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Exercises as part of the revision for the May exams

1. Parts of this question are taken from the paper in May 2017 and May 2018.

(a) Let z = x+iy with x, y ∈ R. For each of the following functions determine whether
or not it is analytic in the domain specified, giving reasons for your answers in each
case.

i.
f1 : C→ C, f1(z) = x2 + i2xy.

ii.

f2 : C→ C, f2(z) = (2x3 + 3x2y − 6xy2 − y3) + i(−x3 + 6x2y + 3xy2 − 2y3).

iii.
f3 : C→ C, f3(z) = e−x(cos y + i sin y).

iv.
f4 : C→ C, f4(z) = sinh x cos y + i cosh x sin y.

v.

f5 : C→ C, f5(z) =
∂2φ

∂x2 − i
∂2φ

∂x∂y

where φ is a harmonic function with continuous partial derivatives of all orders.

(b) Show that the function
u(x, y) = x3y − xy3

is harmonic and determine the harmonic conjugate v(x, y) satisfying v(0, 0) = 2.

Express u+ iv in terms of z only.

(c) Let D = {z : |z| < 1} and let f(z) be a function which is analytic in D. Also let
g1(z) and g2(z) be functions defined in D by

g1(z) = f(z), g2(z) = g1(z).

i. Let z0 ∈ D. Explain why the following limit exists and give the limit in terms
of f and/or its derivatives.

lim
h→0

g1(z0 + h)− g1(z0)

h
.

ii. Explain why g2(z) is analytic in D.

iii. If the Maclaurin series representation of f(z) is given by

f(z) =
∞∑
n=0

anz
n

then give the Maclaurin series for g2(z).
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Solution

(a) i. Let u = x2 and v = 2xy.

∂u

∂y
= 0 but − ∂v

∂x
= −2y.

These are the same at y = 0 but not in a neighbourhood of y = 0 and thus f1

is not analytic.

ii. Let u = 2x3 + 3x2y − 6xy2 − y3 and v = −x3 + 6x2y + 3xy2 − 2y3.

∂u

∂x
= 6x2 + 6xy − 6y2 =

∂v

∂y
.

∂u

∂y
= 3x2 − 12xy − 3y2,

∂v

∂x
= −3x2 + 12xy + 3y2.

Both Cauchy Riemann equations are satisfied and hence f2 is analytic.

iii. Let u = e−x cos y and v = e−x sin y.

∂u

∂x
= −u and

∂v

∂y
= u.

These are only the same when cos y = 0 but not in a neighbourhood of any of
these values of y and thus f3 is not analytic.

iv. Let u = sinh x cos y and v = cosh x sin y.

∂u

∂x
= cosh x cos y =

∂y

∂y
.

∂u

∂y
= − sinh x sin y,

∂v

∂x
= sinh x sin y.

Both Cauchy Riemann equations are satisfied and thus f4 is analytic.

v. f5(z) =
∂2φ
∂x2 − i

∂2φ
∂x∂y

gives u =
∂2φ
∂x2 and v = − ∂2φ

∂x∂y
.

∂u

∂x
− ∂v

∂y
=
∂3φ

∂x3 +
∂3φ

∂x∂y2 =
∂

∂x
∇2φ = 0

as φ is harmonic.
∂u

∂y
+
∂v

∂x
=

∂3φ

∂y∂x2 −
∂3φ

∂x2∂y
= 0

as mixed partial derivatives do not depend on the order. The Cauchy Riemann
equations hold at all points and thus the function f5 is analytic everywhere.

(b)
∂u

∂x
= 3x2y − y3,

∂2u

∂x2 = 6xy

and
∂u

∂y
= x3 − 3xy2,

∂2u

∂y2 = −6xy.
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Hence ∇2u = 0. The harmonic conjugate v is such that

∂v

∂x
= −∂u

∂y
= 3xy2 − x3.

Integrating partially with respect to x gives

v = 3

(
x2

2

)
y2 − x4

4
+ g(y)

for any function g(y). Using the other Cauchy Riemann equation gives

∂v

∂y
= 3x2y + g′(y) =

∂u

∂x
= 3x2y − y3.

Thus g′(y) = −y3 and

g(y) = −y
4

4
+ C

where C is a constant. As we require v(0, 0) = 2 this gives C = 2.

f = u+ iv = (x3y − xy3) + i

((
6x2y2 − x4 − y4

4

)
+ 2

)
.

