determine

$$
\oint_{\Gamma_{R}^{r}} f(z) \mathrm{d} z .
$$

(d) By using the previous results, or otherwise, determine

$$
\int_{0}^{\infty} \frac{1-\cos (x)}{x^{2}\left(x^{2}+1\right)} \mathrm{d} x
$$

10. By using the same contour Γ_{R}^{r} as in question 9 show that

$$
\int_{0}^{\infty} \frac{\sin (2 x)}{x\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\pi\left(\frac{1}{2}-\frac{1}{\mathrm{e}^{2}}\right) .
$$

11. Evaluate the following integral.

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{2}}, \quad a>0
$$

12. Let a function $f(z)$ and a quarter circle C_{R}^{q} of radius $R>2$ be given by

$$
f(z)=\frac{1}{z^{4}+16}, \quad \text { and } \quad C_{R}^{q}=\left\{\operatorname{Re}^{i t}: 0 \leq t \leq \pi / 2\right\}
$$

Also let Γ_{R} denote the closed loop composed of the real interval $[0, R]$ followed by the quarter circle C_{R}^{q} and followed by the segment γ_{R} of the imaginary axis from $R i$ to 0 as illustrated illustrated in the diagram.

(a) Explain why

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{q}} f(z) \mathrm{d} z=0
$$

(b) Determine

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z .
$$

(c) Explain why

$$
\int_{\gamma_{R}} f(z) \mathrm{d} z=-i \int_{0}^{R} f(x) \mathrm{d} x .
$$

(d) Using your previous results, or otherwise, to evaluate the real integral

$$
\int_{0}^{\infty} \frac{1}{x^{4}+16} \mathrm{~d} x .
$$

13. Let $f(z)$ be a function which is analytic except for a finite number of isolated singularities and let

$$
g(z)=\pi \cot (\pi z) f(z)
$$

(a) Show that if $f(z)$ does not have an isolated singularity at the integer n then

$$
\operatorname{Res}(g, n)=f(n)
$$

(b) In the case $f(z)=1 / z^{2}$ show that

$$
\operatorname{Res}(g, 0)=-\frac{\pi^{2}}{3}
$$

(c) Let Γ_{N} be the square with vertices at $(N+0.5)(\pm 1 \pm i)$. It can be shown that there is a constant $A>0$ independent of N such that $|\pi \cot (\pi z)| \leq A$ for all $z \in \Gamma_{N}$. In the case that $f(z)=1 / z^{2}$ show that

$$
\int_{\Gamma_{N}} g(z) \mathrm{d} z \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

By using this result show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

14. (a) Let x and y be real. Determine the following limits.

$$
\lim _{y \rightarrow \infty} \tan (x+i y) \text { and } \lim _{y \rightarrow \infty} \tan (x-i y)
$$

(b) Let Γ_{L} denotes the straight line segment from $\pi+i L$ to $i L$ where $L>0$. Determine

$$
\lim _{L \rightarrow \infty} \int_{\Gamma_{L}} \tan z \mathrm{~d} z
$$

(c) By considering a closed loop in the anti-clockwise direction which is the rectangle with vertices $0, \pi, \pi+i L$ and $i L$ show that when $a \in \mathbb{R}$ and $a \neq 0$ we have

$$
\int_{0}^{\pi} \tan (\theta+i a) \mathrm{d} \theta= \begin{cases}\pi i, & \text { when } a>0 \\ -\pi i, & \text { when } a<0\end{cases}
$$