As by construction this is analytic it is a polynomial in z of degree 4. We use the
Maclaurin series to get the representation and get the derivatives by differentiating
in the x-direction.

f ′(z) = 3x2y − y3 + i(3xy2 − x3),

f ′′(z) = 6xy + i(3y2 − 3x2),

f ′′′(z) = 6y − i(6x),

f ′′′′(z) = −6i.

Thus

f(z) = f(0) + f ′(0)z +
f ′′(0)

2
z2 +

f ′′′(0)

6
z3 +

f ′′′′(0)

24
z4 =

(
−i
4

)
z4 + 2i.

(c) i.
g1(z0 + h)− g1(z0)

h
=
f(z0 + h)− (z0)

h
=
f(z0 + h)− f(z0)

h
.

z0 ∈ D implies that z0 ∈ D and as f is analytic at z0 we have from the
definition of complex differentiability

lim
h→0

g1(z0 + h)− g1(z0)

h
= f ′(z0).

ii.
g2(z0 + h)− g2(z0)

h
=
g1(z0 + h)− g1(z0)

h
.

This is the complex conjugate of the expression in the previous part and thus

lim
h→0

g2(z0 + h)− g2(z0)

h
= f ′(z0).

As the limit exists at all points in D the function g2(z) is analytic in D.
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iii. The Maclaurin series representation of g2(z) is given by

g2(z) =
∞∑
n=0

anz
n.
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2. Part of this question was question 2 of the Aug 2020 exam paper with some other parts
from other years or are new exercises.

(a) Let f(z) be a function which is analytic in a domain D. Explain what is meant by
an anti-derivative F (z) of f(z).

Suppose that f(z) and the domain D are such that an anti-derivative F exists on
D. Let Γ denote a simple arc in D starting at z1 and ending at z2. We have the
following result ∫

Γ

f(z) dz = F (z2)− F (z1)

which you can use in the question below. Let Γ1 and Γ2 be the line segments
illustrated below.

Γ1

Γ2 1

−i

−1 + i

Γ1 is from 1 to −i.
Γ2 is from −i to −1 + i.

Evaluate the following giving the value of each integral in cartesian form.

i. ∫
Γ1

dz.

ii. ∫
Γ1∪Γ2

3z2 dz.

iii. ∫
Γ2

dz

z
.

· · · question continues on the next page
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(b) Let f(z) be a function which is analytic in a domain which contains z0, and let Γ
denote a closed loop in the domain traversed once in the anti-clockwise direction.
When z0 is inside Γ, the generalised Cauchy integral formula is given by

f (n)(z0) =
n!

2πi

∮
Γ

f(z)

(z − z0)n+1 dz.

Use this result to evaluate the following when Γ is the circle with centre at 0 and
radius 3.

i. ∮
Γ

z e3z

(z + 2)2 dz.

ii. ∮
Γ

z3

(z + i)4 dz.

iii. ∮
Γ

Log(z + 4)

(z + i)2 dz,

where Log denotes the principal valued logarithm.

(c) Let f(z) be a function which is analytic in a region which contains the unit disk
and let C denote the unit circle traversed once in the anti-clockwise direction. In
the following let 0 < h < 1 and let ω = eπi/4. We have the following partial fraction
representations which you can use.

2h

z2 − h2 =
1

z − h
− 1

z + h
,

2ih

z2 + h2 =
1

z − ih
− 1

z + ih
,

4hz2

z4 − h4 =
1

z − h
− i

z − ih
− 1

z + h
+

i

z + ih
,

4whz2

z4 + h4 =
1

z − wh
− i

z − iwh
− 1

z + wh
+

i

z + iwh
.

By using the Cauchy integral formula (which is stated in the previous part) show
that when we have the following.

f(h)− f(−h)

2h
=

1

2πi

∮
C

f(z)

z2 − h2 dz,

f(ih)− f(−ih)

2ih
=

1

2πi

∮
C

f(z)

z2 + h2 dz,

f(h)− if(ih)− f(−h) + if(−ih)

4h
=

1

2πi

∮
C

z2f(z)

z4 − h4 dz,

f(ωh)− if(iωh)− f(−ωh) + if(−iωh)

4ωh
=

1

2πi

∮
C

z2f(z)

z4 + h4 dz.
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Solution

(a) i. With f(z) = 1 and F (z) = z the value is −i− 1.

ii. With f(z) = 3z2 we have the anti-derivative

F (z) = z3.

The path of Γ1 ∪ Γ2 starts at 1 and ends at −1 + i.

F (1) = 1 and F (−1 + i) = (−1 + i)3 = −1 + 3i− 3i2 + i3 = 2 + 2i.

The value of the integral is

(2 + 2i)− 1 = 1 + 2i.

iii. With f(z) = 1/z possible anti-derivatives are Log(z) and Log(−z). As the
segment Γ2 crosses the negative real axis the one to take is F (z) = Log(−z)
as this is continuous on Γ2.

F (−i) = Log(i) = i
π

2
, F (−1 + i) = Log(1− i) = ln(

√
2)− iπ

4
.

The value of the integral is
1

2
ln(2)− i3π

4
.

(b) i.
z e3z

(z + 2)2 =
f(z)

(z − z0)n+1

with z0 = −2, n+ 1 = 2 and f(z) = ze3z. The value of the integral is

2πif ′(−2).

f ′(z) = e3z(1 + 3z).

The value is hence
2(−5)πie−6 = −10πe−6i.

ii.
z3

(z + i)4 =
f(z)

(z − z0)n+1

with f(z) = z3, n+ 1 = 4 and z0 = −i.

f ′′′(z) = 6.

The value of the integral is

2πi

3!
f ′′′(i) = 2πi.
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iii.
Log(z + 4)

(z + i)2 =
f(z)

(z − z0)n+1

with f(z) = Log(z+4), n+1 = 2 and z0 = −i. The function f(z) has a branch
point at z = −4 and is analytic on and inside the circle being considered.

f ′(z) =
1

z + 4
, f ′(−i) =

1

−i+ 4
=

4 + i

17
.

The value of the integral is

2πi

1!
f ′(−i) = (2πi)

(
4 + i

17

)
=

2π

17
(−1 + 4i).

(c) The Cauchy integral formula for f(h) and f(−h) gives

f(h) =
1

2πi

∮
C

f(z)

z − h
dz, f(−h) =

1

2πi

∮
C

f(z)

z + h
dz,

Hence

f(h)− f(−h) =
1

2πi

∮
C

f(z)

(
1

z − h
− 1

z + h

)
dz

=
1

2πi

∮
C

f(z)
2h

z2 − h2 dz

by using one of the given partial fraction representations. Dividing by 2h gives the
identity.

The second identity follows by replacing h by ih.

The Cauchy integral formula for f(ih) and f(−ih) gives

f(ih) =
1

2πi

∮
C

f(z)

z − ih
dz, f(−ih) =

1

2πi

∮
C

f(z)

z + ih
dz,

Hence

f(h)− if(ih)− f(−h) + if(−ih)

=
1

2πi

∮
C

f(z)

(
1

z − h
− i

z − ih
− 1

z + h
+

i

z + ih

)
dz

=
1

2πi

∮
C

4hz2f(z)

z4 − h4 dz

by using one of the given partial fraction representations.. Dividing by 4h gives
the third identity.

The fourth identity follows by replacing h by ωh as ω4 = eiπ = −1.
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3. (a) Determine if the following power series define entire functions and if this is not the
case then find the circle of convergence. In each case you must justify your answer.

i.
∞∑
n=0

2n+ 1

n!
(z + 3)n.

ii.
∞∑
n=0

n

2n
(z − 1)n.

(b) Determine the largest annulus of the form 0 ≤ r < |z| < R ≤ ∞ for which the
following Laurent series converges. You must justify your answer.

∞∑
n=1

n4

4nzn
+
∞∑
n=1

n4zn

4n
.

(c) Let

f(z) =
−2z + z2

1 + 2 sin(z)
.

Determine the radius of convergence of the Maclaurin series.

Suppose that the Maclaurin series for your function is expressed in the form

a1z + a2z
2 + a3z

3 + a4z
4 + · · · .

Determine a1, a2, a3 and a4.

(d) Let

φ(z) =
1

(1 + z)(2− z)
.

Determine the partial fraction representation of φ(z) and determine the Laurent
series valid for |z| > 2. In your answer you must give the coefficient of 1/zn for
n ≥ 1.
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Solution

(a) i. Let an = (2n+ 1)/n! and let bn = an(z + 3)n.

an+1

an
=

2n+ 3

2n+ 1

(
1

n+ 1

)
=

2 + 3/n

2 + 1/n

(
1

n+ 1

)
→ 0 as n→∞.

Hence for all z
bn+1

bn
=
an+1

an
(z + 3)→ 0 as n→∞.

By the ratio test the series converges for all z and the function is an entire
function.

ii. Let now an = n/2n and let bn = an(z − 1)n.

an+1

an
=
n+ 1

n

(
1

2

)
→ 1

2
as n→∞.

Hence
|bn+1|
|bn|

→ |z − 1|
2

as n→∞.

By the ratio test the series converges when |z − 1| < 2 and diverges when
|z − 1| > 2 and thus the circle |z − 1| = 2 is the circle of convergence.

(b) We try the ratio test on the term with positive powers of z. Let

an =
n4

4n
, bn = anz

n.

an+1

an
=

(
(n+ 1)4

n4

)(
4n

4n+1

)
=

(
1 +

1

n

)4
1

4
→ 1

4

as n→∞.
bn+1

bn
=
an+1

an
z → z

4

as n → ∞. By the ratio test the series of this part converges when |z| < 4 and
diverges when |z| > 4 and thus R = 4.

We try the ratio test on the term with negative powers of z. Let

cn =
an
zn
.

From the earlier part
cn+1

cn
→ 1

4z

as n → ∞. By the ratio test the series of this part converges when |4z| > 1 and
diverges when |4z| < 4 and thus r = 1/4.

(c) 1+2 sin(z) = 0 when sin(z) = −1/2 and the nearest points to 0 is at −π/6. f(z) is
analytic in |z| < π/6 and has a simple pole on |z| = π/6. The radius of convergence
of the Maclaurin series is π/6.
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We consider

(a1z + a2z
2 + a3z

3 + a4z
4 + · · · )(1 + 2 sin(z)) = −2z + z2

1 + 2 sin(z) = 1 + 2

(
z − z3

6
+

z5

120
+ · · ·

)
= 1 + 2z − z3

3
+
z5

60
+ · · ·

Hence

(a1z + a2z
2 + a3z

3 + a4z
4 + · · · )

(
1 + 2z − z3

3
+
z5

60
+ · · ·

)
= −2z + z2.

Equating the coefficients of z gives

a1 = −2.

Equating the coefficients of z2 gives

a2 + 2a1 = a2 − 4 = 1, a2 = 5.

Equating the coefficients of z3 gives

a3 + 2a2 = a3 + 10 = 0, a3 = −10.

Equating the coefficients of z4 gives

a4 + 2a3 −
a1

3
= a4 − 20 +

2

3
= 0, a4 = 20− 2

3
=

58

3
.

(d)

φ(z) =
1

(1 + z)(2− z)
=

A

1 + z
+

B

2− z
.

A = lim
z→−1

(1 + z)φ(z) =
1

3
.

B = lim
z→2

(2− z)φ(z) =
1

3
.

1 + z = z(1/z + 1) = z(1− (−1/z)) and 2− z = z(2/z − 1) = −z(1− 2/z).

By the geometric series

1

1 + z
=

(
1

z

)(
1− 1

z
+

1

z2 −
1

z3 + · · ·
)

which is valid for |z| > 1.

1

2− z
= −

(
1

z

)(
1 +

2

z
+

22

z2 +
23

z3 + · · ·
)

which is valid for |z| > 2.

We get the Laurent series for φ(z) valid for |z| > 2 by appropriately combining
these two series . The coefficient of 1/zn+1, n ≥ 0, in the Laurent series for φ(z)
valid for |z| > 2 is

(−1)nA− 2nB =
(−1)n − 2n

3
.
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4. Part (a) was question 4a of the 2018 MA3614 paper and was worth 10 marks. It was
also on the first exercise about integrals which was given out towards the end of term 1.
Part (b) is a variation of what has been done in the lectures and exercises.

(a) By first using the substitution z = eiθ, evaluate∫ 2π

0

dθ

1 + 8 cos2 θ
.

(b) Let R > 2 and let C̃R denote the quarter circle with centre at 0 and radius R > 0 in
the 4th quadrant traversed in the clockwise direction, and let ΓR denote the closed
loop composed of the real interval [0, R] followed by the quarter circle C̃r

R followed
by the pat of the imaginary axis from −Ri to 0. The closed loop is illustrated in
the diagram below.

0

−R

R

C̃R

x

y

Let f(z) be the function

f(z) =
1

z4 + 16

Give all the points in the complex plane where this function has pole singularities
and determine the residue at each pole which is inside the loop ΓR.

By considering an integral involving the loop ΓR, evaluate∫ ∞
0

f(x) dx.

For full marks you need to explain each of your steps.
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Solution

(a)

z = eiθ,
dz

dθ
= ieiθ = iz,

dθ

dz
=

1

iz
, cos θ =

1

2
(z + z−1).

The interval 0 ≤ θ ≤ 2π maps to the unit circle C traversed once in the anti-
clockwise direction and we have that the integral is

I =

∮
C

1

i
F (z) dz,

where

F (z) =
1

z

(
1

1 + 2(z + 1/z)2

)
=

z

z2 + 2(z2 + 1)2 =
z

2z4 + 5z2 + 2
.

The denominator vanishes when

2z4 + 5z2 + 2 = 0.

This is a quadratic in z2 and the smaller in magnitude root z1 satisfies

z2
1 =

−5 +
√

25− 16

4

=
−5 + 3

4
= −1

2
.

Res(F, z1) = lim
z→z1

(z − z1)F (z) = z1 lim
z→z1

z − z1

2z4 + 5z2 + 2

=
z1

8z3
1 + 10z1

=
1

8z2
1 + 10

=
1

−4 + 10
=

1

6

by using L’Hopital’s rule and the expression for z1. By similar workings the residue
at −z1 is the same value. As both z1 and −z1 are inside C the residue theorem
gives

I = 2π(Res(F, z1) + Res(F, −z1)) = 2π

(
1

6
+

1

6

)
=

2π

3
.

(b) The simple poles of f(z) are when

z4 = −16 = 16eiπ.

In polar form the positions are

zk = 2 exp

(
iπ

4
+
kπ

2

)
, k = 0, 1, 2, 3.

The pole which is inside the loop is

z3 = 2e−π/4 =
√

2(1− i).
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The residue at this point is

Res(f, z3) = lim
z→z3

z − z3

z4 + 16
=

1

4z3
3

=
z3

4z4
3

= − z3

64
.

As the loop is clockwise the residue theorem gives∮
ΓR

dz

z4 + 16
= −2πiRes(f, z3) =

πiz3

32
=

(1 + i)π
√

2

32
.

For z ∈ C̃R we have |z| = R and

|f(z)| ≤ 1

R4 − 16
.

The length of C̃R is πR/2 and thus by the ML inequality∣∣∣∣∫
C̃R

f(z) dz

∣∣∣∣ ≤ πR/2

R4 − 16
→ 0 as R→∞.

Let γR denote the line segment joininy −Ri and 0. It follows that a parametrization
of −γR is

z(t) = −it, 0 ≤ t ≤ R, z′(t) = −i.∫
−γR

f(z) dz =

∫ R

0

−if(−it) dt =

∫ R

0

−if(t) dt.

Hence ∫
γR

f(z) dz =

∫ R

0

if(t) dt.

As the ΓR is the union of 3 parts and two of them combine we have

(1 + i)

∫ R

0

f(x) dx+

∫
C̃R

f(z) dz =
(1 + i)

√
2π

32
.

Letting R→∞ gives ∫ ∞
0

f(x) dx =
π
√

2

32
.
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5. The following was part of question 4 of the May 2015 exam and was worth 10 marks.

Let C+
R denote the half circle with centre at 0 and radius R > 2 in the upper half plane

traversed in the anti-clockwise direction and let ΓR denote the closed loop composed of
the real interval [−R,R] followed by the half circle C+

R , that is ΓR = [−R,R] ∪ C+
R . The

half circle C+
R and the closed loop are illustrated in the diagram below.

−R R

C+
R

x

y

By considering an integral involving the loop ΓR evaluate∫ ∞
−∞

dx

(1 + x2)(4 + x2)
.

For full marks you need to explain each of your steps.
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Solution

Let

f(z) =
1

(1 + z2)(4 + z2)
.

This function has simple poles at ±i and ±2i. Label the poles in the upper half plane
as z1 = i and z2 = 2i.

When R > 2 the points z1 and z2 are inside ΓR and by the residue theorem∮
ΓR

f(z) dz = 2πi(Res(f, z1) + Res(f, z2)).

For the residues

Res(f, z1) = lim
z→z1

(z − z1)f(z) =
1

4 + z2

∣∣∣∣
z=i

lim
z→i

z − i
1 + z2

=

(
1

3

)(
1

2i

)
=

1

6i
.

Res(f, z2) = lim
z→z2

(z − z2)f(z) =
1

1 + z2

∣∣∣∣
z=2i

lim
z→2i

z − 2i

4 + z2

=

(
1

−3

)(
1

4i

)
= − 1

12i
.∮

ΓR

f(z) dz = 2πi

(
1

6i
− 1

12i

)
=
π

6
.

As ΓR is the union of two parts we have∮
ΓR

f(z) dz =

∫
CR

f(z) dz +

∫ R

−R
f(x) dx.

By letting R→∞ we obtain the result∫ ∞
−∞

f(x) dx =
π

6

and to justify we need to show that the integral around the semi-circle tends to 0 as
R→∞.

On CR we have |1 + z2| ≥ |R2 − 1| and |4 + z2| ≥ |R2 − 4| and thus

|f(z)| ≤ 1

(R2 − 1)(R2 − 4)
.

As the length of CR is πR the ML inequality gives the bound∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ πR

(R2 − 1)(R2 − 4)
→ 0 as R→∞

as the denominator is a higher degree polynomial in R than the numerator in the last
expression.

6. Let Γ denote the circle {z : |z − 1| = 2} traversed once in the anti-clockwise direction.
Determine the following loop integral.∮

Γ

ez

z(4− z)
dz.
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Solution

The integrand only has a singularity inside the contour at z0 = 0 and the conditions of
the Cauchy integral formula hold if we take

f(z) =
ez

4− z
.

The value of the integral is

2πif(0) =
2πi

4
=
πi

2
.

7. Let C be the unit circle z(t) = eit, −π < t ≤ π. By any means determine∫
C

z1/3 dz,

where z1/3 denotes the principal value root function and where the direction of integra-
tion is the anti-clockwise direction.
Solution

By using the given parametrization we have

dz

dt
= i eit

the integral is∫ π

−π
iei(t/3+t) dt = i

[
ei(4t/3)

(4i/3)

]π
−π

=
3

4

(
e4iπ/3 − e−4iπ/3

)
=

3i

2
sin

(
4π

3

)
.

An alternative solution is to note that we have an anti-derivative

F (z) =
z4/3

(4/3)
=

3

4
z4/3.

Let F (−1 + i0) denote the value on the branch cut of the function and let F (−1− i0)
denote the limit as you approach the point from below the negative real axis. These
values are as follows.

F (−1 + i0) =
3

4
ei4π/3 and F (−1− i0) =

3

4
e−i4π/3.

Then

F (−1 + i0)− F (−1− i0) =
3

4

(
ei4π/3 − e−i4π/3

)
=

3

4
2i sin

(
4π

3

)
=

3i

2
sin

(
4π

3

)
.

8. Consider the following series.

∞∑
n=0

(
1

3n + 4n

)
(z − 1)n,
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(a) Give details to determine the circle of convergence using the ratio test.

(b) Give details to determine the circle of convergence using the root test.

Solution

(a)
∞∑
n=0

(
1

3n + 4n

)
(z − 1)n, let an =

1

3n + 4n
, bn = an(z − 1)n.

an+1

an
=

3n + 4n

3n+1 + 4n+1 =
(3/4)n + 1

3(3/4)n + 4
→ 1

4
as n→∞.

Thus ∣∣∣∣bn+1

bn

∣∣∣∣→ |z − 1|
4

as n→∞.

By the ratio test we have convergence when |z − 1| < 4 and divergence when
|z − 1| > 4. Thus by the ratio test the circle of convergence is {z : |z − 1| = 4}.

(b) With an and bn as in the previous part we have

3n + 4n = 4n
(

1 +

(
3

4

)n)
and

a1/n
n =

1

4

(
1 +

(
3

4

)n)−1/n

→ 1

4
as n→∞.

|bn|1/n = |an|1/n |z − 1| → |z − 1|
4

as n→∞.

By the root test we have convergence when |z − 1| < 4 and divergence when
|z − 1| > 4. Thus by the root test the circle of convergence is {z : |z − 1| = 4}.

9. Let a be real with a > 1. By using the substitution z = eiθ show that∫ π

−π

dθ

a+ cos θ
=

2π√
a2 − 1

.

Solution

dz

dθ
= iz gives

dθ

dz
=

1

iz
and cos θ =

1

2
(eiθ + e−iθ) =

1

2

(
z +

1

z

)
.

For the integrand we have

dθ

dz

(
1

a+ cos θ

)
=

1

i
F (z)

where

F (z) =
1

z

 1

a+
1

2

(
z +

1

z

)
 =

2

2az + z2 + 1
.



2024:04:21:18:43:19 c© M. K. Warby MA3614 Complex variable methods and applications 19

Now
z2 + 2az + 1 = 0 when z = −a±

√
a2 − 1.

The negative sign case gives a value which is less than −1 and hence outside of the unit
disk and hence we only need to consider

z1 = −a+
√
a2 − 1.

With I denoting the integral we have by the residue theorem that

I = 2πRes(F, z1)

and

Res(F, z1) = 2 lim
z→z1

(z − z1)

z2 + 2az + 1
= 2

(
1

2z1 + 2a

)
=

1

z1 + a
=

1√
a2 − 1

.
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10. (a) Determine the Maclaurin series for z cos z and indicate where it converges.

(b) Determine the Laurent series of
cos z

z2

about the point z = 0 and indicate where it converges.

(c) Find the first 3 non-zero terms of the Laurent series of

z

sin z

in a region of the form 0 < |z| < R. State the largest value of R for which the
Laurent series converges and give a reason to justify your answer.

Solution

(a) The Maclaurin series for cos z is a standard series and is given by

cos z = 1− z2

2
+
z4

24
+ · · ·+ (−1)n

z2n

(2n)!
+ · · ·

Thus

z cos z = z − z3

2
+
z5

24
+ · · ·+ (−1)n

z2n+1

(2n)!
+ · · ·

and this converges for all z.

(b) Using the series for cos z the Laurent series is

cos z

z2 =
1

z2 −
1

2
+
z2

24
+ · · ·+ (−1)n

z2n−2

(2n)!
+ · · ·

and this converges in {z : 0 < |z| <∞}.
(c) As the zeros of sin z are on the real axis and these are at kπ where k is an integer

it follows that the given function is analytic in 0 < |z| < R with R = π.

The function is bounded as z → 0 and thus it has a removable singularity at
z = 0. It is an even function and hence only even powers are involved and hence
for 0 < |z| < π

z

sin z
= a0 + a2z

2 + a4z
4 + · · · .

Rearranging and using the known series for sin z gives

z = (a0 + a2z
2 + a4z

4 + · · · )
(
z − z3

6
+

z5

120
+ · · ·

)
.

Equating the coefficient of z gives a0 = 1.

Equating the coefficient of z3 gives

0 = a2 −
a0

6
, a2 =

1

6
.

Equating the coefficient of z5 gives

0 = a4 −
a2

6
+

a0

120
, a4 =

a2

6
− a0

120
=

1

36
− 1

120
=

7

360
.
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11. Let n ≥ 1 be an integer and let f(z) denote a function which is analytic on the unit
circle C and inside the unit circle. Also let 0 < h < 1. The factorization

zn+1 − hn+1 = (z − h)
n∑
k=0

hkzn−k

rearranges to

zn+1 = (z − h)
n∑
k=0

hkzn−k + hn+1 and
1

z − h
− 1

zn+1

n∑
k=0

hkzn−k =
hn+1

zn+1(z − h)
.

Complete the steps to show that

f(h)−
n∑
k=0

(
f (k)(0)

k!

)
hk = hn+1

∮
C

f(z)

zn+1(z − h)
dz

where in the loop integral C is traversed once in the anti-clockwise sense.

Solution

The last identity can be written as

1

z − h
−

n∑
k=0

hkz−(k+1) =
hn+1

zn+1(z − h)
.

Now if we multiply by f(z)/(2πi) and integrate using the loop C then we have

1

2πi

∮
C

f(z)

(
1

z − h
−

n∑
k=0

hkz−(k+1)

)
dz =

hn+1

2πi

∮
C

f(z)

zn+1(z − h)
dz.

The right hand side expression matches what we want to show. By linearity of the
integral the left hand side can be written as

1

2πi

(∮
C

f(z)

z − h
dz − hk

n∑
k=0

∮
C

f(z)

zk+1
dz

)
.

The Cauchy integral formula and the generalised Caucy integral formula give

f(h) =
1

2πi

∮
C

f(z)

z − h
dz, and

f (k)(0)

k!
=

1

2πi

∮
C

f(z)

zk+1
dz

and the result follows.


